blob: b8cbc8861e9ea0ccec154d0da4c8240c15358ff8 [file] [log] [blame]
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
#include <stddef.h>
#include <stdint.h>
#include <array>
#include <atomic>
#include <memory>
#include <vector>
#include "absl/types/optional.h"
#include "api/field_trials_view.h"
#include "api/function_view.h"
#include "api/transport/field_trial_based_config.h"
#include "api/transport/network_types.h"
#include "modules/pacing/bitrate_prober.h"
#include "modules/pacing/interval_budget.h"
#include "modules/pacing/rtp_packet_pacer.h"
#include "modules/rtp_rtcp/include/rtp_packet_sender.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/thread_annotations.h"
namespace webrtc {
// This class implements a leaky-bucket packet pacing algorithm. It handles the
// logic of determining which packets to send when, but the actual timing of
// the processing is done externally (e.g. RtpPacketPacer). Furthermore, the
// forwarding of packets when they are ready to be sent is also handled
// externally, via the PacingController::PacketSender interface.
class PacingController {
class PacketSender {
virtual ~PacketSender() = default;
virtual void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
const PacedPacketInfo& cluster_info) = 0;
// Should be called after each call to SendPacket().
virtual std::vector<std::unique_ptr<RtpPacketToSend>> FetchFec() = 0;
virtual std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
DataSize size) = 0;
// Interface for class hanlding storage of and prioritization of packets
// pending to be sent by the pacer.
// Note that for the methods taking a Timestamp as parameter, the parameter
// will never decrease between two subsequent calls.
class PacketQueue {
virtual ~PacketQueue() = default;
virtual void Push(Timestamp enqueue_time,
std::unique_ptr<RtpPacketToSend> packet) = 0;
virtual std::unique_ptr<RtpPacketToSend> Pop() = 0;
virtual int SizeInPackets() const = 0;
bool Empty() const { return SizeInPackets() == 0; }
virtual DataSize SizeInPayloadBytes() const = 0;
// Total packets in the queue per media type (RtpPacketMediaType values are
// used as lookup index).
virtual const std::array<int, kNumMediaTypes>&
SizeInPacketsPerRtpPacketMediaType() const = 0;
// If the next packet, that would be returned by Pop() if called
// now, is an audio packet this method returns the enqueue time
// of that packet. If queue is empty or top packet is not audio,
// returns Timestamp::MinusInfinity().
virtual Timestamp LeadingAudioPacketEnqueueTime() const = 0;
// Enqueue time of the oldest packet in the queue,
// Timestamp::MinusInfinity() if queue is empty.
virtual Timestamp OldestEnqueueTime() const = 0;
// Average queue time for the packets currently in the queue.
// The queuing time is calculated from Push() to the last UpdateQueueTime()
// call - with any time spent in a paused state subtracted.
// Returns TimeDelta::Zero() for an empty queue.
virtual TimeDelta AverageQueueTime() const = 0;
// Called during packet processing or when pause stats changes. Since the
// AverageQueueTime() method does not look at the wall time, this method
// needs to be called before querying queue time.
virtual void UpdateAverageQueueTime(Timestamp now) = 0;
// Set the pause state, while `paused` is true queuing time is not counted.
virtual void SetPauseState(bool paused, Timestamp now) = 0;
// Expected max pacer delay. If ExpectedQueueTime() is higher than
// this value, the packet producers should wait (eg drop frames rather than
// encoding them). Bitrate sent may temporarily exceed target set by
// UpdateBitrate() so that this limit will be upheld.
static const TimeDelta kMaxExpectedQueueLength;
// Pacing-rate relative to our target send rate.
// Multiplicative factor that is applied to the target bitrate to calculate
// the number of bytes that can be transmitted per interval.
// Increasing this factor will result in lower delays in cases of bitrate
// overshoots from the encoder.
static const float kDefaultPaceMultiplier;
// If no media or paused, wake up at least every `kPausedProcessIntervalMs` in
// order to send a keep-alive packet so we don't get stuck in a bad state due
// to lack of feedback.
static const TimeDelta kPausedProcessInterval;
static const TimeDelta kMinSleepTime;
// Allow probes to be processed slightly ahead of inteded send time. Currently
// set to 1ms as this is intended to allow times be rounded down to the
// nearest millisecond.
static const TimeDelta kMaxEarlyProbeProcessing;
PacingController(Clock* clock,
PacketSender* packet_sender,
const FieldTrialsView& field_trials);
// Adds the packet to the queue and calls PacketRouter::SendPacket() when
// it's time to send.
void EnqueuePacket(std::unique_ptr<RtpPacketToSend> packet);
// ABSL_DEPRECATED("Use CreateProbeClusters instead")
void CreateProbeCluster(DataRate bitrate, int cluster_id);
void CreateProbeClusters(
rtc::ArrayView<const ProbeClusterConfig> probe_cluster_configs);
void Pause(); // Temporarily pause all sending.
void Resume(); // Resume sending packets.
bool IsPaused() const;
void SetCongested(bool congested);
// Sets the pacing rates. Must be called once before packets can be sent.
void SetPacingRates(DataRate pacing_rate, DataRate padding_rate);
DataRate pacing_rate() const { return adjusted_media_rate_; }
// Currently audio traffic is not accounted by pacer and passed through.
// With the introduction of audio BWE audio traffic will be accounted for
// the pacer budget calculation. The audio traffic still will be injected
// at high priority.
void SetAccountForAudioPackets(bool account_for_audio);
void SetIncludeOverhead();
void SetTransportOverhead(DataSize overhead_per_packet);
// The pacer is allowed to send enqued packets in bursts and can build up a
// packet "debt" that correspond to approximately the send rate during
// 'burst_interval'.
void SetSendBurstInterval(TimeDelta burst_interval);
// Returns the time when the oldest packet was queued.
Timestamp OldestPacketEnqueueTime() const;
// Number of packets in the pacer queue.
size_t QueueSizePackets() const;
// Number of packets in the pacer queue per media type (RtpPacketMediaType
// values are used as lookup index).
const std::array<int, kNumMediaTypes>& SizeInPacketsPerRtpPacketMediaType()
// Totals size of packets in the pacer queue.
DataSize QueueSizeData() const;
// Current buffer level, i.e. max of media and padding debt.
DataSize CurrentBufferLevel() const;
// Returns the time when the first packet was sent.
absl::optional<Timestamp> FirstSentPacketTime() const;
// Returns the number of milliseconds it will take to send the current
// packets in the queue, given the current size and bitrate, ignoring prio.
TimeDelta ExpectedQueueTime() const;
void SetQueueTimeLimit(TimeDelta limit);
// Enable bitrate probing. Enabled by default, mostly here to simplify
// testing. Must be called before any packets are being sent to have an
// effect.
void SetProbingEnabled(bool enabled);
// Returns the next time we expect ProcessPackets() to be called.
Timestamp NextSendTime() const;
// Check queue of pending packets and send them or padding packets, if budget
// is available.
void ProcessPackets();
bool IsProbing() const;
TimeDelta UpdateTimeAndGetElapsed(Timestamp now);
bool ShouldSendKeepalive(Timestamp now) const;
// Updates the number of bytes that can be sent for the next time interval.
void UpdateBudgetWithElapsedTime(TimeDelta delta);
void UpdateBudgetWithSentData(DataSize size);
void UpdatePaddingBudgetWithSentData(DataSize size);
DataSize PaddingToAdd(DataSize recommended_probe_size,
DataSize data_sent) const;
std::unique_ptr<RtpPacketToSend> GetPendingPacket(
const PacedPacketInfo& pacing_info,
Timestamp target_send_time,
Timestamp now);
void OnPacketSent(RtpPacketMediaType packet_type,
DataSize packet_size,
Timestamp send_time);
void MaybeUpdateMediaRateDueToLongQueue(Timestamp now);
Timestamp CurrentTime() const;
Clock* const clock_;
PacketSender* const packet_sender_;
const FieldTrialsView& field_trials_;
const bool drain_large_queues_;
const bool send_padding_if_silent_;
const bool pace_audio_;
const bool ignore_transport_overhead_;
// In dynamic mode, indicates the target size when requesting padding,
// expressed as a duration in order to adjust for varying padding rate.
const TimeDelta padding_target_duration_;
TimeDelta min_packet_limit_;
DataSize transport_overhead_per_packet_;
TimeDelta send_burst_interval_;
// TODO(webrtc:9716): Remove this when we are certain clocks are monotonic.
// The last millisecond timestamp returned by `clock_`.
mutable Timestamp last_timestamp_;
bool paused_;
// Amount of outstanding data for media and padding.
DataSize media_debt_;
DataSize padding_debt_;
// The target pacing rate, signaled via SetPacingRates().
DataRate pacing_rate_;
// The media send rate, which might adjusted from pacing_rate_, e.g. if the
// pacing queue is growing too long.
DataRate adjusted_media_rate_;
// The padding target rate. We aim to fill up to this rate with padding what
// is not already used by media.
DataRate padding_rate_;
BitrateProber prober_;
bool probing_send_failure_;
Timestamp last_process_time_;
Timestamp last_send_time_;
absl::optional<Timestamp> first_sent_packet_time_;
bool seen_first_packet_;
std::unique_ptr<PacketQueue> packet_queue_;
bool congested_;
TimeDelta queue_time_limit_;
bool account_for_audio_;
bool include_overhead_;
} // namespace webrtc