|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "system_wrappers/include/rtp_to_ntp_estimator.h" | 
|  |  | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/logging.h" | 
|  | #include "system_wrappers/include/clock.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  | // Number of RTCP SR reports to use to map between RTP and NTP. | 
|  | const size_t kNumRtcpReportsToUse = 2; | 
|  | // Number of parameters samples used to smooth. | 
|  | const size_t kNumSamplesToSmooth = 20; | 
|  |  | 
|  | // Calculates the RTP timestamp frequency from two pairs of NTP/RTP timestamps. | 
|  | bool CalculateFrequency(int64_t ntp_ms1, | 
|  | uint32_t rtp_timestamp1, | 
|  | int64_t ntp_ms2, | 
|  | uint32_t rtp_timestamp2, | 
|  | double* frequency_khz) { | 
|  | if (ntp_ms1 <= ntp_ms2) | 
|  | return false; | 
|  |  | 
|  | *frequency_khz = static_cast<double>(rtp_timestamp1 - rtp_timestamp2) / | 
|  | static_cast<double>(ntp_ms1 - ntp_ms2); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Contains(const std::list<RtpToNtpEstimator::RtcpMeasurement>& measurements, | 
|  | const RtpToNtpEstimator::RtcpMeasurement& other) { | 
|  | for (const auto& measurement : measurements) { | 
|  | if (measurement.IsEqual(other)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | bool RtpToNtpEstimator::Parameters::operator<(const Parameters& other) const { | 
|  | if (frequency_khz < other.frequency_khz - 1e-6) { | 
|  | return true; | 
|  | } else if (frequency_khz > other.frequency_khz + 1e-6) { | 
|  | return false; | 
|  | } else { | 
|  | return offset_ms < other.offset_ms - 1e-6; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool RtpToNtpEstimator::Parameters::operator==(const Parameters& other) const { | 
|  | return !(other < *this || *this < other); | 
|  | } | 
|  |  | 
|  | bool RtpToNtpEstimator::Parameters::operator!=(const Parameters& other) const { | 
|  | return other < *this || *this < other; | 
|  | } | 
|  |  | 
|  | bool RtpToNtpEstimator::Parameters::operator<=(const Parameters& other) const { | 
|  | return !(other < *this); | 
|  | } | 
|  |  | 
|  | RtpToNtpEstimator::RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs, | 
|  | uint32_t ntp_frac, | 
|  | int64_t unwrapped_timestamp) | 
|  | : ntp_time(ntp_secs, ntp_frac), | 
|  | unwrapped_rtp_timestamp(unwrapped_timestamp) {} | 
|  |  | 
|  | bool RtpToNtpEstimator::RtcpMeasurement::IsEqual( | 
|  | const RtcpMeasurement& other) const { | 
|  | // Use || since two equal timestamps will result in zero frequency and in | 
|  | // RtpToNtpMs, |rtp_timestamp_ms| is estimated by dividing by the frequency. | 
|  | return (ntp_time == other.ntp_time) || | 
|  | (unwrapped_rtp_timestamp == other.unwrapped_rtp_timestamp); | 
|  | } | 
|  |  | 
|  | // Class for converting an RTP timestamp to the NTP domain. | 
|  | RtpToNtpEstimator::RtpToNtpEstimator() | 
|  | : consecutive_invalid_samples_(0), | 
|  | smoothing_filter_(kNumSamplesToSmooth), | 
|  | params_calculated_(false) {} | 
|  |  | 
|  | RtpToNtpEstimator::~RtpToNtpEstimator() {} | 
|  |  | 
|  | void RtpToNtpEstimator::UpdateParameters() { | 
|  | if (measurements_.size() != kNumRtcpReportsToUse) | 
|  | return; | 
|  |  | 
|  | Parameters params; | 
|  | int64_t timestamp_new = measurements_.front().unwrapped_rtp_timestamp; | 
|  | int64_t timestamp_old = measurements_.back().unwrapped_rtp_timestamp; | 
|  |  | 
|  | int64_t ntp_ms_new = measurements_.front().ntp_time.ToMs(); | 
|  | int64_t ntp_ms_old = measurements_.back().ntp_time.ToMs(); | 
|  |  | 
|  | if (!CalculateFrequency(ntp_ms_new, timestamp_new, ntp_ms_old, timestamp_old, | 
|  | ¶ms.frequency_khz)) { | 
|  | return; | 
|  | } | 
|  | params.offset_ms = timestamp_new - params.frequency_khz * ntp_ms_new; | 
|  | params_calculated_ = true; | 
|  | smoothing_filter_.Insert(params); | 
|  | } | 
|  |  | 
|  | bool RtpToNtpEstimator::UpdateMeasurements(uint32_t ntp_secs, | 
|  | uint32_t ntp_frac, | 
|  | uint32_t rtp_timestamp, | 
|  | bool* new_rtcp_sr) { | 
|  | *new_rtcp_sr = false; | 
|  |  | 
|  | int64_t unwrapped_rtp_timestamp = unwrapper_.Unwrap(rtp_timestamp); | 
|  |  | 
|  | RtcpMeasurement new_measurement(ntp_secs, ntp_frac, unwrapped_rtp_timestamp); | 
|  |  | 
|  | if (Contains(measurements_, new_measurement)) { | 
|  | // RTCP SR report already added. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!new_measurement.ntp_time.Valid()) | 
|  | return false; | 
|  |  | 
|  | int64_t ntp_ms_new = new_measurement.ntp_time.ToMs(); | 
|  | bool invalid_sample = false; | 
|  | if (!measurements_.empty()) { | 
|  | int64_t old_rtp_timestamp = measurements_.front().unwrapped_rtp_timestamp; | 
|  | int64_t old_ntp_ms = measurements_.front().ntp_time.ToMs(); | 
|  | if (ntp_ms_new <= old_ntp_ms) { | 
|  | invalid_sample = true; | 
|  | } else if (unwrapped_rtp_timestamp <= old_rtp_timestamp) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "Newer RTCP SR report with older RTP timestamp, dropping"; | 
|  | invalid_sample = true; | 
|  | } else if (unwrapped_rtp_timestamp - old_rtp_timestamp > (1 << 25)) { | 
|  | // Sanity check. No jumps too far into the future in rtp. | 
|  | invalid_sample = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (invalid_sample) { | 
|  | ++consecutive_invalid_samples_; | 
|  | if (consecutive_invalid_samples_ < kMaxInvalidSamples) { | 
|  | return false; | 
|  | } | 
|  | RTC_LOG(LS_WARNING) << "Multiple consecutively invalid RTCP SR reports, " | 
|  | "clearing measurements."; | 
|  | measurements_.clear(); | 
|  | smoothing_filter_.Reset(); | 
|  | params_calculated_ = false; | 
|  | } | 
|  | consecutive_invalid_samples_ = 0; | 
|  |  | 
|  | // Insert new RTCP SR report. | 
|  | if (measurements_.size() == kNumRtcpReportsToUse) | 
|  | measurements_.pop_back(); | 
|  |  | 
|  | measurements_.push_front(new_measurement); | 
|  | *new_rtcp_sr = true; | 
|  |  | 
|  | // List updated, calculate new parameters. | 
|  | UpdateParameters(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RtpToNtpEstimator::Estimate(int64_t rtp_timestamp, | 
|  | int64_t* rtp_timestamp_ms) const { | 
|  | if (!params_calculated_) | 
|  | return false; | 
|  |  | 
|  | int64_t rtp_timestamp_unwrapped = unwrapper_.Unwrap(rtp_timestamp); | 
|  |  | 
|  | Parameters params = smoothing_filter_.GetFilteredValue(); | 
|  |  | 
|  | // params_calculated_ should not be true unless ms params.frequency_khz has | 
|  | // been calculated to something non zero. | 
|  | RTC_DCHECK_NE(params.frequency_khz, 0.0); | 
|  | double rtp_ms = | 
|  | (static_cast<double>(rtp_timestamp_unwrapped) - params.offset_ms) / | 
|  | params.frequency_khz + | 
|  | 0.5f; | 
|  |  | 
|  | if (rtp_ms < 0) | 
|  | return false; | 
|  |  | 
|  | *rtp_timestamp_ms = rtp_ms; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const absl::optional<RtpToNtpEstimator::Parameters> RtpToNtpEstimator::params() | 
|  | const { | 
|  | absl::optional<Parameters> res; | 
|  | if (params_calculated_) { | 
|  | res.emplace(smoothing_filter_.GetFilteredValue()); | 
|  | } | 
|  | return res; | 
|  | } | 
|  | }  // namespace webrtc |