| #ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ |
| #define ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ |
| |
| // Generate stack tracer for aarch64 |
| |
| #if defined(__linux__) |
| #include <sys/mman.h> |
| #include <ucontext.h> |
| #include <unistd.h> |
| #endif |
| |
| #include <atomic> |
| #include <cassert> |
| #include <cstdint> |
| #include <iostream> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/debugging/internal/address_is_readable.h" |
| #include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems |
| #include "absl/debugging/stacktrace.h" |
| |
| static const uintptr_t kUnknownFrameSize = 0; |
| |
| #if defined(__linux__) |
| // Returns the address of the VDSO __kernel_rt_sigreturn function, if present. |
| static const unsigned char* GetKernelRtSigreturnAddress() { |
| constexpr uintptr_t kImpossibleAddress = 1; |
| ABSL_CONST_INIT static std::atomic<uintptr_t> memoized{kImpossibleAddress}; |
| uintptr_t address = memoized.load(std::memory_order_relaxed); |
| if (address != kImpossibleAddress) { |
| return reinterpret_cast<const unsigned char*>(address); |
| } |
| |
| address = reinterpret_cast<uintptr_t>(nullptr); |
| |
| #ifdef ABSL_HAVE_VDSO_SUPPORT |
| absl::debugging_internal::VDSOSupport vdso; |
| if (vdso.IsPresent()) { |
| absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info; |
| if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", STT_FUNC, |
| &symbol_info) || |
| symbol_info.address == nullptr) { |
| // Unexpected: VDSO is present, yet the expected symbol is missing |
| // or null. |
| assert(false && "VDSO is present, but doesn't have expected symbol"); |
| } else { |
| if (reinterpret_cast<uintptr_t>(symbol_info.address) != |
| kImpossibleAddress) { |
| address = reinterpret_cast<uintptr_t>(symbol_info.address); |
| } else { |
| assert(false && "VDSO returned invalid address"); |
| } |
| } |
| } |
| #endif |
| |
| memoized.store(address, std::memory_order_relaxed); |
| return reinterpret_cast<const unsigned char*>(address); |
| } |
| #endif // __linux__ |
| |
| // Compute the size of a stack frame in [low..high). We assume that |
| // low < high. Return size of kUnknownFrameSize. |
| template<typename T> |
| static inline uintptr_t ComputeStackFrameSize(const T* low, |
| const T* high) { |
| const char* low_char_ptr = reinterpret_cast<const char *>(low); |
| const char* high_char_ptr = reinterpret_cast<const char *>(high); |
| return low < high ? high_char_ptr - low_char_ptr : kUnknownFrameSize; |
| } |
| |
| // Given a pointer to a stack frame, locate and return the calling |
| // stackframe, or return null if no stackframe can be found. Perform sanity |
| // checks (the strictness of which is controlled by the boolean parameter |
| // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. |
| template<bool STRICT_UNWINDING, bool WITH_CONTEXT> |
| static void **NextStackFrame(void **old_frame_pointer, const void *uc) { |
| void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer); |
| bool check_frame_size = true; |
| |
| #if defined(__linux__) |
| if (WITH_CONTEXT && uc != nullptr) { |
| // Check to see if next frame's return address is __kernel_rt_sigreturn. |
| if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) { |
| const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); |
| // old_frame_pointer[0] is not suitable for unwinding, look at |
| // ucontext to discover frame pointer before signal. |
| void **const pre_signal_frame_pointer = |
| reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]); |
| |
| // Check that alleged frame pointer is actually readable. This is to |
| // prevent "double fault" in case we hit the first fault due to e.g. |
| // stack corruption. |
| if (!absl::debugging_internal::AddressIsReadable( |
| pre_signal_frame_pointer)) |
| return nullptr; |
| |
| // Alleged frame pointer is readable, use it for further unwinding. |
| new_frame_pointer = pre_signal_frame_pointer; |
| |
| // Skip frame size check if we return from a signal. We may be using a |
| // an alternate stack for signals. |
| check_frame_size = false; |
| } |
| } |
| #endif |
| |
| // aarch64 ABI requires stack pointer to be 16-byte-aligned. |
| if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 15) != 0) |
| return nullptr; |
| |
| // Check frame size. In strict mode, we assume frames to be under |
| // 100,000 bytes. In non-strict mode, we relax the limit to 1MB. |
| if (check_frame_size) { |
| const uintptr_t max_size = STRICT_UNWINDING ? 100000 : 1000000; |
| const uintptr_t frame_size = |
| ComputeStackFrameSize(old_frame_pointer, new_frame_pointer); |
| if (frame_size == kUnknownFrameSize || frame_size > max_size) |
| return nullptr; |
| } |
| |
| return new_frame_pointer; |
| } |
| |
| template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> |
| static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count, |
| const void *ucp, int *min_dropped_frames) { |
| #ifdef __GNUC__ |
| void **frame_pointer = reinterpret_cast<void**>(__builtin_frame_address(0)); |
| #else |
| # error reading stack point not yet supported on this platform. |
| #endif |
| |
| skip_count++; // Skip the frame for this function. |
| int n = 0; |
| |
| // The frame pointer points to low address of a frame. The first 64-bit |
| // word of a frame points to the next frame up the call chain, which normally |
| // is just after the high address of the current frame. The second word of |
| // a frame contains return adress of to the caller. To find a pc value |
| // associated with the current frame, we need to go down a level in the call |
| // chain. So we remember return the address of the last frame seen. This |
| // does not work for the first stack frame, which belongs to UnwindImp() but |
| // we skip the frame for UnwindImp() anyway. |
| void* prev_return_address = nullptr; |
| |
| while (frame_pointer && n < max_depth) { |
| // The absl::GetStackFrames routine is called when we are in some |
| // informational context (the failure signal handler for example). |
| // Use the non-strict unwinding rules to produce a stack trace |
| // that is as complete as possible (even if it contains a few bogus |
| // entries in some rare cases). |
| void **next_frame_pointer = |
| NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp); |
| |
| if (skip_count > 0) { |
| skip_count--; |
| } else { |
| result[n] = prev_return_address; |
| if (IS_STACK_FRAMES) { |
| sizes[n] = ComputeStackFrameSize(frame_pointer, next_frame_pointer); |
| } |
| n++; |
| } |
| prev_return_address = frame_pointer[1]; |
| frame_pointer = next_frame_pointer; |
| } |
| if (min_dropped_frames != nullptr) { |
| // Implementation detail: we clamp the max of frames we are willing to |
| // count, so as not to spend too much time in the loop below. |
| const int kMaxUnwind = 200; |
| int j = 0; |
| for (; frame_pointer != nullptr && j < kMaxUnwind; j++) { |
| frame_pointer = |
| NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp); |
| } |
| *min_dropped_frames = j; |
| } |
| return n; |
| } |
| |
| namespace absl { |
| namespace debugging_internal { |
| bool StackTraceWorksForTest() { |
| return true; |
| } |
| } // namespace debugging_internal |
| } // namespace absl |
| |
| #endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ |