blob: 2eeb68b15e0d366b1ebfae3e451ff2ceb0067e38 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/suppression_gain.h"
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/aec3/subtractor.h"
#include "modules/audio_processing/aec3/subtractor_output.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gtest.h"
#include "typedefs.h" // NOLINT(build/include)
namespace webrtc {
namespace aec3 {
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output gains works.
TEST(SuppressionGain, NullOutputGains) {
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> R2;
std::array<float, kFftLengthBy2Plus1> N2;
FftData E;
FftData X;
FftData Y;
E2.fill(0.f);
R2.fill(0.f);
N2.fill(0.f);
E.re.fill(0.f);
E.im.fill(0.f);
X.re.fill(0.f);
X.im.fill(0.f);
Y.re.fill(0.f);
Y.im.fill(0.f);
float high_bands_gain;
AecState aec_state(EchoCanceller3Config{});
EXPECT_DEATH(
SuppressionGain(EchoCanceller3Config{}, DetectOptimization(), 16000)
.GetGain(E2, R2, N2, E, X, Y,
RenderSignalAnalyzer((EchoCanceller3Config{})), aec_state,
std::vector<std::vector<float>>(
3, std::vector<float>(kBlockSize, 0.f)),
&high_bands_gain, nullptr),
"");
}
#endif
// Does a sanity check that the gains are correctly computed.
TEST(SuppressionGain, BasicGainComputation) {
SuppressionGain suppression_gain(EchoCanceller3Config(), DetectOptimization(),
16000);
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
float high_bands_gain;
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kFftLengthBy2Plus1> R2;
std::array<float, kFftLengthBy2Plus1> N2;
std::array<float, kFftLengthBy2Plus1> g;
SubtractorOutput output;
std::array<float, kBlockSize> y;
FftData E;
FftData X;
FftData Y;
std::vector<std::vector<float>> x(1, std::vector<float>(kBlockSize, 0.f));
EchoCanceller3Config config;
AecState aec_state(config);
ApmDataDumper data_dumper(42);
Subtractor subtractor(config, &data_dumper, DetectOptimization());
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 3));
absl::optional<DelayEstimate> delay_estimate;
// Ensure that a strong noise is detected to mask any echoes.
E2.fill(10.f);
Y2.fill(10.f);
R2.fill(0.1f);
N2.fill(100.f);
output.Reset();
y.fill(0.f);
E.re.fill(sqrtf(E2[0]));
E.im.fill(0.f);
X.re.fill(sqrtf(R2[0]));
X.im.fill(0.f);
Y.re.fill(sqrtf(Y2[0]));
Y.im.fill(0.f);
// Ensure that the gain is no longer forced to zero.
for (int k = 0; k <= kNumBlocksPerSecond / 5 + 1; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponse(),
subtractor.FilterImpulseResponse(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output,
y);
}
for (int k = 0; k < 100; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponse(),
subtractor.FilterImpulseResponse(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output,
y);
suppression_gain.GetGain(E2, R2, N2, E, X, Y, analyzer, aec_state, x,
&high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.f, a, 0.001); });
// Ensure that a strong nearend is detected to mask any echoes.
E2.fill(100.f);
Y2.fill(100.f);
R2.fill(0.1f);
N2.fill(0.f);
E.re.fill(sqrtf(E2[0]));
X.re.fill(sqrtf(R2[0]));
Y.re.fill(sqrtf(Y2[0]));
for (int k = 0; k < 100; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponse(),
subtractor.FilterImpulseResponse(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output,
y);
suppression_gain.GetGain(E2, R2, N2, E, X, Y, analyzer, aec_state, x,
&high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.f, a, 0.001); });
// Ensure that a strong echo is suppressed.
E2.fill(1000000000.f);
R2.fill(10000000000000.f);
E.re.fill(sqrtf(E2[0]));
X.re.fill(sqrtf(R2[0]));
for (int k = 0; k < 10; ++k) {
suppression_gain.GetGain(E2, R2, N2, E, X, Y, analyzer, aec_state, x,
&high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(0.f, a, 0.001); });
}
} // namespace aec3
} // namespace webrtc