| /* |
| * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| * |
| */ |
| |
| #ifdef RTC_ENABLE_VP9 |
| |
| #include "modules/video_coding/codecs/vp9/vp9_impl.h" |
| |
| #include <algorithm> |
| #include <limits> |
| #include <vector> |
| |
| #include "vpx/vp8cx.h" |
| #include "vpx/vp8dx.h" |
| #include "vpx/vpx_decoder.h" |
| #include "vpx/vpx_encoder.h" |
| |
| #include "absl/memory/memory.h" |
| #include "api/video/color_space.h" |
| #include "api/video/i010_buffer.h" |
| #include "common_video/include/video_frame_buffer.h" |
| #include "common_video/libyuv/include/webrtc_libyuv.h" |
| #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" |
| #include "modules/video_coding/codecs/vp9/svc_rate_allocator.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/experiments/rate_control_settings.h" |
| #include "rtc_base/keep_ref_until_done.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/time_utils.h" |
| #include "rtc_base/trace_event.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| // Maps from gof_idx to encoder internal reference frame buffer index. These |
| // maps work for 1,2 and 3 temporal layers with GOF length of 1,2 and 4 frames. |
| uint8_t kRefBufIdx[4] = {0, 0, 0, 1}; |
| uint8_t kUpdBufIdx[4] = {0, 0, 1, 0}; |
| |
| int kMaxNumTiles4kVideo = 8; |
| |
| // Maximum allowed PID difference for differnet per-layer frame-rate case. |
| const int kMaxAllowedPidDIff = 30; |
| |
| constexpr double kLowRateFactor = 1.0; |
| constexpr double kHighRateFactor = 2.0; |
| |
| // These settings correspond to the settings in vpx_codec_enc_cfg. |
| struct Vp8RateSettings { |
| uint32_t rc_undershoot_pct; |
| uint32_t rc_overshoot_pct; |
| uint32_t rc_buf_sz; |
| uint32_t rc_buf_optimal_sz; |
| uint32_t rc_dropframe_thresh; |
| }; |
| |
| // Only positive speeds, range for real-time coding currently is: 5 - 8. |
| // Lower means slower/better quality, higher means fastest/lower quality. |
| int GetCpuSpeed(int width, int height) { |
| #if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || defined(ANDROID) |
| return 8; |
| #else |
| // For smaller resolutions, use lower speed setting (get some coding gain at |
| // the cost of increased encoding complexity). |
| if (width * height <= 352 * 288) |
| return 5; |
| else |
| return 7; |
| #endif |
| } |
| // Helper class for extracting VP9 colorspace. |
| ColorSpace ExtractVP9ColorSpace(vpx_color_space_t space_t, |
| vpx_color_range_t range_t, |
| unsigned int bit_depth) { |
| ColorSpace::PrimaryID primaries = ColorSpace::PrimaryID::kUnspecified; |
| ColorSpace::TransferID transfer = ColorSpace::TransferID::kUnspecified; |
| ColorSpace::MatrixID matrix = ColorSpace::MatrixID::kUnspecified; |
| switch (space_t) { |
| case VPX_CS_BT_601: |
| case VPX_CS_SMPTE_170: |
| primaries = ColorSpace::PrimaryID::kSMPTE170M; |
| transfer = ColorSpace::TransferID::kSMPTE170M; |
| matrix = ColorSpace::MatrixID::kSMPTE170M; |
| break; |
| case VPX_CS_SMPTE_240: |
| primaries = ColorSpace::PrimaryID::kSMPTE240M; |
| transfer = ColorSpace::TransferID::kSMPTE240M; |
| matrix = ColorSpace::MatrixID::kSMPTE240M; |
| break; |
| case VPX_CS_BT_709: |
| primaries = ColorSpace::PrimaryID::kBT709; |
| transfer = ColorSpace::TransferID::kBT709; |
| matrix = ColorSpace::MatrixID::kBT709; |
| break; |
| case VPX_CS_BT_2020: |
| primaries = ColorSpace::PrimaryID::kBT2020; |
| switch (bit_depth) { |
| case 8: |
| transfer = ColorSpace::TransferID::kBT709; |
| break; |
| case 10: |
| transfer = ColorSpace::TransferID::kBT2020_10; |
| break; |
| default: |
| RTC_NOTREACHED(); |
| break; |
| } |
| matrix = ColorSpace::MatrixID::kBT2020_NCL; |
| break; |
| case VPX_CS_SRGB: |
| primaries = ColorSpace::PrimaryID::kBT709; |
| transfer = ColorSpace::TransferID::kIEC61966_2_1; |
| matrix = ColorSpace::MatrixID::kBT709; |
| break; |
| default: |
| break; |
| } |
| |
| ColorSpace::RangeID range = ColorSpace::RangeID::kInvalid; |
| switch (range_t) { |
| case VPX_CR_STUDIO_RANGE: |
| range = ColorSpace::RangeID::kLimited; |
| break; |
| case VPX_CR_FULL_RANGE: |
| range = ColorSpace::RangeID::kFull; |
| break; |
| default: |
| break; |
| } |
| return ColorSpace(primaries, transfer, matrix, range); |
| } |
| |
| bool MoreLayersEnabled(const VideoBitrateAllocation& first, |
| const VideoBitrateAllocation& second) { |
| for (size_t sl_idx = 0; sl_idx < kMaxSpatialLayers; ++sl_idx) { |
| if (first.GetSpatialLayerSum(sl_idx) > 0 && |
| second.GetSpatialLayerSum(sl_idx) == 0) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| uint32_t Interpolate(uint32_t low, |
| uint32_t high, |
| double bandwidth_headroom_factor) { |
| RTC_DCHECK_GE(bandwidth_headroom_factor, kLowRateFactor); |
| RTC_DCHECK_LE(bandwidth_headroom_factor, kHighRateFactor); |
| |
| // |factor| is between 0.0 and 1.0. |
| const double factor = bandwidth_headroom_factor - kLowRateFactor; |
| |
| return static_cast<uint32_t>(((1.0 - factor) * low) + (factor * high) + 0.5); |
| } |
| |
| Vp8RateSettings GetRateSettings(double bandwidth_headroom_factor) { |
| static const Vp8RateSettings low_settings{1000u, 0u, 100u, 30u, 40u}; |
| static const Vp8RateSettings high_settings{100u, 15u, 1000u, 600u, 5u}; |
| |
| if (bandwidth_headroom_factor <= kLowRateFactor) { |
| return low_settings; |
| } else if (bandwidth_headroom_factor >= kHighRateFactor) { |
| return high_settings; |
| } |
| |
| Vp8RateSettings settings; |
| settings.rc_undershoot_pct = |
| Interpolate(low_settings.rc_undershoot_pct, |
| high_settings.rc_undershoot_pct, bandwidth_headroom_factor); |
| settings.rc_overshoot_pct = |
| Interpolate(low_settings.rc_overshoot_pct, high_settings.rc_overshoot_pct, |
| bandwidth_headroom_factor); |
| settings.rc_buf_sz = |
| Interpolate(low_settings.rc_buf_sz, high_settings.rc_buf_sz, |
| bandwidth_headroom_factor); |
| settings.rc_buf_optimal_sz = |
| Interpolate(low_settings.rc_buf_optimal_sz, |
| high_settings.rc_buf_optimal_sz, bandwidth_headroom_factor); |
| settings.rc_dropframe_thresh = |
| Interpolate(low_settings.rc_dropframe_thresh, |
| high_settings.rc_dropframe_thresh, bandwidth_headroom_factor); |
| return settings; |
| } |
| |
| void UpdateRateSettings(vpx_codec_enc_cfg_t* config, |
| const Vp8RateSettings& new_settings) { |
| config->rc_undershoot_pct = new_settings.rc_undershoot_pct; |
| config->rc_overshoot_pct = new_settings.rc_overshoot_pct; |
| config->rc_buf_sz = new_settings.rc_buf_sz; |
| config->rc_buf_optimal_sz = new_settings.rc_buf_optimal_sz; |
| config->rc_dropframe_thresh = new_settings.rc_dropframe_thresh; |
| } |
| |
| } // namespace |
| |
| void VP9EncoderImpl::EncoderOutputCodedPacketCallback(vpx_codec_cx_pkt* pkt, |
| void* user_data) { |
| VP9EncoderImpl* enc = static_cast<VP9EncoderImpl*>(user_data); |
| enc->GetEncodedLayerFrame(pkt); |
| } |
| |
| VP9EncoderImpl::VP9EncoderImpl(const cricket::VideoCodec& codec) |
| : encoded_image_(), |
| encoded_complete_callback_(nullptr), |
| profile_( |
| ParseSdpForVP9Profile(codec.params).value_or(VP9Profile::kProfile0)), |
| inited_(false), |
| timestamp_(0), |
| cpu_speed_(3), |
| rc_max_intra_target_(0), |
| encoder_(nullptr), |
| config_(nullptr), |
| raw_(nullptr), |
| input_image_(nullptr), |
| force_key_frame_(true), |
| pics_since_key_(0), |
| num_temporal_layers_(0), |
| num_spatial_layers_(0), |
| num_active_spatial_layers_(0), |
| layer_deactivation_requires_key_frame_( |
| field_trial::IsEnabled("WebRTC-Vp9IssueKeyFrameOnLayerDeactivation")), |
| is_svc_(false), |
| inter_layer_pred_(InterLayerPredMode::kOn), |
| external_ref_control_(false), // Set in InitEncode because of tests. |
| trusted_rate_controller_(RateControlSettings::ParseFromFieldTrials() |
| .LibvpxVp9TrustedRateController()), |
| dynamic_rate_settings_( |
| RateControlSettings::ParseFromFieldTrials().Vp9DynamicRateSettings()), |
| full_superframe_drop_(true), |
| first_frame_in_picture_(true), |
| ss_info_needed_(false), |
| is_flexible_mode_(false), |
| variable_framerate_experiment_(ParseVariableFramerateConfig( |
| "WebRTC-VP9VariableFramerateScreenshare")), |
| variable_framerate_controller_( |
| variable_framerate_experiment_.framerate_limit), |
| num_steady_state_frames_(0) { |
| codec_ = {}; |
| memset(&svc_params_, 0, sizeof(vpx_svc_extra_cfg_t)); |
| } |
| |
| VP9EncoderImpl::~VP9EncoderImpl() { |
| Release(); |
| } |
| |
| int VP9EncoderImpl::Release() { |
| int ret_val = WEBRTC_VIDEO_CODEC_OK; |
| |
| encoded_image_.Allocate(0); |
| if (encoder_ != nullptr) { |
| if (inited_) { |
| if (vpx_codec_destroy(encoder_)) { |
| ret_val = WEBRTC_VIDEO_CODEC_MEMORY; |
| } |
| } |
| delete encoder_; |
| encoder_ = nullptr; |
| } |
| if (config_ != nullptr) { |
| delete config_; |
| config_ = nullptr; |
| } |
| if (raw_ != nullptr) { |
| vpx_img_free(raw_); |
| raw_ = nullptr; |
| } |
| inited_ = false; |
| return ret_val; |
| } |
| |
| bool VP9EncoderImpl::ExplicitlyConfiguredSpatialLayers() const { |
| // We check target_bitrate_bps of the 0th layer to see if the spatial layers |
| // (i.e. bitrates) were explicitly configured. |
| return codec_.spatialLayers[0].targetBitrate > 0; |
| } |
| |
| bool VP9EncoderImpl::SetSvcRates( |
| const VideoBitrateAllocation& bitrate_allocation) { |
| config_->rc_target_bitrate = bitrate_allocation.get_sum_kbps(); |
| |
| if (ExplicitlyConfiguredSpatialLayers()) { |
| const bool layer_activation_requires_key_frame = |
| inter_layer_pred_ == InterLayerPredMode::kOff || |
| inter_layer_pred_ == InterLayerPredMode::kOnKeyPic; |
| |
| for (size_t sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) { |
| const bool was_layer_active = (config_->ss_target_bitrate[sl_idx] > 0); |
| config_->ss_target_bitrate[sl_idx] = |
| bitrate_allocation.GetSpatialLayerSum(sl_idx) / 1000; |
| |
| for (size_t tl_idx = 0; tl_idx < num_temporal_layers_; ++tl_idx) { |
| config_->layer_target_bitrate[sl_idx * num_temporal_layers_ + tl_idx] = |
| bitrate_allocation.GetTemporalLayerSum(sl_idx, tl_idx) / 1000; |
| } |
| |
| const bool is_active_layer = (config_->ss_target_bitrate[sl_idx] > 0); |
| if (!was_layer_active && is_active_layer && |
| layer_activation_requires_key_frame) { |
| force_key_frame_ = true; |
| } else if (was_layer_active && !is_active_layer && |
| layer_deactivation_requires_key_frame_) { |
| force_key_frame_ = true; |
| } |
| |
| if (!was_layer_active) { |
| // Reset frame rate controller if layer is resumed after pause. |
| framerate_controller_[sl_idx].Reset(); |
| } |
| |
| framerate_controller_[sl_idx].SetTargetRate( |
| std::min(static_cast<float>(codec_.maxFramerate), |
| codec_.spatialLayers[sl_idx].maxFramerate)); |
| } |
| } else { |
| float rate_ratio[VPX_MAX_LAYERS] = {0}; |
| float total = 0; |
| for (int i = 0; i < num_spatial_layers_; ++i) { |
| if (svc_params_.scaling_factor_num[i] <= 0 || |
| svc_params_.scaling_factor_den[i] <= 0) { |
| RTC_LOG(LS_ERROR) << "Scaling factors not specified!"; |
| return false; |
| } |
| rate_ratio[i] = static_cast<float>(svc_params_.scaling_factor_num[i]) / |
| svc_params_.scaling_factor_den[i]; |
| total += rate_ratio[i]; |
| } |
| |
| for (int i = 0; i < num_spatial_layers_; ++i) { |
| RTC_CHECK_GT(total, 0); |
| config_->ss_target_bitrate[i] = static_cast<unsigned int>( |
| config_->rc_target_bitrate * rate_ratio[i] / total); |
| if (num_temporal_layers_ == 1) { |
| config_->layer_target_bitrate[i] = config_->ss_target_bitrate[i]; |
| } else if (num_temporal_layers_ == 2) { |
| config_->layer_target_bitrate[i * num_temporal_layers_] = |
| config_->ss_target_bitrate[i] * 2 / 3; |
| config_->layer_target_bitrate[i * num_temporal_layers_ + 1] = |
| config_->ss_target_bitrate[i]; |
| } else if (num_temporal_layers_ == 3) { |
| config_->layer_target_bitrate[i * num_temporal_layers_] = |
| config_->ss_target_bitrate[i] / 2; |
| config_->layer_target_bitrate[i * num_temporal_layers_ + 1] = |
| config_->layer_target_bitrate[i * num_temporal_layers_] + |
| (config_->ss_target_bitrate[i] / 4); |
| config_->layer_target_bitrate[i * num_temporal_layers_ + 2] = |
| config_->ss_target_bitrate[i]; |
| } else { |
| RTC_LOG(LS_ERROR) << "Unsupported number of temporal layers: " |
| << num_temporal_layers_; |
| return false; |
| } |
| |
| framerate_controller_[i].SetTargetRate(codec_.maxFramerate); |
| } |
| } |
| |
| num_active_spatial_layers_ = 0; |
| for (int i = 0; i < num_spatial_layers_; ++i) { |
| if (config_->ss_target_bitrate[i] > 0) { |
| ++num_active_spatial_layers_; |
| } |
| } |
| RTC_DCHECK_GT(num_active_spatial_layers_, 0); |
| |
| return true; |
| } |
| |
| void VP9EncoderImpl::SetRates(const RateControlParameters& parameters) { |
| if (!inited_) { |
| RTC_LOG(LS_WARNING) << "SetRates() calll while uninitialzied."; |
| return; |
| } |
| if (encoder_->err) { |
| RTC_LOG(LS_WARNING) << "Encoder in error state: " << encoder_->err; |
| return; |
| } |
| if (parameters.framerate_fps < 1.0) { |
| RTC_LOG(LS_WARNING) << "Unsupported framerate: " |
| << parameters.framerate_fps; |
| return; |
| } |
| // Update bit rate |
| if (codec_.maxBitrate > 0 && |
| parameters.bitrate.get_sum_kbps() > codec_.maxBitrate) { |
| RTC_LOG(LS_WARNING) << "Target bitrate exceeds maximum: " |
| << parameters.bitrate.get_sum_kbps() << " vs " |
| << codec_.maxBitrate; |
| return; |
| } |
| |
| codec_.maxFramerate = static_cast<uint32_t>(parameters.framerate_fps + 0.5); |
| requested_rate_settings_ = parameters; |
| |
| return; |
| } |
| |
| int VP9EncoderImpl::InitEncode(const VideoCodec* inst, |
| int number_of_cores, |
| size_t /*max_payload_size*/) { |
| if (inst == nullptr) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (inst->maxFramerate < 1) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| // Allow zero to represent an unspecified maxBitRate |
| if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (inst->width < 1 || inst->height < 1) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (number_of_cores < 1) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (inst->VP9().numberOfTemporalLayers > 3) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| // libvpx probably does not support more than 3 spatial layers. |
| if (inst->VP9().numberOfSpatialLayers > 3) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| int ret_val = Release(); |
| if (ret_val < 0) { |
| return ret_val; |
| } |
| if (encoder_ == nullptr) { |
| encoder_ = new vpx_codec_ctx_t; |
| } |
| if (config_ == nullptr) { |
| config_ = new vpx_codec_enc_cfg_t; |
| } |
| timestamp_ = 0; |
| if (&codec_ != inst) { |
| codec_ = *inst; |
| } |
| |
| force_key_frame_ = true; |
| pics_since_key_ = 0; |
| |
| num_spatial_layers_ = inst->VP9().numberOfSpatialLayers; |
| RTC_DCHECK_GT(num_spatial_layers_, 0); |
| num_temporal_layers_ = inst->VP9().numberOfTemporalLayers; |
| if (num_temporal_layers_ == 0) { |
| num_temporal_layers_ = 1; |
| } |
| |
| framerate_controller_ = std::vector<FramerateController>( |
| num_spatial_layers_, FramerateController(codec_.maxFramerate)); |
| |
| is_svc_ = (num_spatial_layers_ > 1 || num_temporal_layers_ > 1); |
| |
| // Allocate memory for encoded image |
| size_t frame_capacity = |
| CalcBufferSize(VideoType::kI420, codec_.width, codec_.height); |
| encoded_image_.Allocate(frame_capacity); |
| encoded_image_._completeFrame = true; |
| // Populate encoder configuration with default values. |
| if (vpx_codec_enc_config_default(vpx_codec_vp9_cx(), config_, 0)) { |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| |
| vpx_img_fmt img_fmt = VPX_IMG_FMT_NONE; |
| unsigned int bits_for_storage = 8; |
| switch (profile_) { |
| case VP9Profile::kProfile0: |
| img_fmt = VPX_IMG_FMT_I420; |
| bits_for_storage = 8; |
| config_->g_bit_depth = VPX_BITS_8; |
| config_->g_profile = 0; |
| config_->g_input_bit_depth = 8; |
| break; |
| case VP9Profile::kProfile2: |
| img_fmt = VPX_IMG_FMT_I42016; |
| bits_for_storage = 16; |
| config_->g_bit_depth = VPX_BITS_10; |
| config_->g_profile = 2; |
| config_->g_input_bit_depth = 10; |
| break; |
| } |
| |
| // Creating a wrapper to the image - setting image data to nullptr. Actual |
| // pointer will be set in encode. Setting align to 1, as it is meaningless |
| // (actual memory is not allocated). |
| raw_ = |
| vpx_img_wrap(nullptr, img_fmt, codec_.width, codec_.height, 1, nullptr); |
| raw_->bit_depth = bits_for_storage; |
| |
| config_->g_w = codec_.width; |
| config_->g_h = codec_.height; |
| config_->rc_target_bitrate = inst->startBitrate; // in kbit/s |
| config_->g_error_resilient = is_svc_ ? VPX_ERROR_RESILIENT_DEFAULT : 0; |
| // Setting the time base of the codec. |
| config_->g_timebase.num = 1; |
| config_->g_timebase.den = 90000; |
| config_->g_lag_in_frames = 0; // 0- no frame lagging |
| config_->g_threads = 1; |
| // Rate control settings. |
| config_->rc_dropframe_thresh = inst->VP9().frameDroppingOn ? 30 : 0; |
| config_->rc_end_usage = VPX_CBR; |
| config_->g_pass = VPX_RC_ONE_PASS; |
| config_->rc_min_quantizer = |
| codec_.mode == VideoCodecMode::kScreensharing ? 8 : 2; |
| config_->rc_max_quantizer = 52; |
| config_->rc_undershoot_pct = 50; |
| config_->rc_overshoot_pct = 50; |
| config_->rc_buf_initial_sz = 500; |
| config_->rc_buf_optimal_sz = 600; |
| config_->rc_buf_sz = 1000; |
| // Set the maximum target size of any key-frame. |
| rc_max_intra_target_ = MaxIntraTarget(config_->rc_buf_optimal_sz); |
| // Key-frame interval is enforced manually by this wrapper. |
| config_->kf_mode = VPX_KF_DISABLED; |
| // TODO(webm:1592): work-around for libvpx issue, as it can still |
| // put some key-frames at will even in VPX_KF_DISABLED kf_mode. |
| config_->kf_max_dist = inst->VP9().keyFrameInterval; |
| config_->kf_min_dist = config_->kf_max_dist; |
| config_->rc_resize_allowed = inst->VP9().automaticResizeOn ? 1 : 0; |
| // Determine number of threads based on the image size and #cores. |
| config_->g_threads = |
| NumberOfThreads(config_->g_w, config_->g_h, number_of_cores); |
| |
| cpu_speed_ = GetCpuSpeed(config_->g_w, config_->g_h); |
| |
| is_flexible_mode_ = inst->VP9().flexibleMode; |
| |
| inter_layer_pred_ = inst->VP9().interLayerPred; |
| |
| different_framerates_used_ = false; |
| for (size_t sl_idx = 1; sl_idx < num_spatial_layers_; ++sl_idx) { |
| if (std::abs(codec_.spatialLayers[sl_idx].maxFramerate - |
| codec_.spatialLayers[0].maxFramerate) > 1e-9) { |
| different_framerates_used_ = true; |
| } |
| } |
| |
| if (different_framerates_used_ && !is_flexible_mode_) { |
| RTC_LOG(LS_ERROR) << "Flexible mode required for different framerates on " |
| "different spatial layers"; |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| // External reference control is required for different frame rate on spatial |
| // layers because libvpx generates rtp incompatible references in this case. |
| external_ref_control_ = field_trial::IsEnabled("WebRTC-Vp9ExternalRefCtrl") || |
| different_framerates_used_ || |
| inter_layer_pred_ == InterLayerPredMode::kOn; |
| |
| if (num_temporal_layers_ == 1) { |
| gof_.SetGofInfoVP9(kTemporalStructureMode1); |
| config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING; |
| config_->ts_number_layers = 1; |
| config_->ts_rate_decimator[0] = 1; |
| config_->ts_periodicity = 1; |
| config_->ts_layer_id[0] = 0; |
| } else if (num_temporal_layers_ == 2) { |
| gof_.SetGofInfoVP9(kTemporalStructureMode2); |
| config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0101; |
| config_->ts_number_layers = 2; |
| config_->ts_rate_decimator[0] = 2; |
| config_->ts_rate_decimator[1] = 1; |
| config_->ts_periodicity = 2; |
| config_->ts_layer_id[0] = 0; |
| config_->ts_layer_id[1] = 1; |
| } else if (num_temporal_layers_ == 3) { |
| gof_.SetGofInfoVP9(kTemporalStructureMode3); |
| config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0212; |
| config_->ts_number_layers = 3; |
| config_->ts_rate_decimator[0] = 4; |
| config_->ts_rate_decimator[1] = 2; |
| config_->ts_rate_decimator[2] = 1; |
| config_->ts_periodicity = 4; |
| config_->ts_layer_id[0] = 0; |
| config_->ts_layer_id[1] = 2; |
| config_->ts_layer_id[2] = 1; |
| config_->ts_layer_id[3] = 2; |
| } else { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| if (external_ref_control_) { |
| config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS; |
| if (num_temporal_layers_ > 1 && different_framerates_used_) { |
| // External reference control for several temporal layers with different |
| // frame rates on spatial layers is not implemented yet. |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| } |
| ref_buf_.clear(); |
| |
| return InitAndSetControlSettings(inst); |
| } |
| |
| int VP9EncoderImpl::NumberOfThreads(int width, |
| int height, |
| int number_of_cores) { |
| // Keep the number of encoder threads equal to the possible number of column |
| // tiles, which is (1, 2, 4, 8). See comments below for VP9E_SET_TILE_COLUMNS. |
| if (width * height >= 1280 * 720 && number_of_cores > 4) { |
| return 4; |
| } else if (width * height >= 640 * 360 && number_of_cores > 2) { |
| return 2; |
| } else { |
| // Use 2 threads for low res on ARM. |
| #if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || \ |
| defined(WEBRTC_ANDROID) |
| if (width * height >= 320 * 180 && number_of_cores > 2) { |
| return 2; |
| } |
| #endif |
| // 1 thread less than VGA. |
| return 1; |
| } |
| } |
| |
| int VP9EncoderImpl::InitAndSetControlSettings(const VideoCodec* inst) { |
| // Set QP-min/max per spatial and temporal layer. |
| int tot_num_layers = num_spatial_layers_ * num_temporal_layers_; |
| for (int i = 0; i < tot_num_layers; ++i) { |
| svc_params_.max_quantizers[i] = config_->rc_max_quantizer; |
| svc_params_.min_quantizers[i] = config_->rc_min_quantizer; |
| } |
| config_->ss_number_layers = num_spatial_layers_; |
| if (ExplicitlyConfiguredSpatialLayers()) { |
| for (int i = 0; i < num_spatial_layers_; ++i) { |
| const auto& layer = codec_.spatialLayers[i]; |
| RTC_CHECK_GT(layer.width, 0); |
| const int scale_factor = codec_.width / layer.width; |
| RTC_DCHECK_GT(scale_factor, 0); |
| |
| // Ensure scaler factor is integer. |
| if (scale_factor * layer.width != codec_.width) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| // Ensure scale factor is the same in both dimensions. |
| if (scale_factor * layer.height != codec_.height) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| // Ensure scale factor is power of two. |
| const bool is_pow_of_two = (scale_factor & (scale_factor - 1)) == 0; |
| if (!is_pow_of_two) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| svc_params_.scaling_factor_num[i] = 1; |
| svc_params_.scaling_factor_den[i] = scale_factor; |
| |
| RTC_DCHECK_GT(codec_.spatialLayers[i].maxFramerate, 0); |
| RTC_DCHECK_LE(codec_.spatialLayers[i].maxFramerate, codec_.maxFramerate); |
| if (i > 0) { |
| // Frame rate of high spatial layer is supposed to be equal or higher |
| // than frame rate of low spatial layer. |
| RTC_DCHECK_GE(codec_.spatialLayers[i].maxFramerate, |
| codec_.spatialLayers[i - 1].maxFramerate); |
| } |
| } |
| } else { |
| int scaling_factor_num = 256; |
| for (int i = num_spatial_layers_ - 1; i >= 0; --i) { |
| // 1:2 scaling in each dimension. |
| svc_params_.scaling_factor_num[i] = scaling_factor_num; |
| svc_params_.scaling_factor_den[i] = 256; |
| } |
| } |
| |
| SvcRateAllocator init_allocator(codec_); |
| current_bitrate_allocation_ = init_allocator.GetAllocation( |
| inst->startBitrate * 1000, inst->maxFramerate); |
| if (!SetSvcRates(current_bitrate_allocation_)) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| const vpx_codec_err_t rv = vpx_codec_enc_init( |
| encoder_, vpx_codec_vp9_cx(), config_, |
| config_->g_bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH); |
| if (rv != VPX_CODEC_OK) { |
| RTC_LOG(LS_ERROR) << "Init error: " << vpx_codec_err_to_string(rv); |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| vpx_codec_control(encoder_, VP8E_SET_CPUUSED, cpu_speed_); |
| vpx_codec_control(encoder_, VP8E_SET_MAX_INTRA_BITRATE_PCT, |
| rc_max_intra_target_); |
| vpx_codec_control(encoder_, VP9E_SET_AQ_MODE, |
| inst->VP9().adaptiveQpMode ? 3 : 0); |
| |
| vpx_codec_control(encoder_, VP9E_SET_FRAME_PARALLEL_DECODING, 0); |
| vpx_codec_control(encoder_, VP9E_SET_SVC_GF_TEMPORAL_REF, 0); |
| |
| if (is_svc_) { |
| vpx_codec_control(encoder_, VP9E_SET_SVC, 1); |
| vpx_codec_control(encoder_, VP9E_SET_SVC_PARAMETERS, &svc_params_); |
| } |
| |
| if (num_spatial_layers_ > 1) { |
| switch (inter_layer_pred_) { |
| case InterLayerPredMode::kOn: |
| vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 0); |
| break; |
| case InterLayerPredMode::kOff: |
| vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 1); |
| break; |
| case InterLayerPredMode::kOnKeyPic: |
| vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 2); |
| break; |
| default: |
| RTC_NOTREACHED(); |
| } |
| |
| // Configure encoder to drop entire superframe whenever it needs to drop |
| // a layer. This mode is prefered over per-layer dropping which causes |
| // quality flickering and is not compatible with RTP non-flexible mode. |
| vpx_svc_frame_drop_t svc_drop_frame; |
| memset(&svc_drop_frame, 0, sizeof(svc_drop_frame)); |
| svc_drop_frame.framedrop_mode = |
| full_superframe_drop_ ? FULL_SUPERFRAME_DROP : CONSTRAINED_LAYER_DROP; |
| svc_drop_frame.max_consec_drop = std::numeric_limits<int>::max(); |
| for (size_t i = 0; i < num_spatial_layers_; ++i) { |
| svc_drop_frame.framedrop_thresh[i] = config_->rc_dropframe_thresh; |
| } |
| vpx_codec_control(encoder_, VP9E_SET_SVC_FRAME_DROP_LAYER, &svc_drop_frame); |
| } |
| |
| // Register callback for getting each spatial layer. |
| vpx_codec_priv_output_cx_pkt_cb_pair_t cbp = { |
| VP9EncoderImpl::EncoderOutputCodedPacketCallback, |
| reinterpret_cast<void*>(this)}; |
| vpx_codec_control(encoder_, VP9E_REGISTER_CX_CALLBACK, |
| reinterpret_cast<void*>(&cbp)); |
| |
| // Control function to set the number of column tiles in encoding a frame, in |
| // log2 unit: e.g., 0 = 1 tile column, 1 = 2 tile columns, 2 = 4 tile columns. |
| // The number tile columns will be capped by the encoder based on image size |
| // (minimum width of tile column is 256 pixels, maximum is 4096). |
| vpx_codec_control(encoder_, VP9E_SET_TILE_COLUMNS, (config_->g_threads >> 1)); |
| |
| // Turn on row-based multithreading. |
| vpx_codec_control(encoder_, VP9E_SET_ROW_MT, 1); |
| |
| #if !defined(WEBRTC_ARCH_ARM) && !defined(WEBRTC_ARCH_ARM64) && \ |
| !defined(ANDROID) |
| // Do not enable the denoiser on ARM since optimization is pending. |
| // Denoiser is on by default on other platforms. |
| vpx_codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY, |
| inst->VP9().denoisingOn ? 1 : 0); |
| #endif |
| |
| if (codec_.mode == VideoCodecMode::kScreensharing) { |
| // Adjust internal parameters to screen content. |
| vpx_codec_control(encoder_, VP9E_SET_TUNE_CONTENT, 1); |
| } |
| // Enable encoder skip of static/low content blocks. |
| vpx_codec_control(encoder_, VP8E_SET_STATIC_THRESHOLD, 1); |
| inited_ = true; |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| uint32_t VP9EncoderImpl::MaxIntraTarget(uint32_t optimal_buffer_size) { |
| // Set max to the optimal buffer level (normalized by target BR), |
| // and scaled by a scale_par. |
| // Max target size = scale_par * optimal_buffer_size * targetBR[Kbps]. |
| // This value is presented in percentage of perFrameBw: |
| // perFrameBw = targetBR[Kbps] * 1000 / framerate. |
| // The target in % is as follows: |
| float scale_par = 0.5; |
| uint32_t target_pct = |
| optimal_buffer_size * scale_par * codec_.maxFramerate / 10; |
| // Don't go below 3 times the per frame bandwidth. |
| const uint32_t min_intra_size = 300; |
| return (target_pct < min_intra_size) ? min_intra_size : target_pct; |
| } |
| |
| int VP9EncoderImpl::Encode(const VideoFrame& input_image, |
| const std::vector<VideoFrameType>* frame_types) { |
| if (!inited_) { |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| if (encoded_complete_callback_ == nullptr) { |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| if (num_active_spatial_layers_ == 0) { |
| // All spatial layers are disabled, return without encoding anything. |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| // We only support one stream at the moment. |
| if (frame_types && !frame_types->empty()) { |
| if ((*frame_types)[0] == VideoFrameType::kVideoFrameKey) { |
| force_key_frame_ = true; |
| } |
| } |
| |
| if (pics_since_key_ + 1 == |
| static_cast<size_t>(codec_.VP9()->keyFrameInterval)) { |
| force_key_frame_ = true; |
| } |
| |
| vpx_svc_layer_id_t layer_id = {0}; |
| if (!force_key_frame_) { |
| const size_t gof_idx = (pics_since_key_ + 1) % gof_.num_frames_in_gof; |
| layer_id.temporal_layer_id = gof_.temporal_idx[gof_idx]; |
| |
| if (VideoCodecMode::kScreensharing == codec_.mode) { |
| const uint32_t frame_timestamp_ms = |
| 1000 * input_image.timestamp() / kVideoPayloadTypeFrequency; |
| |
| // To ensure that several rate-limiters with different limits don't |
| // interfere, they must be queried in order of increasing limit. |
| |
| bool use_steady_state_limiter = |
| variable_framerate_experiment_.enabled && |
| input_image.update_rect().IsEmpty() && |
| num_steady_state_frames_ >= |
| variable_framerate_experiment_.frames_before_steady_state; |
| |
| for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) { |
| const float layer_fps = |
| framerate_controller_[layer_id.spatial_layer_id].GetTargetRate(); |
| // Use steady state rate-limiter at the correct place. |
| if (use_steady_state_limiter && |
| layer_fps > variable_framerate_experiment_.framerate_limit - 1e-9) { |
| if (variable_framerate_controller_.DropFrame(frame_timestamp_ms)) { |
| layer_id.spatial_layer_id = num_active_spatial_layers_; |
| } |
| // Break always: if rate limiter triggered frame drop, no need to |
| // continue; otherwise, the rate is less than the next limiters. |
| break; |
| } |
| if (framerate_controller_[sl_idx].DropFrame(frame_timestamp_ms)) { |
| ++layer_id.spatial_layer_id; |
| } else { |
| break; |
| } |
| } |
| |
| if (use_steady_state_limiter && |
| layer_id.spatial_layer_id < num_active_spatial_layers_) { |
| variable_framerate_controller_.AddFrame(frame_timestamp_ms); |
| } |
| } |
| |
| RTC_DCHECK_LE(layer_id.spatial_layer_id, num_active_spatial_layers_); |
| if (layer_id.spatial_layer_id >= num_active_spatial_layers_) { |
| // Drop entire picture. |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| } |
| |
| for (int sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) { |
| layer_id.temporal_layer_id_per_spatial[sl_idx] = layer_id.temporal_layer_id; |
| } |
| |
| vpx_codec_control(encoder_, VP9E_SET_SVC_LAYER_ID, &layer_id); |
| |
| if (requested_rate_settings_) { |
| if (dynamic_rate_settings_) { |
| // Tweak rate control settings based on available network headroom. |
| UpdateRateSettings( |
| config_, |
| GetRateSettings( |
| requested_rate_settings_->bandwidth_allocation.bps<double>() / |
| requested_rate_settings_->bitrate.get_sum_bps())); |
| } |
| |
| bool more_layers_requested = MoreLayersEnabled( |
| requested_rate_settings_->bitrate, current_bitrate_allocation_); |
| bool less_layers_requested = MoreLayersEnabled( |
| current_bitrate_allocation_, requested_rate_settings_->bitrate); |
| // In SVC can enable new layers only if all lower layers are encoded and at |
| // the base temporal layer. |
| // This will delay rate allocation change until the next frame on the base |
| // spatial layer. |
| // In KSVC or simulcast modes KF will be generated for a new layer, so can |
| // update allocation any time. |
| bool can_upswitch = |
| inter_layer_pred_ != InterLayerPredMode::kOn || |
| (layer_id.spatial_layer_id == 0 && layer_id.temporal_layer_id == 0); |
| if (!more_layers_requested || can_upswitch) { |
| current_bitrate_allocation_ = requested_rate_settings_->bitrate; |
| requested_rate_settings_ = absl::nullopt; |
| if (!SetSvcRates(current_bitrate_allocation_)) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (less_layers_requested || more_layers_requested) { |
| ss_info_needed_ = true; |
| } |
| } |
| } |
| |
| if (vpx_codec_enc_config_set(encoder_, config_)) { |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| |
| RTC_DCHECK_EQ(input_image.width(), raw_->d_w); |
| RTC_DCHECK_EQ(input_image.height(), raw_->d_h); |
| |
| // Set input image for use in the callback. |
| // This was necessary since you need some information from input_image. |
| // You can save only the necessary information (such as timestamp) instead of |
| // doing this. |
| input_image_ = &input_image; |
| |
| // Keep reference to buffer until encode completes. |
| rtc::scoped_refptr<I420BufferInterface> i420_buffer; |
| const I010BufferInterface* i010_buffer; |
| rtc::scoped_refptr<const I010BufferInterface> i010_copy; |
| switch (profile_) { |
| case VP9Profile::kProfile0: { |
| i420_buffer = input_image.video_frame_buffer()->ToI420(); |
| // Image in vpx_image_t format. |
| // Input image is const. VPX's raw image is not defined as const. |
| raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>(i420_buffer->DataY()); |
| raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>(i420_buffer->DataU()); |
| raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>(i420_buffer->DataV()); |
| raw_->stride[VPX_PLANE_Y] = i420_buffer->StrideY(); |
| raw_->stride[VPX_PLANE_U] = i420_buffer->StrideU(); |
| raw_->stride[VPX_PLANE_V] = i420_buffer->StrideV(); |
| break; |
| } |
| case VP9Profile::kProfile2: { |
| // We can inject kI010 frames directly for encode. All other formats |
| // should be converted to it. |
| switch (input_image.video_frame_buffer()->type()) { |
| case VideoFrameBuffer::Type::kI010: { |
| i010_buffer = input_image.video_frame_buffer()->GetI010(); |
| break; |
| } |
| default: { |
| i010_copy = |
| I010Buffer::Copy(*input_image.video_frame_buffer()->ToI420()); |
| i010_buffer = i010_copy.get(); |
| } |
| } |
| raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>( |
| reinterpret_cast<const uint8_t*>(i010_buffer->DataY())); |
| raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>( |
| reinterpret_cast<const uint8_t*>(i010_buffer->DataU())); |
| raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>( |
| reinterpret_cast<const uint8_t*>(i010_buffer->DataV())); |
| raw_->stride[VPX_PLANE_Y] = i010_buffer->StrideY() * 2; |
| raw_->stride[VPX_PLANE_U] = i010_buffer->StrideU() * 2; |
| raw_->stride[VPX_PLANE_V] = i010_buffer->StrideV() * 2; |
| break; |
| } |
| } |
| |
| vpx_enc_frame_flags_t flags = 0; |
| if (force_key_frame_) { |
| flags = VPX_EFLAG_FORCE_KF; |
| } |
| |
| if (external_ref_control_) { |
| vpx_svc_ref_frame_config_t ref_config = |
| SetReferences(force_key_frame_, layer_id.spatial_layer_id); |
| |
| if (VideoCodecMode::kScreensharing == codec_.mode) { |
| for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) { |
| ref_config.duration[sl_idx] = static_cast<int64_t>( |
| 90000 / framerate_controller_[sl_idx].GetTargetRate()); |
| } |
| } |
| |
| vpx_codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, &ref_config); |
| } |
| |
| first_frame_in_picture_ = true; |
| |
| // TODO(ssilkin): Frame duration should be specified per spatial layer |
| // since their frame rate can be different. For now calculate frame duration |
| // based on target frame rate of the highest spatial layer, which frame rate |
| // is supposed to be equal or higher than frame rate of low spatial layers. |
| // Also, timestamp should represent actual time passed since previous frame |
| // (not 'expected' time). Then rate controller can drain buffer more |
| // accurately. |
| RTC_DCHECK_GE(framerate_controller_.size(), num_active_spatial_layers_); |
| float target_framerate_fps = |
| (codec_.mode == VideoCodecMode::kScreensharing) |
| ? framerate_controller_[num_active_spatial_layers_ - 1] |
| .GetTargetRate() |
| : codec_.maxFramerate; |
| uint32_t duration = static_cast<uint32_t>(90000 / target_framerate_fps); |
| const vpx_codec_err_t rv = vpx_codec_encode(encoder_, raw_, timestamp_, |
| duration, flags, VPX_DL_REALTIME); |
| if (rv != VPX_CODEC_OK) { |
| RTC_LOG(LS_ERROR) << "Encoding error: " << vpx_codec_err_to_string(rv) |
| << "\n" |
| << "Details: " << vpx_codec_error(encoder_) << "\n" |
| << vpx_codec_error_detail(encoder_); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| timestamp_ += duration; |
| |
| if (!full_superframe_drop_) { |
| const bool end_of_picture = true; |
| DeliverBufferedFrame(end_of_picture); |
| } |
| |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| void VP9EncoderImpl::PopulateCodecSpecific(CodecSpecificInfo* codec_specific, |
| absl::optional<int>* spatial_idx, |
| const vpx_codec_cx_pkt& pkt, |
| uint32_t timestamp) { |
| RTC_CHECK(codec_specific != nullptr); |
| codec_specific->codecType = kVideoCodecVP9; |
| CodecSpecificInfoVP9* vp9_info = &(codec_specific->codecSpecific.VP9); |
| |
| vp9_info->first_frame_in_picture = first_frame_in_picture_; |
| vp9_info->flexible_mode = is_flexible_mode_; |
| |
| if (pkt.data.frame.flags & VPX_FRAME_IS_KEY) { |
| pics_since_key_ = 0; |
| } else if (first_frame_in_picture_) { |
| ++pics_since_key_; |
| } |
| |
| vpx_svc_layer_id_t layer_id = {0}; |
| vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); |
| |
| // Can't have keyframe with non-zero temporal layer. |
| RTC_DCHECK(pics_since_key_ != 0 || layer_id.temporal_layer_id == 0); |
| |
| RTC_CHECK_GT(num_temporal_layers_, 0); |
| RTC_CHECK_GT(num_active_spatial_layers_, 0); |
| if (num_temporal_layers_ == 1) { |
| RTC_CHECK_EQ(layer_id.temporal_layer_id, 0); |
| vp9_info->temporal_idx = kNoTemporalIdx; |
| } else { |
| vp9_info->temporal_idx = layer_id.temporal_layer_id; |
| } |
| if (num_active_spatial_layers_ == 1) { |
| RTC_CHECK_EQ(layer_id.spatial_layer_id, 0); |
| *spatial_idx = absl::nullopt; |
| } else { |
| *spatial_idx = layer_id.spatial_layer_id; |
| } |
| |
| // TODO(asapersson): this info has to be obtained from the encoder. |
| vp9_info->temporal_up_switch = false; |
| |
| const bool is_key_pic = (pics_since_key_ == 0); |
| const bool is_inter_layer_pred_allowed = |
| (inter_layer_pred_ == InterLayerPredMode::kOn || |
| (inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic)); |
| |
| // Always set inter_layer_predicted to true on high layer frame if inter-layer |
| // prediction (ILP) is allowed even if encoder didn't actually use it. |
| // Setting inter_layer_predicted to false would allow receiver to decode high |
| // layer frame without decoding low layer frame. If that would happen (e.g. |
| // if low layer frame is lost) then receiver won't be able to decode next high |
| // layer frame which uses ILP. |
| vp9_info->inter_layer_predicted = |
| first_frame_in_picture_ ? false : is_inter_layer_pred_allowed; |
| |
| // Mark all low spatial layer frames as references (not just frames of |
| // active low spatial layers) if inter-layer prediction is enabled since |
| // these frames are indirect references of high spatial layer, which can |
| // later be enabled without key frame. |
| vp9_info->non_ref_for_inter_layer_pred = |
| !is_inter_layer_pred_allowed || |
| layer_id.spatial_layer_id + 1 == num_spatial_layers_; |
| |
| // Always populate this, so that the packetizer can properly set the marker |
| // bit. |
| vp9_info->num_spatial_layers = num_active_spatial_layers_; |
| |
| vp9_info->num_ref_pics = 0; |
| FillReferenceIndices(pkt, pics_since_key_, vp9_info->inter_layer_predicted, |
| vp9_info); |
| if (vp9_info->flexible_mode) { |
| vp9_info->gof_idx = kNoGofIdx; |
| } else { |
| vp9_info->gof_idx = |
| static_cast<uint8_t>(pics_since_key_ % gof_.num_frames_in_gof); |
| vp9_info->temporal_up_switch = gof_.temporal_up_switch[vp9_info->gof_idx]; |
| RTC_DCHECK(vp9_info->num_ref_pics == gof_.num_ref_pics[vp9_info->gof_idx] || |
| vp9_info->num_ref_pics == 0); |
| } |
| |
| vp9_info->inter_pic_predicted = (!is_key_pic && vp9_info->num_ref_pics > 0); |
| |
| // Write SS on key frame of independently coded spatial layers and on base |
| // temporal/spatial layer frame if number of layers changed without issuing |
| // of key picture (inter-layer prediction is enabled). |
| const bool is_key_frame = is_key_pic && !vp9_info->inter_layer_predicted; |
| if (is_key_frame || (ss_info_needed_ && layer_id.temporal_layer_id == 0 && |
| layer_id.spatial_layer_id == 0)) { |
| vp9_info->ss_data_available = true; |
| vp9_info->spatial_layer_resolution_present = true; |
| for (size_t i = 0; i < num_active_spatial_layers_; ++i) { |
| vp9_info->width[i] = codec_.width * svc_params_.scaling_factor_num[i] / |
| svc_params_.scaling_factor_den[i]; |
| vp9_info->height[i] = codec_.height * svc_params_.scaling_factor_num[i] / |
| svc_params_.scaling_factor_den[i]; |
| } |
| if (vp9_info->flexible_mode) { |
| vp9_info->gof.num_frames_in_gof = 0; |
| } else { |
| vp9_info->gof.CopyGofInfoVP9(gof_); |
| } |
| |
| ss_info_needed_ = false; |
| } else { |
| vp9_info->ss_data_available = false; |
| } |
| |
| first_frame_in_picture_ = false; |
| } |
| |
| void VP9EncoderImpl::FillReferenceIndices(const vpx_codec_cx_pkt& pkt, |
| const size_t pic_num, |
| const bool inter_layer_predicted, |
| CodecSpecificInfoVP9* vp9_info) { |
| vpx_svc_layer_id_t layer_id = {0}; |
| vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); |
| |
| const bool is_key_frame = |
| (pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? true : false; |
| |
| std::vector<RefFrameBuffer> ref_buf_list; |
| |
| if (is_svc_) { |
| vpx_svc_ref_frame_config_t enc_layer_conf = {{0}}; |
| vpx_codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, &enc_layer_conf); |
| int ref_buf_flags = 0; |
| |
| if (enc_layer_conf.reference_last[layer_id.spatial_layer_id]) { |
| const size_t fb_idx = |
| enc_layer_conf.lst_fb_idx[layer_id.spatial_layer_id]; |
| RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end()); |
| if (std::find(ref_buf_list.begin(), ref_buf_list.end(), |
| ref_buf_.at(fb_idx)) == ref_buf_list.end()) { |
| ref_buf_list.push_back(ref_buf_.at(fb_idx)); |
| ref_buf_flags |= 1 << fb_idx; |
| } |
| } |
| |
| if (enc_layer_conf.reference_alt_ref[layer_id.spatial_layer_id]) { |
| const size_t fb_idx = |
| enc_layer_conf.alt_fb_idx[layer_id.spatial_layer_id]; |
| RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end()); |
| if (std::find(ref_buf_list.begin(), ref_buf_list.end(), |
| ref_buf_.at(fb_idx)) == ref_buf_list.end()) { |
| ref_buf_list.push_back(ref_buf_.at(fb_idx)); |
| ref_buf_flags |= 1 << fb_idx; |
| } |
| } |
| |
| if (enc_layer_conf.reference_golden[layer_id.spatial_layer_id]) { |
| const size_t fb_idx = |
| enc_layer_conf.gld_fb_idx[layer_id.spatial_layer_id]; |
| RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end()); |
| if (std::find(ref_buf_list.begin(), ref_buf_list.end(), |
| ref_buf_.at(fb_idx)) == ref_buf_list.end()) { |
| ref_buf_list.push_back(ref_buf_.at(fb_idx)); |
| ref_buf_flags |= 1 << fb_idx; |
| } |
| } |
| |
| RTC_LOG(LS_VERBOSE) << "Frame " << pic_num << " sl " |
| << layer_id.spatial_layer_id << " tl " |
| << layer_id.temporal_layer_id << " refered buffers " |
| << (ref_buf_flags & (1 << 0) ? 1 : 0) |
| << (ref_buf_flags & (1 << 1) ? 1 : 0) |
| << (ref_buf_flags & (1 << 2) ? 1 : 0) |
| << (ref_buf_flags & (1 << 3) ? 1 : 0) |
| << (ref_buf_flags & (1 << 4) ? 1 : 0) |
| << (ref_buf_flags & (1 << 5) ? 1 : 0) |
| << (ref_buf_flags & (1 << 6) ? 1 : 0) |
| << (ref_buf_flags & (1 << 7) ? 1 : 0); |
| |
| } else if (!is_key_frame) { |
| RTC_DCHECK_EQ(num_spatial_layers_, 1); |
| RTC_DCHECK_EQ(num_temporal_layers_, 1); |
| // In non-SVC mode encoder doesn't provide reference list. Assume each frame |
| // refers previous one, which is stored in buffer 0. |
| ref_buf_list.push_back(ref_buf_.at(0)); |
| } |
| |
| size_t max_ref_temporal_layer_id = 0; |
| |
| std::vector<size_t> ref_pid_list; |
| |
| vp9_info->num_ref_pics = 0; |
| for (const RefFrameBuffer& ref_buf : ref_buf_list) { |
| RTC_DCHECK_LE(ref_buf.pic_num, pic_num); |
| if (ref_buf.pic_num < pic_num) { |
| if (inter_layer_pred_ != InterLayerPredMode::kOn) { |
| // RTP spec limits temporal prediction to the same spatial layer. |
| // It is safe to ignore this requirement if inter-layer prediction is |
| // enabled for all frames when all base frames are relayed to receiver. |
| RTC_DCHECK_EQ(ref_buf.spatial_layer_id, layer_id.spatial_layer_id); |
| } |
| RTC_DCHECK_LE(ref_buf.temporal_layer_id, layer_id.temporal_layer_id); |
| |
| // Encoder may reference several spatial layers on the same previous |
| // frame in case if some spatial layers are skipped on the current frame. |
| // We shouldn't put duplicate references as it may break some old |
| // clients and isn't RTP compatible. |
| if (std::find(ref_pid_list.begin(), ref_pid_list.end(), |
| ref_buf.pic_num) != ref_pid_list.end()) { |
| continue; |
| } |
| ref_pid_list.push_back(ref_buf.pic_num); |
| |
| const size_t p_diff = pic_num - ref_buf.pic_num; |
| RTC_DCHECK_LE(p_diff, 127UL); |
| |
| vp9_info->p_diff[vp9_info->num_ref_pics] = static_cast<uint8_t>(p_diff); |
| ++vp9_info->num_ref_pics; |
| |
| max_ref_temporal_layer_id = |
| std::max(max_ref_temporal_layer_id, ref_buf.temporal_layer_id); |
| } else { |
| RTC_DCHECK(inter_layer_predicted); |
| // RTP spec only allows to use previous spatial layer for inter-layer |
| // prediction. |
| RTC_DCHECK_EQ(ref_buf.spatial_layer_id + 1, layer_id.spatial_layer_id); |
| } |
| } |
| |
| vp9_info->temporal_up_switch = |
| (max_ref_temporal_layer_id < |
| static_cast<size_t>(layer_id.temporal_layer_id)); |
| } |
| |
| void VP9EncoderImpl::UpdateReferenceBuffers(const vpx_codec_cx_pkt& pkt, |
| const size_t pic_num) { |
| vpx_svc_layer_id_t layer_id = {0}; |
| vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); |
| |
| RefFrameBuffer frame_buf(pic_num, layer_id.spatial_layer_id, |
| layer_id.temporal_layer_id); |
| |
| if (is_svc_) { |
| vpx_svc_ref_frame_config_t enc_layer_conf = {{0}}; |
| vpx_codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, &enc_layer_conf); |
| const int update_buffer_slot = |
| enc_layer_conf.update_buffer_slot[layer_id.spatial_layer_id]; |
| |
| for (size_t i = 0; i < kNumVp9Buffers; ++i) { |
| if (update_buffer_slot & (1 << i)) { |
| ref_buf_[i] = frame_buf; |
| } |
| } |
| |
| RTC_LOG(LS_VERBOSE) << "Frame " << pic_num << " sl " |
| << layer_id.spatial_layer_id << " tl " |
| << layer_id.temporal_layer_id << " updated buffers " |
| << (update_buffer_slot & (1 << 0) ? 1 : 0) |
| << (update_buffer_slot & (1 << 1) ? 1 : 0) |
| << (update_buffer_slot & (1 << 2) ? 1 : 0) |
| << (update_buffer_slot & (1 << 3) ? 1 : 0) |
| << (update_buffer_slot & (1 << 4) ? 1 : 0) |
| << (update_buffer_slot & (1 << 5) ? 1 : 0) |
| << (update_buffer_slot & (1 << 6) ? 1 : 0) |
| << (update_buffer_slot & (1 << 7) ? 1 : 0); |
| } else { |
| RTC_DCHECK_EQ(num_spatial_layers_, 1); |
| RTC_DCHECK_EQ(num_temporal_layers_, 1); |
| // In non-svc mode encoder doesn't provide reference list. Assume each frame |
| // is reference and stored in buffer 0. |
| ref_buf_[0] = frame_buf; |
| } |
| } |
| |
| vpx_svc_ref_frame_config_t VP9EncoderImpl::SetReferences( |
| bool is_key_pic, |
| size_t first_active_spatial_layer_id) { |
| // kRefBufIdx, kUpdBufIdx need to be updated to support longer GOFs. |
| RTC_DCHECK_LE(gof_.num_frames_in_gof, 4); |
| |
| vpx_svc_ref_frame_config_t ref_config; |
| memset(&ref_config, 0, sizeof(ref_config)); |
| |
| const size_t num_temporal_refs = std::max(1, num_temporal_layers_ - 1); |
| const bool is_inter_layer_pred_allowed = |
| inter_layer_pred_ == InterLayerPredMode::kOn || |
| (inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic); |
| absl::optional<int> last_updated_buf_idx; |
| |
| // Put temporal reference to LAST and spatial reference to GOLDEN. Update |
| // frame buffer (i.e. store encoded frame) if current frame is a temporal |
| // reference (i.e. it belongs to a low temporal layer) or it is a spatial |
| // reference. In later case, always store spatial reference in the last |
| // reference frame buffer. |
| // For the case of 3 temporal and 3 spatial layers we need 6 frame buffers |
| // for temporal references plus 1 buffer for spatial reference. 7 buffers |
| // in total. |
| |
| for (size_t sl_idx = first_active_spatial_layer_id; |
| sl_idx < num_active_spatial_layers_; ++sl_idx) { |
| const size_t curr_pic_num = is_key_pic ? 0 : pics_since_key_ + 1; |
| const size_t gof_idx = curr_pic_num % gof_.num_frames_in_gof; |
| |
| if (!is_key_pic) { |
| // Set up temporal reference. |
| const int buf_idx = sl_idx * num_temporal_refs + kRefBufIdx[gof_idx]; |
| |
| // Last reference frame buffer is reserved for spatial reference. It is |
| // not supposed to be used for temporal prediction. |
| RTC_DCHECK_LT(buf_idx, kNumVp9Buffers - 1); |
| |
| // Sanity check that reference picture number is smaller than current |
| // picture number. |
| RTC_DCHECK_LT(ref_buf_[buf_idx].pic_num, curr_pic_num); |
| const size_t pid_diff = curr_pic_num - ref_buf_[buf_idx].pic_num; |
| // Incorrect spatial layer may be in the buffer due to a key-frame. |
| const bool same_spatial_layer = |
| ref_buf_[buf_idx].spatial_layer_id == sl_idx; |
| bool correct_pid = false; |
| if (different_framerates_used_) { |
| correct_pid = pid_diff < kMaxAllowedPidDIff; |
| } else { |
| // Below code assumes single temporal referecence. |
| RTC_DCHECK_EQ(gof_.num_ref_pics[gof_idx], 1); |
| correct_pid = pid_diff == gof_.pid_diff[gof_idx][0]; |
| } |
| |
| if (same_spatial_layer && correct_pid) { |
| ref_config.lst_fb_idx[sl_idx] = buf_idx; |
| ref_config.reference_last[sl_idx] = 1; |
| } else { |
| // This reference doesn't match with one specified by GOF. This can |
| // only happen if spatial layer is enabled dynamically without key |
| // frame. Spatial prediction is supposed to be enabled in this case. |
| RTC_DCHECK(is_inter_layer_pred_allowed && |
| sl_idx > first_active_spatial_layer_id); |
| } |
| } |
| |
| if (is_inter_layer_pred_allowed && sl_idx > first_active_spatial_layer_id) { |
| // Set up spatial reference. |
| RTC_DCHECK(last_updated_buf_idx); |
| ref_config.gld_fb_idx[sl_idx] = *last_updated_buf_idx; |
| ref_config.reference_golden[sl_idx] = 1; |
| } else { |
| RTC_DCHECK(ref_config.reference_last[sl_idx] != 0 || |
| sl_idx == first_active_spatial_layer_id || |
| inter_layer_pred_ == InterLayerPredMode::kOff); |
| } |
| |
| last_updated_buf_idx.reset(); |
| |
| if (gof_.temporal_idx[gof_idx] < num_temporal_layers_ - 1 || |
| num_temporal_layers_ == 1) { |
| last_updated_buf_idx = sl_idx * num_temporal_refs + kUpdBufIdx[gof_idx]; |
| |
| // Ensure last frame buffer is not used for temporal prediction (it is |
| // reserved for spatial reference). |
| RTC_DCHECK_LT(*last_updated_buf_idx, kNumVp9Buffers - 1); |
| } else if (is_inter_layer_pred_allowed) { |
| last_updated_buf_idx = kNumVp9Buffers - 1; |
| } |
| |
| if (last_updated_buf_idx) { |
| ref_config.update_buffer_slot[sl_idx] = 1 << *last_updated_buf_idx; |
| } |
| } |
| |
| return ref_config; |
| } |
| |
| int VP9EncoderImpl::GetEncodedLayerFrame(const vpx_codec_cx_pkt* pkt) { |
| RTC_DCHECK_EQ(pkt->kind, VPX_CODEC_CX_FRAME_PKT); |
| |
| if (pkt->data.frame.sz == 0) { |
| // Ignore dropped frame. |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| vpx_svc_layer_id_t layer_id = {0}; |
| vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); |
| |
| if (!full_superframe_drop_) { |
| // Deliver buffered low spatial layer frame. |
| const bool end_of_picture = false; |
| DeliverBufferedFrame(end_of_picture); |
| } |
| |
| if (pkt->data.frame.sz > encoded_image_.capacity()) { |
| encoded_image_.Allocate(pkt->data.frame.sz); |
| } |
| memcpy(encoded_image_.data(), pkt->data.frame.buf, pkt->data.frame.sz); |
| encoded_image_.set_size(pkt->data.frame.sz); |
| |
| const bool is_key_frame = |
| (pkt->data.frame.flags & VPX_FRAME_IS_KEY) ? true : false; |
| // Ensure encoder issued key frame on request. |
| RTC_DCHECK(is_key_frame || !force_key_frame_); |
| |
| // Check if encoded frame is a key frame. |
| encoded_image_._frameType = VideoFrameType::kVideoFrameDelta; |
| if (is_key_frame) { |
| encoded_image_._frameType = VideoFrameType::kVideoFrameKey; |
| force_key_frame_ = false; |
| } |
| RTC_DCHECK_LE(encoded_image_.size(), encoded_image_.capacity()); |
| |
| codec_specific_ = {}; |
| absl::optional<int> spatial_index; |
| PopulateCodecSpecific(&codec_specific_, &spatial_index, *pkt, |
| input_image_->timestamp()); |
| encoded_image_.SetSpatialIndex(spatial_index); |
| |
| UpdateReferenceBuffers(*pkt, pics_since_key_); |
| |
| TRACE_COUNTER1("webrtc", "EncodedFrameSize", encoded_image_.size()); |
| encoded_image_.SetTimestamp(input_image_->timestamp()); |
| encoded_image_.capture_time_ms_ = input_image_->render_time_ms(); |
| encoded_image_.rotation_ = input_image_->rotation(); |
| encoded_image_.content_type_ = (codec_.mode == VideoCodecMode::kScreensharing) |
| ? VideoContentType::SCREENSHARE |
| : VideoContentType::UNSPECIFIED; |
| encoded_image_._encodedHeight = |
| pkt->data.frame.height[layer_id.spatial_layer_id]; |
| encoded_image_._encodedWidth = |
| pkt->data.frame.width[layer_id.spatial_layer_id]; |
| encoded_image_.timing_.flags = VideoSendTiming::kInvalid; |
| int qp = -1; |
| vpx_codec_control(encoder_, VP8E_GET_LAST_QUANTIZER, &qp); |
| encoded_image_.qp_ = qp; |
| encoded_image_.SetColorSpace(input_image_->color_space()); |
| |
| if (full_superframe_drop_) { |
| const bool end_of_picture = encoded_image_.SpatialIndex().value_or(0) + 1 == |
| num_active_spatial_layers_; |
| DeliverBufferedFrame(end_of_picture); |
| } |
| |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| void VP9EncoderImpl::DeliverBufferedFrame(bool end_of_picture) { |
| if (encoded_image_.size() > 0) { |
| codec_specific_.codecSpecific.VP9.end_of_picture = end_of_picture; |
| |
| // No data partitioning in VP9, so 1 partition only. |
| int part_idx = 0; |
| RTPFragmentationHeader frag_info; |
| frag_info.VerifyAndAllocateFragmentationHeader(1); |
| frag_info.fragmentationOffset[part_idx] = 0; |
| frag_info.fragmentationLength[part_idx] = encoded_image_.size(); |
| |
| encoded_complete_callback_->OnEncodedImage(encoded_image_, &codec_specific_, |
| &frag_info); |
| |
| if (codec_.mode == VideoCodecMode::kScreensharing) { |
| const uint8_t spatial_idx = encoded_image_.SpatialIndex().value_or(0); |
| const uint32_t frame_timestamp_ms = |
| 1000 * encoded_image_.Timestamp() / kVideoPayloadTypeFrequency; |
| framerate_controller_[spatial_idx].AddFrame(frame_timestamp_ms); |
| |
| const size_t steady_state_size = SteadyStateSize( |
| spatial_idx, codec_specific_.codecSpecific.VP9.temporal_idx); |
| |
| // Only frames on spatial layers, which may be limited in a steady state |
| // are considered for steady state detection. |
| if (framerate_controller_[spatial_idx].GetTargetRate() > |
| variable_framerate_experiment_.framerate_limit + 1e-9) { |
| if (encoded_image_.qp_ <= |
| variable_framerate_experiment_.steady_state_qp && |
| encoded_image_.size() <= steady_state_size) { |
| ++num_steady_state_frames_; |
| } else { |
| num_steady_state_frames_ = 0; |
| } |
| } |
| } |
| encoded_image_.set_size(0); |
| } |
| } |
| |
| int VP9EncoderImpl::RegisterEncodeCompleteCallback( |
| EncodedImageCallback* callback) { |
| encoded_complete_callback_ = callback; |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| VideoEncoder::EncoderInfo VP9EncoderImpl::GetEncoderInfo() const { |
| EncoderInfo info; |
| info.supports_native_handle = false; |
| info.implementation_name = "libvpx"; |
| info.scaling_settings = VideoEncoder::ScalingSettings::kOff; |
| info.has_trusted_rate_controller = trusted_rate_controller_; |
| info.is_hardware_accelerated = false; |
| info.has_internal_source = false; |
| for (size_t si = 0; si < num_spatial_layers_; ++si) { |
| info.fps_allocation[si].clear(); |
| if (!codec_.spatialLayers[si].active) { |
| continue; |
| } |
| // This spatial layer may already use a fraction of the total frame rate. |
| const float sl_fps_fraction = |
| codec_.spatialLayers[si].maxFramerate / codec_.maxFramerate; |
| for (size_t ti = 0; ti < num_temporal_layers_; ++ti) { |
| const uint32_t decimator = |
| num_temporal_layers_ <= 1 ? 1 : config_->ts_rate_decimator[ti]; |
| RTC_DCHECK_GT(decimator, 0); |
| info.fps_allocation[si].push_back(rtc::saturated_cast<uint8_t>( |
| EncoderInfo::kMaxFramerateFraction * (sl_fps_fraction / decimator))); |
| } |
| } |
| return info; |
| } |
| |
| size_t VP9EncoderImpl::SteadyStateSize(int sid, int tid) { |
| const size_t bitrate_bps = current_bitrate_allocation_.GetBitrate( |
| sid, tid == kNoTemporalIdx ? 0 : tid); |
| const float fps = (codec_.mode == VideoCodecMode::kScreensharing) |
| ? framerate_controller_[sid].GetTargetRate() |
| : codec_.maxFramerate; |
| return static_cast<size_t>( |
| bitrate_bps / (8 * fps) * |
| (100 - |
| variable_framerate_experiment_.steady_state_undershoot_percentage) / |
| 100 + |
| 0.5); |
| } |
| |
| // static |
| VP9EncoderImpl::VariableFramerateExperiment |
| VP9EncoderImpl::ParseVariableFramerateConfig(std::string group_name) { |
| FieldTrialFlag enabled = FieldTrialFlag("Enabled"); |
| FieldTrialParameter<double> framerate_limit("min_fps", 5.0); |
| FieldTrialParameter<int> qp("min_qp", 32); |
| FieldTrialParameter<int> undershoot_percentage("undershoot", 30); |
| FieldTrialParameter<int> frames_before_steady_state( |
| "frames_before_steady_state", 5); |
| ParseFieldTrial({&enabled, &framerate_limit, &qp, &undershoot_percentage, |
| &frames_before_steady_state}, |
| field_trial::FindFullName(group_name)); |
| VariableFramerateExperiment config; |
| config.enabled = enabled.Get(); |
| config.framerate_limit = framerate_limit.Get(); |
| config.steady_state_qp = qp.Get(); |
| config.steady_state_undershoot_percentage = undershoot_percentage.Get(); |
| config.frames_before_steady_state = frames_before_steady_state.Get(); |
| |
| return config; |
| } |
| |
| VP9DecoderImpl::VP9DecoderImpl() |
| : decode_complete_callback_(nullptr), |
| inited_(false), |
| decoder_(nullptr), |
| key_frame_required_(true) {} |
| |
| VP9DecoderImpl::~VP9DecoderImpl() { |
| inited_ = true; // in order to do the actual release |
| Release(); |
| int num_buffers_in_use = frame_buffer_pool_.GetNumBuffersInUse(); |
| if (num_buffers_in_use > 0) { |
| // The frame buffers are reference counted and frames are exposed after |
| // decoding. There may be valid usage cases where previous frames are still |
| // referenced after ~VP9DecoderImpl that is not a leak. |
| RTC_LOG(LS_INFO) << num_buffers_in_use << " Vp9FrameBuffers are still " |
| << "referenced during ~VP9DecoderImpl."; |
| } |
| } |
| |
| int VP9DecoderImpl::InitDecode(const VideoCodec* inst, int number_of_cores) { |
| int ret_val = Release(); |
| if (ret_val < 0) { |
| return ret_val; |
| } |
| |
| if (decoder_ == nullptr) { |
| decoder_ = new vpx_codec_ctx_t; |
| } |
| vpx_codec_dec_cfg_t cfg; |
| memset(&cfg, 0, sizeof(cfg)); |
| |
| // We want to use multithreading when decoding high resolution videos. But, |
| // since we don't know resolution of input stream at this stage, we always |
| // enable it. |
| cfg.threads = std::min(number_of_cores, kMaxNumTiles4kVideo); |
| |
| vpx_codec_flags_t flags = 0; |
| if (vpx_codec_dec_init(decoder_, vpx_codec_vp9_dx(), &cfg, flags)) { |
| return WEBRTC_VIDEO_CODEC_MEMORY; |
| } |
| |
| if (!frame_buffer_pool_.InitializeVpxUsePool(decoder_)) { |
| return WEBRTC_VIDEO_CODEC_MEMORY; |
| } |
| |
| inited_ = true; |
| // Always start with a complete key frame. |
| key_frame_required_ = true; |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int VP9DecoderImpl::Decode(const EncodedImage& input_image, |
| bool missing_frames, |
| int64_t /*render_time_ms*/) { |
| if (!inited_) { |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| if (decode_complete_callback_ == nullptr) { |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| // Always start with a complete key frame. |
| if (key_frame_required_) { |
| if (input_image._frameType != VideoFrameType::kVideoFrameKey) |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| // We have a key frame - is it complete? |
| if (input_image._completeFrame) { |
| key_frame_required_ = false; |
| } else { |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| } |
| vpx_codec_iter_t iter = nullptr; |
| vpx_image_t* img; |
| const uint8_t* buffer = input_image.data(); |
| if (input_image.size() == 0) { |
| buffer = nullptr; // Triggers full frame concealment. |
| } |
| // During decode libvpx may get and release buffers from |frame_buffer_pool_|. |
| // In practice libvpx keeps a few (~3-4) buffers alive at a time. |
| if (vpx_codec_decode(decoder_, buffer, |
| static_cast<unsigned int>(input_image.size()), 0, |
| VPX_DL_REALTIME)) { |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| // |img->fb_priv| contains the image data, a reference counted Vp9FrameBuffer. |
| // It may be released by libvpx during future vpx_codec_decode or |
| // vpx_codec_destroy calls. |
| img = vpx_codec_get_frame(decoder_, &iter); |
| int qp; |
| vpx_codec_err_t vpx_ret = |
| vpx_codec_control(decoder_, VPXD_GET_LAST_QUANTIZER, &qp); |
| RTC_DCHECK_EQ(vpx_ret, VPX_CODEC_OK); |
| int ret = ReturnFrame(img, input_image.Timestamp(), input_image.ntp_time_ms_, |
| qp, input_image.ColorSpace()); |
| if (ret != 0) { |
| return ret; |
| } |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int VP9DecoderImpl::ReturnFrame( |
| const vpx_image_t* img, |
| uint32_t timestamp, |
| int64_t ntp_time_ms, |
| int qp, |
| const webrtc::ColorSpace* explicit_color_space) { |
| if (img == nullptr) { |
| // Decoder OK and nullptr image => No show frame. |
| return WEBRTC_VIDEO_CODEC_NO_OUTPUT; |
| } |
| |
| // This buffer contains all of |img|'s image data, a reference counted |
| // Vp9FrameBuffer. (libvpx is done with the buffers after a few |
| // vpx_codec_decode calls or vpx_codec_destroy). |
| Vp9FrameBufferPool::Vp9FrameBuffer* img_buffer = |
| static_cast<Vp9FrameBufferPool::Vp9FrameBuffer*>(img->fb_priv); |
| |
| // The buffer can be used directly by the VideoFrame (without copy) by |
| // using a Wrapped*Buffer. |
| rtc::scoped_refptr<VideoFrameBuffer> img_wrapped_buffer; |
| switch (img->bit_depth) { |
| case 8: |
| img_wrapped_buffer = WrapI420Buffer( |
| img->d_w, img->d_h, img->planes[VPX_PLANE_Y], |
| img->stride[VPX_PLANE_Y], img->planes[VPX_PLANE_U], |
| img->stride[VPX_PLANE_U], img->planes[VPX_PLANE_V], |
| img->stride[VPX_PLANE_V], |
| // WrappedI420Buffer's mechanism for allowing the release of its frame |
| // buffer is through a callback function. This is where we should |
| // release |img_buffer|. |
| rtc::KeepRefUntilDone(img_buffer)); |
| break; |
| case 10: |
| img_wrapped_buffer = WrapI010Buffer( |
| img->d_w, img->d_h, |
| reinterpret_cast<const uint16_t*>(img->planes[VPX_PLANE_Y]), |
| img->stride[VPX_PLANE_Y] / 2, |
| reinterpret_cast<const uint16_t*>(img->planes[VPX_PLANE_U]), |
| img->stride[VPX_PLANE_U] / 2, |
| reinterpret_cast<const uint16_t*>(img->planes[VPX_PLANE_V]), |
| img->stride[VPX_PLANE_V] / 2, rtc::KeepRefUntilDone(img_buffer)); |
| break; |
| default: |
| RTC_NOTREACHED(); |
| return WEBRTC_VIDEO_CODEC_NO_OUTPUT; |
| } |
| |
| auto builder = VideoFrame::Builder() |
| .set_video_frame_buffer(img_wrapped_buffer) |
| .set_timestamp_ms(0) |
| .set_timestamp_rtp(timestamp) |
| .set_ntp_time_ms(ntp_time_ms) |
| .set_rotation(webrtc::kVideoRotation_0); |
| if (explicit_color_space) { |
| builder.set_color_space(*explicit_color_space); |
| } else { |
| builder.set_color_space( |
| ExtractVP9ColorSpace(img->cs, img->range, img->bit_depth)); |
| } |
| |
| VideoFrame decoded_image = builder.build(); |
| |
| decode_complete_callback_->Decoded(decoded_image, absl::nullopt, qp); |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int VP9DecoderImpl::RegisterDecodeCompleteCallback( |
| DecodedImageCallback* callback) { |
| decode_complete_callback_ = callback; |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int VP9DecoderImpl::Release() { |
| int ret_val = WEBRTC_VIDEO_CODEC_OK; |
| |
| if (decoder_ != nullptr) { |
| if (inited_) { |
| // When a codec is destroyed libvpx will release any buffers of |
| // |frame_buffer_pool_| it is currently using. |
| if (vpx_codec_destroy(decoder_)) { |
| ret_val = WEBRTC_VIDEO_CODEC_MEMORY; |
| } |
| } |
| delete decoder_; |
| decoder_ = nullptr; |
| } |
| // Releases buffers from the pool. Any buffers not in use are deleted. Buffers |
| // still referenced externally are deleted once fully released, not returning |
| // to the pool. |
| frame_buffer_pool_.ClearPool(); |
| inited_ = false; |
| return ret_val; |
| } |
| |
| const char* VP9DecoderImpl::ImplementationName() const { |
| return "libvpx"; |
| } |
| |
| } // namespace webrtc |
| |
| #endif // RTC_ENABLE_VP9 |