blob: 710aedbe583e62c64ef6d1cac0bab67531ed1926 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AEC3_AEC_STATE_H_
#define MODULES_AUDIO_PROCESSING_AEC3_AEC_STATE_H_
#include <math.h>
#include <algorithm>
#include <memory>
#include <vector>
#include "api/array_view.h"
#include "api/audio/echo_canceller3_config.h"
#include "api/optional.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/delay_estimate.h"
#include "modules/audio_processing/aec3/echo_audibility.h"
#include "modules/audio_processing/aec3/echo_path_variability.h"
#include "modules/audio_processing/aec3/erl_estimator.h"
#include "modules/audio_processing/aec3/erle_estimator.h"
#include "modules/audio_processing/aec3/filter_analyzer.h"
#include "modules/audio_processing/aec3/render_buffer.h"
#include "modules/audio_processing/aec3/suppression_gain_limiter.h"
#include "rtc_base/constructormagic.h"
namespace webrtc {
class ApmDataDumper;
// Handles the state and the conditions for the echo removal functionality.
class AecState {
public:
explicit AecState(const EchoCanceller3Config& config);
~AecState();
// Returns whether the echo subtractor can be used to determine the residual
// echo.
bool UsableLinearEstimate() const { return usable_linear_estimate_; }
// Returns whether the echo subtractor output should be used as output.
bool UseLinearFilterOutput() const { return use_linear_filter_output_; }
// Returns the estimated echo path gain.
float EchoPathGain() const { return filter_analyzer_.Gain(); }
// Returns whether the render signal is currently active.
bool ActiveRender() const { return blocks_with_active_render_ > 200; }
// Returns the appropriate scaling of the residual echo to match the
// audibility.
void GetResidualEchoScaling(rtc::ArrayView<float> residual_scaling) const {
echo_audibility_.GetResidualEchoScaling(residual_scaling);
}
// Returns whether the stationary properties of the signals are used in the
// aec.
bool UseStationaryProperties() const { return use_stationary_properties_; }
// Returns the ERLE.
const std::array<float, kFftLengthBy2Plus1>& Erle() const {
return erle_estimator_.Erle();
}
// Returns the time-domain ERLE.
float ErleTimeDomain() const { return erle_estimator_.ErleTimeDomain(); }
// Returns the ERL.
const std::array<float, kFftLengthBy2Plus1>& Erl() const {
return erl_estimator_.Erl();
}
// Returns the time-domain ERL.
float ErlTimeDomain() const { return erl_estimator_.ErlTimeDomain(); }
// Returns the delay estimate based on the linear filter.
int FilterDelayBlocks() const { return filter_delay_blocks_; }
// Returns the internal delay estimate based on the linear filter.
rtc::Optional<int> InternalDelay() const { return internal_delay_; }
// Returns whether the capture signal is saturated.
bool SaturatedCapture() const { return capture_signal_saturation_; }
// Returns whether the echo signal is saturated.
bool SaturatedEcho() const { return echo_saturation_; }
// Updates the capture signal saturation.
void UpdateCaptureSaturation(bool capture_signal_saturation) {
capture_signal_saturation_ = capture_signal_saturation;
}
// Returns whether the transparent mode is active
bool TransparentMode() const { return transparent_mode_; }
// Takes appropriate action at an echo path change.
void HandleEchoPathChange(const EchoPathVariability& echo_path_variability);
// Returns the decay factor for the echo reverberation.
float ReverbDecay() const { return reverb_decay_; }
// Returns the upper limit for the echo suppression gain.
float SuppressionGainLimit() const {
return suppression_gain_limiter_.Limit();
}
// Returns whether the suppression gain limiter is active.
bool IsSuppressionGainLimitActive() const {
return suppression_gain_limiter_.IsActive();
}
// Returns whether the linear filter should have been able to properly adapt.
bool FilterHasHadTimeToConverge() const {
return filter_has_had_time_to_converge_;
}
// Returns whether the filter adaptation is still in the initial state.
bool InitialState() const { return initial_state_; }
// Updates the aec state.
void Update(const rtc::Optional<DelayEstimate>& external_delay,
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
adaptive_filter_frequency_response,
const std::vector<float>& adaptive_filter_impulse_response,
bool converged_filter,
bool diverged_filter,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& E2_main,
const std::array<float, kFftLengthBy2Plus1>& Y2,
const std::array<float, kBlockSize>& s);
// Returns the gain at the tail of the linear filter.
float GetFilterTailGain() const { return filter_analyzer_.GetTailGain(); }
// Returns filter length in blocks.
int FilterLengthBlocks() const {
return filter_analyzer_.FilterLengthBlocks();
}
private:
void UpdateReverb(const std::vector<float>& impulse_response);
bool DetectActiveRender(rtc::ArrayView<const float> x) const;
void UpdateSuppressorGainLimit(bool render_activity);
bool DetectEchoSaturation(rtc::ArrayView<const float> x,
float echo_path_gain);
static int instance_count_;
std::unique_ptr<ApmDataDumper> data_dumper_;
const EchoCanceller3Config config_;
const bool allow_transparent_mode_;
const bool use_stationary_properties_;
const bool enforce_delay_after_realignment_;
ErlEstimator erl_estimator_;
ErleEstimator erle_estimator_;
size_t capture_block_counter_ = 0;
size_t blocks_since_reset_ = 0;
size_t blocks_with_proper_filter_adaptation_ = 0;
size_t blocks_with_active_render_ = 0;
bool usable_linear_estimate_ = false;
bool capture_signal_saturation_ = false;
bool echo_saturation_ = false;
bool transparent_mode_ = false;
bool render_received_ = false;
int filter_delay_blocks_ = 0;
size_t blocks_since_last_saturation_ = 1000;
float tail_energy_ = 0.f;
float accumulated_nz_ = 0.f;
float accumulated_nn_ = 0.f;
float accumulated_count_ = 0.f;
size_t current_reverb_decay_section_ = 0;
size_t num_reverb_decay_sections_ = 0;
size_t num_reverb_decay_sections_next_ = 0;
bool found_end_of_reverb_decay_ = false;
bool main_filter_is_adapting_ = true;
std::array<float, kMaxAdaptiveFilterLength> block_energies_;
std::vector<float> max_render_;
float reverb_decay_ = fabsf(config_.ep_strength.default_len);
bool filter_has_had_time_to_converge_ = false;
bool initial_state_ = true;
const float gain_rampup_increase_;
SuppressionGainUpperLimiter suppression_gain_limiter_;
FilterAnalyzer filter_analyzer_;
bool use_linear_filter_output_ = false;
rtc::Optional<int> internal_delay_;
size_t diverged_blocks_ = 0;
bool filter_should_have_converged_ = false;
size_t blocks_since_converged_filter_;
size_t active_blocks_since_consistent_filter_estimate_;
bool converged_filter_seen_ = false;
bool consistent_filter_seen_ = false;
bool external_delay_seen_ = false;
rtc::Optional<DelayEstimate> external_delay_;
size_t frames_since_external_delay_change_ = 0;
size_t converged_filter_count_ = 0;
bool finite_erl_ = false;
size_t active_blocks_since_converged_filter_ = 0;
EchoAudibility echo_audibility_;
RTC_DISALLOW_COPY_AND_ASSIGN(AecState);
};
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AEC3_AEC_STATE_H_