blob: bc5dd6d45113ba6ecb1a97fc5dac9d431f10e1f3 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "rtc_base/checks.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "common_audio/third_party/fft4g/fft4g.h"
#include "modules/audio_processing/ns/noise_suppression.h"
#include "modules/audio_processing/ns/ns_core.h"
#include "modules/audio_processing/ns/windows_private.h"
// Set Feature Extraction Parameters.
static void set_feature_extraction_parameters(NoiseSuppressionC* self) {
// Bin size of histogram.
self->featureExtractionParams.binSizeLrt = 0.1f;
self->featureExtractionParams.binSizeSpecFlat = 0.05f;
self->featureExtractionParams.binSizeSpecDiff = 0.1f;
// Range of histogram over which LRT threshold is computed.
self->featureExtractionParams.rangeAvgHistLrt = 1.f;
// Scale parameters: multiply dominant peaks of the histograms by scale factor
// to obtain thresholds for prior model.
// For LRT and spectral difference.
self->featureExtractionParams.factor1ModelPars = 1.2f;
// For spectral_flatness: used when noise is flatter than speech.
self->featureExtractionParams.factor2ModelPars = 0.9f;
// Peak limit for spectral flatness (varies between 0 and 1).
self->featureExtractionParams.thresPosSpecFlat = 0.6f;
// Limit on spacing of two highest peaks in histogram: spacing determined by
// bin size.
self->featureExtractionParams.limitPeakSpacingSpecFlat =
2 * self->featureExtractionParams.binSizeSpecFlat;
self->featureExtractionParams.limitPeakSpacingSpecDiff =
2 * self->featureExtractionParams.binSizeSpecDiff;
// Limit on relevance of second peak.
self->featureExtractionParams.limitPeakWeightsSpecFlat = 0.5f;
self->featureExtractionParams.limitPeakWeightsSpecDiff = 0.5f;
// Fluctuation limit of LRT feature.
self->featureExtractionParams.thresFluctLrt = 0.05f;
// Limit on the max and min values for the feature thresholds.
self->featureExtractionParams.maxLrt = 1.f;
self->featureExtractionParams.minLrt = 0.2f;
self->featureExtractionParams.maxSpecFlat = 0.95f;
self->featureExtractionParams.minSpecFlat = 0.1f;
self->featureExtractionParams.maxSpecDiff = 1.f;
self->featureExtractionParams.minSpecDiff = 0.16f;
// Criteria of weight of histogram peak to accept/reject feature.
self->featureExtractionParams.thresWeightSpecFlat =
(int)(0.3 * (self->modelUpdatePars[1])); // For spectral flatness.
self->featureExtractionParams.thresWeightSpecDiff =
(int)(0.3 * (self->modelUpdatePars[1])); // For spectral difference.
}
// Initialize state.
int WebRtcNs_InitCore(NoiseSuppressionC* self, uint32_t fs) {
int i;
// Check for valid pointer.
if (self == NULL) {
return -1;
}
// Initialization of struct.
if (fs == 8000 || fs == 16000 || fs == 32000 || fs == 48000) {
self->fs = fs;
} else {
return -1;
}
self->windShift = 0;
// We only support 10ms frames.
if (fs == 8000) {
self->blockLen = 80;
self->anaLen = 128;
self->window = kBlocks80w128;
} else {
self->blockLen = 160;
self->anaLen = 256;
self->window = kBlocks160w256;
}
self->magnLen = self->anaLen / 2 + 1; // Number of frequency bins.
// Initialize FFT work arrays.
self->ip[0] = 0; // Setting this triggers initialization.
memset(self->dataBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);
WebRtc_rdft(self->anaLen, 1, self->dataBuf, self->ip, self->wfft);
memset(self->analyzeBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);
memset(self->dataBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);
memset(self->syntBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);
// For HB processing.
memset(self->dataBufHB,
0,
sizeof(float) * NUM_HIGH_BANDS_MAX * ANAL_BLOCKL_MAX);
// For quantile noise estimation.
memset(self->quantile, 0, sizeof(float) * HALF_ANAL_BLOCKL);
for (i = 0; i < SIMULT * HALF_ANAL_BLOCKL; i++) {
self->lquantile[i] = 8.f;
self->density[i] = 0.3f;
}
for (i = 0; i < SIMULT; i++) {
self->counter[i] =
(int)floor((float)(END_STARTUP_LONG * (i + 1)) / (float)SIMULT);
}
self->updates = 0;
// Wiener filter initialization.
for (i = 0; i < HALF_ANAL_BLOCKL; i++) {
self->smooth[i] = 1.f;
}
// Set the aggressiveness: default.
self->aggrMode = 0;
// Initialize variables for new method.
self->priorSpeechProb = 0.5f; // Prior prob for speech/noise.
// Previous analyze mag spectrum.
memset(self->magnPrevAnalyze, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// Previous process mag spectrum.
memset(self->magnPrevProcess, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// Current noise-spectrum.
memset(self->noise, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// Previous noise-spectrum.
memset(self->noisePrev, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// Conservative noise spectrum estimate.
memset(self->magnAvgPause, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// For estimation of HB in second pass.
memset(self->speechProb, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// Initial average magnitude spectrum.
memset(self->initMagnEst, 0, sizeof(float) * HALF_ANAL_BLOCKL);
for (i = 0; i < HALF_ANAL_BLOCKL; i++) {
// Smooth LR (same as threshold).
self->logLrtTimeAvg[i] = LRT_FEATURE_THR;
}
// Feature quantities.
// Spectral flatness (start on threshold).
self->featureData[0] = SF_FEATURE_THR;
self->featureData[1] = 0.f; // Spectral entropy: not used in this version.
self->featureData[2] = 0.f; // Spectral variance: not used in this version.
// Average LRT factor (start on threshold).
self->featureData[3] = LRT_FEATURE_THR;
// Spectral template diff (start on threshold).
self->featureData[4] = SF_FEATURE_THR;
self->featureData[5] = 0.f; // Normalization for spectral difference.
// Window time-average of input magnitude spectrum.
self->featureData[6] = 0.f;
memset(self->parametricNoise, 0, sizeof(float) * HALF_ANAL_BLOCKL);
// Histogram quantities: used to estimate/update thresholds for features.
memset(self->histLrt, 0, sizeof(int) * HIST_PAR_EST);
memset(self->histSpecFlat, 0, sizeof(int) * HIST_PAR_EST);
memset(self->histSpecDiff, 0, sizeof(int) * HIST_PAR_EST);
self->blockInd = -1; // Frame counter.
// Default threshold for LRT feature.
self->priorModelPars[0] = LRT_FEATURE_THR;
// Threshold for spectral flatness: determined on-line.
self->priorModelPars[1] = 0.5f;
// sgn_map par for spectral measure: 1 for flatness measure.
self->priorModelPars[2] = 1.f;
// Threshold for template-difference feature: determined on-line.
self->priorModelPars[3] = 0.5f;
// Default weighting parameter for LRT feature.
self->priorModelPars[4] = 1.f;
// Default weighting parameter for spectral flatness feature.
self->priorModelPars[5] = 0.f;
// Default weighting parameter for spectral difference feature.
self->priorModelPars[6] = 0.f;
// Update flag for parameters:
// 0 no update, 1 = update once, 2 = update every window.
self->modelUpdatePars[0] = 2;
self->modelUpdatePars[1] = 500; // Window for update.
// Counter for update of conservative noise spectrum.
self->modelUpdatePars[2] = 0;
// Counter if the feature thresholds are updated during the sequence.
self->modelUpdatePars[3] = self->modelUpdatePars[1];
self->signalEnergy = 0.0;
self->sumMagn = 0.0;
self->whiteNoiseLevel = 0.0;
self->pinkNoiseNumerator = 0.0;
self->pinkNoiseExp = 0.0;
set_feature_extraction_parameters(self);
// Default mode.
WebRtcNs_set_policy_core(self, 0);
self->initFlag = 1;
return 0;
}
// Estimate noise.
static void NoiseEstimation(NoiseSuppressionC* self,
float* magn,
float* noise) {
size_t i, s, offset;
float lmagn[HALF_ANAL_BLOCKL], delta;
if (self->updates < END_STARTUP_LONG) {
self->updates++;
}
for (i = 0; i < self->magnLen; i++) {
lmagn[i] = (float)log(magn[i]);
}
// Loop over simultaneous estimates.
for (s = 0; s < SIMULT; s++) {
offset = s * self->magnLen;
// newquantest(...)
for (i = 0; i < self->magnLen; i++) {
// Compute delta.
if (self->density[offset + i] > 1.0) {
delta = FACTOR * 1.f / self->density[offset + i];
} else {
delta = FACTOR;
}
// Update log quantile estimate.
if (lmagn[i] > self->lquantile[offset + i]) {
self->lquantile[offset + i] +=
QUANTILE * delta / (float)(self->counter[s] + 1);
} else {
self->lquantile[offset + i] -=
(1.f - QUANTILE) * delta / (float)(self->counter[s] + 1);
}
// Update density estimate.
if (fabs(lmagn[i] - self->lquantile[offset + i]) < WIDTH) {
self->density[offset + i] =
((float)self->counter[s] * self->density[offset + i] +
1.f / (2.f * WIDTH)) /
(float)(self->counter[s] + 1);
}
} // End loop over magnitude spectrum.
if (self->counter[s] >= END_STARTUP_LONG) {
self->counter[s] = 0;
if (self->updates >= END_STARTUP_LONG) {
for (i = 0; i < self->magnLen; i++) {
self->quantile[i] = (float)exp(self->lquantile[offset + i]);
}
}
}
self->counter[s]++;
} // End loop over simultaneous estimates.
// Sequentially update the noise during startup.
if (self->updates < END_STARTUP_LONG) {
// Use the last "s" to get noise during startup that differ from zero.
for (i = 0; i < self->magnLen; i++) {
self->quantile[i] = (float)exp(self->lquantile[offset + i]);
}
}
for (i = 0; i < self->magnLen; i++) {
noise[i] = self->quantile[i];
}
}
// Extract thresholds for feature parameters.
// Histograms are computed over some window size (given by
// self->modelUpdatePars[1]).
// Thresholds and weights are extracted every window.
// |flag| = 0 updates histogram only, |flag| = 1 computes the threshold/weights.
// Threshold and weights are returned in: self->priorModelPars.
static void FeatureParameterExtraction(NoiseSuppressionC* self, int flag) {
int i, useFeatureSpecFlat, useFeatureSpecDiff, numHistLrt;
int maxPeak1, maxPeak2;
int weightPeak1SpecFlat, weightPeak2SpecFlat, weightPeak1SpecDiff,
weightPeak2SpecDiff;
float binMid, featureSum;
float posPeak1SpecFlat, posPeak2SpecFlat, posPeak1SpecDiff, posPeak2SpecDiff;
float fluctLrt, avgHistLrt, avgSquareHistLrt, avgHistLrtCompl;
// 3 features: LRT, flatness, difference.
// lrt_feature = self->featureData[3];
// flat_feature = self->featureData[0];
// diff_feature = self->featureData[4];
// Update histograms.
if (flag == 0) {
// LRT
if ((self->featureData[3] <
HIST_PAR_EST * self->featureExtractionParams.binSizeLrt) &&
(self->featureData[3] >= 0.0)) {
i = (int)(self->featureData[3] /
self->featureExtractionParams.binSizeLrt);
self->histLrt[i]++;
}
// Spectral flatness.
if ((self->featureData[0] <
HIST_PAR_EST * self->featureExtractionParams.binSizeSpecFlat) &&
(self->featureData[0] >= 0.0)) {
i = (int)(self->featureData[0] /
self->featureExtractionParams.binSizeSpecFlat);
self->histSpecFlat[i]++;
}
// Spectral difference.
if ((self->featureData[4] <
HIST_PAR_EST * self->featureExtractionParams.binSizeSpecDiff) &&
(self->featureData[4] >= 0.0)) {
i = (int)(self->featureData[4] /
self->featureExtractionParams.binSizeSpecDiff);
self->histSpecDiff[i]++;
}
}
// Extract parameters for speech/noise probability.
if (flag == 1) {
// LRT feature: compute the average over
// self->featureExtractionParams.rangeAvgHistLrt.
avgHistLrt = 0.0;
avgHistLrtCompl = 0.0;
avgSquareHistLrt = 0.0;
numHistLrt = 0;
for (i = 0; i < HIST_PAR_EST; i++) {
binMid = ((float)i + 0.5f) * self->featureExtractionParams.binSizeLrt;
if (binMid <= self->featureExtractionParams.rangeAvgHistLrt) {
avgHistLrt += self->histLrt[i] * binMid;
numHistLrt += self->histLrt[i];
}
avgSquareHistLrt += self->histLrt[i] * binMid * binMid;
avgHistLrtCompl += self->histLrt[i] * binMid;
}
if (numHistLrt > 0) {
avgHistLrt = avgHistLrt / ((float)numHistLrt);
}
avgHistLrtCompl = avgHistLrtCompl / ((float)self->modelUpdatePars[1]);
avgSquareHistLrt = avgSquareHistLrt / ((float)self->modelUpdatePars[1]);
fluctLrt = avgSquareHistLrt - avgHistLrt * avgHistLrtCompl;
// Get threshold for LRT feature.
if (fluctLrt < self->featureExtractionParams.thresFluctLrt) {
// Very low fluctuation, so likely noise.
self->priorModelPars[0] = self->featureExtractionParams.maxLrt;
} else {
self->priorModelPars[0] =
self->featureExtractionParams.factor1ModelPars * avgHistLrt;
// Check if value is within min/max range.
if (self->priorModelPars[0] < self->featureExtractionParams.minLrt) {
self->priorModelPars[0] = self->featureExtractionParams.minLrt;
}
if (self->priorModelPars[0] > self->featureExtractionParams.maxLrt) {
self->priorModelPars[0] = self->featureExtractionParams.maxLrt;
}
}
// Done with LRT feature.
// For spectral flatness and spectral difference: compute the main peaks of
// histogram.
maxPeak1 = 0;
maxPeak2 = 0;
posPeak1SpecFlat = 0.0;
posPeak2SpecFlat = 0.0;
weightPeak1SpecFlat = 0;
weightPeak2SpecFlat = 0;
// Peaks for flatness.
for (i = 0; i < HIST_PAR_EST; i++) {
binMid =
(i + 0.5f) * self->featureExtractionParams.binSizeSpecFlat;
if (self->histSpecFlat[i] > maxPeak1) {
// Found new "first" peak.
maxPeak2 = maxPeak1;
weightPeak2SpecFlat = weightPeak1SpecFlat;
posPeak2SpecFlat = posPeak1SpecFlat;
maxPeak1 = self->histSpecFlat[i];
weightPeak1SpecFlat = self->histSpecFlat[i];
posPeak1SpecFlat = binMid;
} else if (self->histSpecFlat[i] > maxPeak2) {
// Found new "second" peak.
maxPeak2 = self->histSpecFlat[i];
weightPeak2SpecFlat = self->histSpecFlat[i];
posPeak2SpecFlat = binMid;
}
}
// Compute two peaks for spectral difference.
maxPeak1 = 0;
maxPeak2 = 0;
posPeak1SpecDiff = 0.0;
posPeak2SpecDiff = 0.0;
weightPeak1SpecDiff = 0;
weightPeak2SpecDiff = 0;
// Peaks for spectral difference.
for (i = 0; i < HIST_PAR_EST; i++) {
binMid =
((float)i + 0.5f) * self->featureExtractionParams.binSizeSpecDiff;
if (self->histSpecDiff[i] > maxPeak1) {
// Found new "first" peak.
maxPeak2 = maxPeak1;
weightPeak2SpecDiff = weightPeak1SpecDiff;
posPeak2SpecDiff = posPeak1SpecDiff;
maxPeak1 = self->histSpecDiff[i];
weightPeak1SpecDiff = self->histSpecDiff[i];
posPeak1SpecDiff = binMid;
} else if (self->histSpecDiff[i] > maxPeak2) {
// Found new "second" peak.
maxPeak2 = self->histSpecDiff[i];
weightPeak2SpecDiff = self->histSpecDiff[i];
posPeak2SpecDiff = binMid;
}
}
// For spectrum flatness feature.
useFeatureSpecFlat = 1;
// Merge the two peaks if they are close.
if ((fabs(posPeak2SpecFlat - posPeak1SpecFlat) <
self->featureExtractionParams.limitPeakSpacingSpecFlat) &&
(weightPeak2SpecFlat >
self->featureExtractionParams.limitPeakWeightsSpecFlat *
weightPeak1SpecFlat)) {
weightPeak1SpecFlat += weightPeak2SpecFlat;
posPeak1SpecFlat = 0.5f * (posPeak1SpecFlat + posPeak2SpecFlat);
}
// Reject if weight of peaks is not large enough, or peak value too small.
if (weightPeak1SpecFlat <
self->featureExtractionParams.thresWeightSpecFlat ||
posPeak1SpecFlat < self->featureExtractionParams.thresPosSpecFlat) {
useFeatureSpecFlat = 0;
}
// If selected, get the threshold.
if (useFeatureSpecFlat == 1) {
// Compute the threshold.
self->priorModelPars[1] =
self->featureExtractionParams.factor2ModelPars * posPeak1SpecFlat;
// Check if value is within min/max range.
if (self->priorModelPars[1] < self->featureExtractionParams.minSpecFlat) {
self->priorModelPars[1] = self->featureExtractionParams.minSpecFlat;
}
if (self->priorModelPars[1] > self->featureExtractionParams.maxSpecFlat) {
self->priorModelPars[1] = self->featureExtractionParams.maxSpecFlat;
}
}
// Done with flatness feature.
// For template feature.
useFeatureSpecDiff = 1;
// Merge the two peaks if they are close.
if ((fabs(posPeak2SpecDiff - posPeak1SpecDiff) <
self->featureExtractionParams.limitPeakSpacingSpecDiff) &&
(weightPeak2SpecDiff >
self->featureExtractionParams.limitPeakWeightsSpecDiff *
weightPeak1SpecDiff)) {
weightPeak1SpecDiff += weightPeak2SpecDiff;
posPeak1SpecDiff = 0.5f * (posPeak1SpecDiff + posPeak2SpecDiff);
}
// Get the threshold value.
self->priorModelPars[3] =
self->featureExtractionParams.factor1ModelPars * posPeak1SpecDiff;
// Reject if weight of peaks is not large enough.
if (weightPeak1SpecDiff <
self->featureExtractionParams.thresWeightSpecDiff) {
useFeatureSpecDiff = 0;
}
// Check if value is within min/max range.
if (self->priorModelPars[3] < self->featureExtractionParams.minSpecDiff) {
self->priorModelPars[3] = self->featureExtractionParams.minSpecDiff;
}
if (self->priorModelPars[3] > self->featureExtractionParams.maxSpecDiff) {
self->priorModelPars[3] = self->featureExtractionParams.maxSpecDiff;
}
// Done with spectral difference feature.
// Don't use template feature if fluctuation of LRT feature is very low:
// most likely just noise state.
if (fluctLrt < self->featureExtractionParams.thresFluctLrt) {
useFeatureSpecDiff = 0;
}
// Select the weights between the features.
// self->priorModelPars[4] is weight for LRT: always selected.
// self->priorModelPars[5] is weight for spectral flatness.
// self->priorModelPars[6] is weight for spectral difference.
featureSum = (float)(1 + useFeatureSpecFlat + useFeatureSpecDiff);
self->priorModelPars[4] = 1.f / featureSum;
self->priorModelPars[5] = ((float)useFeatureSpecFlat) / featureSum;
self->priorModelPars[6] = ((float)useFeatureSpecDiff) / featureSum;
// Set hists to zero for next update.
if (self->modelUpdatePars[0] >= 1) {
for (i = 0; i < HIST_PAR_EST; i++) {
self->histLrt[i] = 0;
self->histSpecFlat[i] = 0;
self->histSpecDiff[i] = 0;
}
}
} // End of flag == 1.
}
// Compute spectral flatness on input spectrum.
// |magnIn| is the magnitude spectrum.
// Spectral flatness is returned in self->featureData[0].
static void ComputeSpectralFlatness(NoiseSuppressionC* self,
const float* magnIn) {
size_t i;
size_t shiftLP = 1; // Option to remove first bin(s) from spectral measures.
float avgSpectralFlatnessNum, avgSpectralFlatnessDen, spectralTmp;
// Compute spectral measures.
// For flatness.
avgSpectralFlatnessNum = 0.0;
avgSpectralFlatnessDen = self->sumMagn;
for (i = 0; i < shiftLP; i++) {
avgSpectralFlatnessDen -= magnIn[i];
}
// Compute log of ratio of the geometric to arithmetic mean: check for log(0)
// case.
for (i = shiftLP; i < self->magnLen; i++) {
if (magnIn[i] > 0.0) {
avgSpectralFlatnessNum += (float)log(magnIn[i]);
} else {
self->featureData[0] -= SPECT_FL_TAVG * self->featureData[0];
return;
}
}
// Normalize.
avgSpectralFlatnessDen = avgSpectralFlatnessDen / self->magnLen;
avgSpectralFlatnessNum = avgSpectralFlatnessNum / self->magnLen;
// Ratio and inverse log: check for case of log(0).
spectralTmp = (float)exp(avgSpectralFlatnessNum) / avgSpectralFlatnessDen;
// Time-avg update of spectral flatness feature.
self->featureData[0] += SPECT_FL_TAVG * (spectralTmp - self->featureData[0]);
// Done with flatness feature.
}
// Compute prior and post SNR based on quantile noise estimation.
// Compute DD estimate of prior SNR.
// Inputs:
// * |magn| is the signal magnitude spectrum estimate.
// * |noise| is the magnitude noise spectrum estimate.
// Outputs:
// * |snrLocPrior| is the computed prior SNR.
// * |snrLocPost| is the computed post SNR.
static void ComputeSnr(const NoiseSuppressionC* self,
const float* magn,
const float* noise,
float* snrLocPrior,
float* snrLocPost) {
size_t i;
for (i = 0; i < self->magnLen; i++) {
// Previous post SNR.
// Previous estimate: based on previous frame with gain filter.
float previousEstimateStsa = self->magnPrevAnalyze[i] /
(self->noisePrev[i] + 0.0001f) * self->smooth[i];
// Post SNR.
snrLocPost[i] = 0.f;
if (magn[i] > noise[i]) {
snrLocPost[i] = magn[i] / (noise[i] + 0.0001f) - 1.f;
}
// DD estimate is sum of two terms: current estimate and previous estimate.
// Directed decision update of snrPrior.
snrLocPrior[i] =
DD_PR_SNR * previousEstimateStsa + (1.f - DD_PR_SNR) * snrLocPost[i];
} // End of loop over frequencies.
}
// Compute the difference measure between input spectrum and a template/learned
// noise spectrum.
// |magnIn| is the input spectrum.
// The reference/template spectrum is self->magnAvgPause[i].
// Returns (normalized) spectral difference in self->featureData[4].
static void ComputeSpectralDifference(NoiseSuppressionC* self,
const float* magnIn) {
// avgDiffNormMagn = var(magnIn) - cov(magnIn, magnAvgPause)^2 /
// var(magnAvgPause)
size_t i;
float avgPause, avgMagn, covMagnPause, varPause, varMagn, avgDiffNormMagn;
avgPause = 0.0;
avgMagn = self->sumMagn;
// Compute average quantities.
for (i = 0; i < self->magnLen; i++) {
// Conservative smooth noise spectrum from pause frames.
avgPause += self->magnAvgPause[i];
}
avgPause /= self->magnLen;
avgMagn /= self->magnLen;
covMagnPause = 0.0;
varPause = 0.0;
varMagn = 0.0;
// Compute variance and covariance quantities.
for (i = 0; i < self->magnLen; i++) {
covMagnPause += (magnIn[i] - avgMagn) * (self->magnAvgPause[i] - avgPause);
varPause +=
(self->magnAvgPause[i] - avgPause) * (self->magnAvgPause[i] - avgPause);
varMagn += (magnIn[i] - avgMagn) * (magnIn[i] - avgMagn);
}
covMagnPause /= self->magnLen;
varPause /= self->magnLen;
varMagn /= self->magnLen;
// Update of average magnitude spectrum.
self->featureData[6] += self->signalEnergy;
avgDiffNormMagn =
varMagn - (covMagnPause * covMagnPause) / (varPause + 0.0001f);
// Normalize and compute time-avg update of difference feature.
avgDiffNormMagn = (float)(avgDiffNormMagn / (self->featureData[5] + 0.0001f));
self->featureData[4] +=
SPECT_DIFF_TAVG * (avgDiffNormMagn - self->featureData[4]);
}
// Compute speech/noise probability.
// Speech/noise probability is returned in |probSpeechFinal|.
// |magn| is the input magnitude spectrum.
// |noise| is the noise spectrum.
// |snrLocPrior| is the prior SNR for each frequency.
// |snrLocPost| is the post SNR for each frequency.
static void SpeechNoiseProb(NoiseSuppressionC* self,
float* probSpeechFinal,
const float* snrLocPrior,
const float* snrLocPost) {
size_t i;
int sgnMap;
float invLrt, gainPrior, indPrior;
float logLrtTimeAvgKsum, besselTmp;
float indicator0, indicator1, indicator2;
float tmpFloat1, tmpFloat2;
float weightIndPrior0, weightIndPrior1, weightIndPrior2;
float threshPrior0, threshPrior1, threshPrior2;
float widthPrior, widthPrior0, widthPrior1, widthPrior2;
widthPrior0 = WIDTH_PR_MAP;
// Width for pause region: lower range, so increase width in tanh map.
widthPrior1 = 2.f * WIDTH_PR_MAP;
widthPrior2 = 2.f * WIDTH_PR_MAP; // For spectral-difference measure.
// Threshold parameters for features.
threshPrior0 = self->priorModelPars[0];
threshPrior1 = self->priorModelPars[1];
threshPrior2 = self->priorModelPars[3];
// Sign for flatness feature.
sgnMap = (int)(self->priorModelPars[2]);
// Weight parameters for features.
weightIndPrior0 = self->priorModelPars[4];
weightIndPrior1 = self->priorModelPars[5];
weightIndPrior2 = self->priorModelPars[6];
// Compute feature based on average LR factor.
// This is the average over all frequencies of the smooth log LRT.
logLrtTimeAvgKsum = 0.0;
for (i = 0; i < self->magnLen; i++) {
tmpFloat1 = 1.f + 2.f * snrLocPrior[i];
tmpFloat2 = 2.f * snrLocPrior[i] / (tmpFloat1 + 0.0001f);
besselTmp = (snrLocPost[i] + 1.f) * tmpFloat2;
self->logLrtTimeAvg[i] +=
LRT_TAVG * (besselTmp - (float)log(tmpFloat1) - self->logLrtTimeAvg[i]);
logLrtTimeAvgKsum += self->logLrtTimeAvg[i];
}
logLrtTimeAvgKsum = (float)logLrtTimeAvgKsum / (self->magnLen);
self->featureData[3] = logLrtTimeAvgKsum;
// Done with computation of LR factor.
// Compute the indicator functions.
// Average LRT feature.
widthPrior = widthPrior0;
// Use larger width in tanh map for pause regions.
if (logLrtTimeAvgKsum < threshPrior0) {
widthPrior = widthPrior1;
}
// Compute indicator function: sigmoid map.
indicator0 =
0.5f *
((float)tanh(widthPrior * (logLrtTimeAvgKsum - threshPrior0)) + 1.f);
// Spectral flatness feature.
tmpFloat1 = self->featureData[0];
widthPrior = widthPrior0;
// Use larger width in tanh map for pause regions.
if (sgnMap == 1 && (tmpFloat1 > threshPrior1)) {
widthPrior = widthPrior1;
}
if (sgnMap == -1 && (tmpFloat1 < threshPrior1)) {
widthPrior = widthPrior1;
}
// Compute indicator function: sigmoid map.
indicator1 =
0.5f *
((float)tanh((float)sgnMap * widthPrior * (threshPrior1 - tmpFloat1)) +
1.f);
// For template spectrum-difference.
tmpFloat1 = self->featureData[4];
widthPrior = widthPrior0;
// Use larger width in tanh map for pause regions.
if (tmpFloat1 < threshPrior2) {
widthPrior = widthPrior2;
}
// Compute indicator function: sigmoid map.
indicator2 =
0.5f * ((float)tanh(widthPrior * (tmpFloat1 - threshPrior2)) + 1.f);
// Combine the indicator function with the feature weights.
indPrior = weightIndPrior0 * indicator0 + weightIndPrior1 * indicator1 +
weightIndPrior2 * indicator2;
// Done with computing indicator function.
// Compute the prior probability.
self->priorSpeechProb += PRIOR_UPDATE * (indPrior - self->priorSpeechProb);
// Make sure probabilities are within range: keep floor to 0.01.
if (self->priorSpeechProb > 1.f) {
self->priorSpeechProb = 1.f;
}
if (self->priorSpeechProb < 0.01f) {
self->priorSpeechProb = 0.01f;
}
// Final speech probability: combine prior model with LR factor:.
gainPrior = (1.f - self->priorSpeechProb) / (self->priorSpeechProb + 0.0001f);
for (i = 0; i < self->magnLen; i++) {
invLrt = (float)exp(-self->logLrtTimeAvg[i]);
invLrt = (float)gainPrior * invLrt;
probSpeechFinal[i] = 1.f / (1.f + invLrt);
}
}
// Update the noise features.
// Inputs:
// * |magn| is the signal magnitude spectrum estimate.
// * |updateParsFlag| is an update flag for parameters.
static void FeatureUpdate(NoiseSuppressionC* self,
const float* magn,
int updateParsFlag) {
// Compute spectral flatness on input spectrum.
ComputeSpectralFlatness(self, magn);
// Compute difference of input spectrum with learned/estimated noise spectrum.
ComputeSpectralDifference(self, magn);
// Compute histograms for parameter decisions (thresholds and weights for
// features).
// Parameters are extracted once every window time.
// (=self->modelUpdatePars[1])
if (updateParsFlag >= 1) {
// Counter update.
self->modelUpdatePars[3]--;
// Update histogram.
if (self->modelUpdatePars[3] > 0) {
FeatureParameterExtraction(self, 0);
}
// Compute model parameters.
if (self->modelUpdatePars[3] == 0) {
FeatureParameterExtraction(self, 1);
self->modelUpdatePars[3] = self->modelUpdatePars[1];
// If wish to update only once, set flag to zero.
if (updateParsFlag == 1) {
self->modelUpdatePars[0] = 0;
} else {
// Update every window:
// Get normalization for spectral difference for next window estimate.
self->featureData[6] =
self->featureData[6] / ((float)self->modelUpdatePars[1]);
self->featureData[5] =
0.5f * (self->featureData[6] + self->featureData[5]);
self->featureData[6] = 0.f;
}
}
}
}
// Update the noise estimate.
// Inputs:
// * |magn| is the signal magnitude spectrum estimate.
// * |snrLocPrior| is the prior SNR.
// * |snrLocPost| is the post SNR.
// Output:
// * |noise| is the updated noise magnitude spectrum estimate.
static void UpdateNoiseEstimate(NoiseSuppressionC* self,
const float* magn,
const float* snrLocPrior,
const float* snrLocPost,
float* noise) {
size_t i;
float probSpeech, probNonSpeech;
// Time-avg parameter for noise update.
float gammaNoiseTmp = NOISE_UPDATE;
float gammaNoiseOld;
float noiseUpdateTmp;
for (i = 0; i < self->magnLen; i++) {
probSpeech = self->speechProb[i];
probNonSpeech = 1.f - probSpeech;
// Temporary noise update:
// Use it for speech frames if update value is less than previous.
noiseUpdateTmp = gammaNoiseTmp * self->noisePrev[i] +
(1.f - gammaNoiseTmp) * (probNonSpeech * magn[i] +
probSpeech * self->noisePrev[i]);
// Time-constant based on speech/noise state.
gammaNoiseOld = gammaNoiseTmp;
gammaNoiseTmp = NOISE_UPDATE;
// Increase gamma (i.e., less noise update) for frame likely to be speech.
if (probSpeech > PROB_RANGE) {
gammaNoiseTmp = SPEECH_UPDATE;
}
// Conservative noise update.
if (probSpeech < PROB_RANGE) {
self->magnAvgPause[i] += GAMMA_PAUSE * (magn[i] - self->magnAvgPause[i]);
}
// Noise update.
if (gammaNoiseTmp == gammaNoiseOld) {
noise[i] = noiseUpdateTmp;
} else {
noise[i] = gammaNoiseTmp * self->noisePrev[i] +
(1.f - gammaNoiseTmp) * (probNonSpeech * magn[i] +
probSpeech * self->noisePrev[i]);
// Allow for noise update downwards:
// If noise update decreases the noise, it is safe, so allow it to
// happen.
if (noiseUpdateTmp < noise[i]) {
noise[i] = noiseUpdateTmp;
}
}
} // End of freq loop.
}
// Updates |buffer| with a new |frame|.
// Inputs:
// * |frame| is a new speech frame or NULL for setting to zero.
// * |frame_length| is the length of the new frame.
// * |buffer_length| is the length of the buffer.
// Output:
// * |buffer| is the updated buffer.
static void UpdateBuffer(const float* frame,
size_t frame_length,
size_t buffer_length,
float* buffer) {
RTC_DCHECK_LT(buffer_length, 2 * frame_length);
memcpy(buffer,
buffer + frame_length,
sizeof(*buffer) * (buffer_length - frame_length));
if (frame) {
memcpy(buffer + buffer_length - frame_length,
frame,
sizeof(*buffer) * frame_length);
} else {
memset(buffer + buffer_length - frame_length,
0,
sizeof(*buffer) * frame_length);
}
}
// Transforms the signal from time to frequency domain.
// Inputs:
// * |time_data| is the signal in the time domain.
// * |time_data_length| is the length of the analysis buffer.
// * |magnitude_length| is the length of the spectrum magnitude, which equals
// the length of both |real| and |imag| (time_data_length / 2 + 1).
// Outputs:
// * |time_data| is the signal in the frequency domain.
// * |real| is the real part of the frequency domain.
// * |imag| is the imaginary part of the frequency domain.
// * |magn| is the calculated signal magnitude in the frequency domain.
static void FFT(NoiseSuppressionC* self,
float* time_data,
size_t time_data_length,
size_t magnitude_length,
float* real,
float* imag,
float* magn) {
size_t i;
RTC_DCHECK_EQ(magnitude_length, time_data_length / 2 + 1);
WebRtc_rdft(time_data_length, 1, time_data, self->ip, self->wfft);
imag[0] = 0;
real[0] = time_data[0];
magn[0] = fabsf(real[0]) + 1.f;
imag[magnitude_length - 1] = 0;
real[magnitude_length - 1] = time_data[1];
magn[magnitude_length - 1] = fabsf(real[magnitude_length - 1]) + 1.f;
for (i = 1; i < magnitude_length - 1; ++i) {
real[i] = time_data[2 * i];
imag[i] = time_data[2 * i + 1];
// Magnitude spectrum.
magn[i] = sqrtf(real[i] * real[i] + imag[i] * imag[i]) + 1.f;
}
}
// Transforms the signal from frequency to time domain.
// Inputs:
// * |real| is the real part of the frequency domain.
// * |imag| is the imaginary part of the frequency domain.
// * |magnitude_length| is the length of the spectrum magnitude, which equals
// the length of both |real| and |imag|.
// * |time_data_length| is the length of the analysis buffer
// (2 * (magnitude_length - 1)).
// Output:
// * |time_data| is the signal in the time domain.
static void IFFT(NoiseSuppressionC* self,
const float* real,
const float* imag,
size_t magnitude_length,
size_t time_data_length,
float* time_data) {
size_t i;
RTC_DCHECK_EQ(time_data_length, 2 * (magnitude_length - 1));
time_data[0] = real[0];
time_data[1] = real[magnitude_length - 1];
for (i = 1; i < magnitude_length - 1; ++i) {
time_data[2 * i] = real[i];
time_data[2 * i + 1] = imag[i];
}
WebRtc_rdft(time_data_length, -1, time_data, self->ip, self->wfft);
for (i = 0; i < time_data_length; ++i) {
time_data[i] *= 2.f / time_data_length; // FFT scaling.
}
}
// Calculates the energy of a buffer.
// Inputs:
// * |buffer| is the buffer over which the energy is calculated.
// * |length| is the length of the buffer.
// Returns the calculated energy.
static float Energy(const float* buffer, size_t length) {
size_t i;
float energy = 0.f;
for (i = 0; i < length; ++i) {
energy += buffer[i] * buffer[i];
}
return energy;
}
// Windows a buffer.
// Inputs:
// * |window| is the window by which to multiply.
// * |data| is the data without windowing.
// * |length| is the length of the window and data.
// Output:
// * |data_windowed| is the windowed data.
static void Windowing(const float* window,
const float* data,
size_t length,
float* data_windowed) {
size_t i;
for (i = 0; i < length; ++i) {
data_windowed[i] = window[i] * data[i];
}
}
// Estimate prior SNR decision-directed and compute DD based Wiener Filter.
// Input:
// * |magn| is the signal magnitude spectrum estimate.
// Output:
// * |theFilter| is the frequency response of the computed Wiener filter.
static void ComputeDdBasedWienerFilter(const NoiseSuppressionC* self,
const float* magn,
float* theFilter) {
size_t i;
float snrPrior, previousEstimateStsa, currentEstimateStsa;
for (i = 0; i < self->magnLen; i++) {
// Previous estimate: based on previous frame with gain filter.
previousEstimateStsa = self->magnPrevProcess[i] /
(self->noisePrev[i] + 0.0001f) * self->smooth[i];
// Post and prior SNR.
currentEstimateStsa = 0.f;
if (magn[i] > self->noise[i]) {
currentEstimateStsa = magn[i] / (self->noise[i] + 0.0001f) - 1.f;
}
// DD estimate is sum of two terms: current estimate and previous estimate.
// Directed decision update of |snrPrior|.
snrPrior = DD_PR_SNR * previousEstimateStsa +
(1.f - DD_PR_SNR) * currentEstimateStsa;
// Gain filter.
theFilter[i] = snrPrior / (self->overdrive + snrPrior);
} // End of loop over frequencies.
}
// Changes the aggressiveness of the noise suppression method.
// |mode| = 0 is mild (6dB), |mode| = 1 is medium (10dB) and |mode| = 2 is
// aggressive (15dB).
// Returns 0 on success and -1 otherwise.
int WebRtcNs_set_policy_core(NoiseSuppressionC* self, int mode) {
// Allow for modes: 0, 1, 2, 3.
if (mode < 0 || mode > 3) {
return (-1);
}
self->aggrMode = mode;
if (mode == 0) {
self->overdrive = 1.f;
self->denoiseBound = 0.5f;
self->gainmap = 0;
} else if (mode == 1) {
// self->overdrive = 1.25f;
self->overdrive = 1.f;
self->denoiseBound = 0.25f;
self->gainmap = 1;
} else if (mode == 2) {
// self->overdrive = 1.25f;
self->overdrive = 1.1f;
self->denoiseBound = 0.125f;
self->gainmap = 1;
} else if (mode == 3) {
// self->overdrive = 1.3f;
self->overdrive = 1.25f;
self->denoiseBound = 0.09f;
self->gainmap = 1;
}
return 0;
}
void WebRtcNs_AnalyzeCore(NoiseSuppressionC* self, const float* speechFrame) {
size_t i;
const size_t kStartBand = 5; // Skip first frequency bins during estimation.
int updateParsFlag;
float energy;
float signalEnergy = 0.f;
float sumMagn = 0.f;
float tmpFloat1, tmpFloat2, tmpFloat3;
float winData[ANAL_BLOCKL_MAX];
float magn[HALF_ANAL_BLOCKL], noise[HALF_ANAL_BLOCKL];
float snrLocPost[HALF_ANAL_BLOCKL], snrLocPrior[HALF_ANAL_BLOCKL];
float real[ANAL_BLOCKL_MAX], imag[HALF_ANAL_BLOCKL];
// Variables during startup.
float sum_log_i = 0.0;
float sum_log_i_square = 0.0;
float sum_log_magn = 0.0;
float sum_log_i_log_magn = 0.0;
float parametric_exp = 0.0;
float parametric_num = 0.0;
// Check that initiation has been done.
RTC_DCHECK_EQ(1, self->initFlag);
updateParsFlag = self->modelUpdatePars[0];
// Update analysis buffer for L band.
UpdateBuffer(speechFrame, self->blockLen, self->anaLen, self->analyzeBuf);
Windowing(self->window, self->analyzeBuf, self->anaLen, winData);
energy = Energy(winData, self->anaLen);
if (energy == 0.0) {
// We want to avoid updating statistics in this case:
// Updating feature statistics when we have zeros only will cause
// thresholds to move towards zero signal situations. This in turn has the
// effect that once the signal is "turned on" (non-zero values) everything
// will be treated as speech and there is no noise suppression effect.
// Depending on the duration of the inactive signal it takes a
// considerable amount of time for the system to learn what is noise and
// what is speech.
self->signalEnergy = 0;
return;
}
self->blockInd++; // Update the block index only when we process a block.
FFT(self, winData, self->anaLen, self->magnLen, real, imag, magn);
for (i = 0; i < self->magnLen; i++) {
signalEnergy += real[i] * real[i] + imag[i] * imag[i];
sumMagn += magn[i];
if (self->blockInd < END_STARTUP_SHORT) {
if (i >= kStartBand) {
tmpFloat2 = logf((float)i);
sum_log_i += tmpFloat2;
sum_log_i_square += tmpFloat2 * tmpFloat2;
tmpFloat1 = logf(magn[i]);
sum_log_magn += tmpFloat1;
sum_log_i_log_magn += tmpFloat2 * tmpFloat1;
}
}
}
signalEnergy /= self->magnLen;
self->signalEnergy = signalEnergy;
self->sumMagn = sumMagn;
// Quantile noise estimate.
NoiseEstimation(self, magn, noise);
// Compute simplified noise model during startup.
if (self->blockInd < END_STARTUP_SHORT) {
// Estimate White noise.
self->whiteNoiseLevel += sumMagn / self->magnLen * self->overdrive;
// Estimate Pink noise parameters.
tmpFloat1 = sum_log_i_square * (self->magnLen - kStartBand);
tmpFloat1 -= (sum_log_i * sum_log_i);
tmpFloat2 =
(sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn);
tmpFloat3 = tmpFloat2 / tmpFloat1;
// Constrain the estimated spectrum to be positive.
if (tmpFloat3 < 0.f) {
tmpFloat3 = 0.f;
}
self->pinkNoiseNumerator += tmpFloat3;
tmpFloat2 = (sum_log_i * sum_log_magn);
tmpFloat2 -= (self->magnLen - kStartBand) * sum_log_i_log_magn;
tmpFloat3 = tmpFloat2 / tmpFloat1;
// Constrain the pink noise power to be in the interval [0, 1].
if (tmpFloat3 < 0.f) {
tmpFloat3 = 0.f;
}
if (tmpFloat3 > 1.f) {
tmpFloat3 = 1.f;
}
self->pinkNoiseExp += tmpFloat3;
// Calculate frequency independent parts of parametric noise estimate.
if (self->pinkNoiseExp > 0.f) {
// Use pink noise estimate.
parametric_num =
expf(self->pinkNoiseNumerator / (float)(self->blockInd + 1));
parametric_num *= (float)(self->blockInd + 1);
parametric_exp = self->pinkNoiseExp / (float)(self->blockInd + 1);
}
for (i = 0; i < self->magnLen; i++) {
// Estimate the background noise using the white and pink noise
// parameters.
if (self->pinkNoiseExp == 0.f) {
// Use white noise estimate.
self->parametricNoise[i] = self->whiteNoiseLevel;
} else {
// Use pink noise estimate.
float use_band = (float)(i < kStartBand ? kStartBand : i);
self->parametricNoise[i] =
parametric_num / powf(use_band, parametric_exp);
}
// Weight quantile noise with modeled noise.
noise[i] *= (self->blockInd);
tmpFloat2 =
self->parametricNoise[i] * (END_STARTUP_SHORT - self->blockInd);
noise[i] += (tmpFloat2 / (float)(self->blockInd + 1));
noise[i] /= END_STARTUP_SHORT;
}
}
// Compute average signal during END_STARTUP_LONG time:
// used to normalize spectral difference measure.
if (self->blockInd < END_STARTUP_LONG) {
self->featureData[5] *= self->blockInd;
self->featureData[5] += signalEnergy;
self->featureData[5] /= (self->blockInd + 1);
}
// Post and prior SNR needed for SpeechNoiseProb.
ComputeSnr(self, magn, noise, snrLocPrior, snrLocPost);
FeatureUpdate(self, magn, updateParsFlag);
SpeechNoiseProb(self, self->speechProb, snrLocPrior, snrLocPost);
UpdateNoiseEstimate(self, magn, snrLocPrior, snrLocPost, noise);
// Keep track of noise spectrum for next frame.
memcpy(self->noise, noise, sizeof(*noise) * self->magnLen);
memcpy(self->magnPrevAnalyze, magn, sizeof(*magn) * self->magnLen);
}
void WebRtcNs_ProcessCore(NoiseSuppressionC* self,
const float* const* speechFrame,
size_t num_bands,
float* const* outFrame) {
// Main routine for noise reduction.
int flagHB = 0;
size_t i, j;
float energy1, energy2, gain, factor, factor1, factor2;
float fout[BLOCKL_MAX];
float winData[ANAL_BLOCKL_MAX];
float magn[HALF_ANAL_BLOCKL];
float theFilter[HALF_ANAL_BLOCKL], theFilterTmp[HALF_ANAL_BLOCKL];
float real[ANAL_BLOCKL_MAX], imag[HALF_ANAL_BLOCKL];
// SWB variables.
int deltaBweHB = 1;
int deltaGainHB = 1;
float decayBweHB = 1.0;
float gainMapParHB = 1.0;
float gainTimeDomainHB = 1.0;
float avgProbSpeechHB, avgProbSpeechHBTmp, avgFilterGainHB, gainModHB;
float sumMagnAnalyze, sumMagnProcess;
// Check that initiation has been done.
RTC_DCHECK_EQ(1, self->initFlag);
RTC_DCHECK_LE(num_bands - 1, NUM_HIGH_BANDS_MAX);
const float* const* speechFrameHB = NULL;
float* const* outFrameHB = NULL;
size_t num_high_bands = 0;
if (num_bands > 1) {
speechFrameHB = &speechFrame[1];
outFrameHB = &outFrame[1];
num_high_bands = num_bands - 1;
flagHB = 1;
// Range for averaging low band quantities for H band gain.
deltaBweHB = (int)self->magnLen / 4;
deltaGainHB = deltaBweHB;
}
// Update analysis buffer for L band.
UpdateBuffer(speechFrame[0], self->blockLen, self->anaLen, self->dataBuf);
if (flagHB == 1) {
// Update analysis buffer for H bands.
for (i = 0; i < num_high_bands; ++i) {
UpdateBuffer(speechFrameHB[i],
self->blockLen,
self->anaLen,
self->dataBufHB[i]);
}
}
Windowing(self->window, self->dataBuf, self->anaLen, winData);
energy1 = Energy(winData, self->anaLen);
if (energy1 == 0.0 || self->signalEnergy == 0) {
// Synthesize the special case of zero input.
// Read out fully processed segment.
for (i = self->windShift; i < self->blockLen + self->windShift; i++) {
fout[i - self->windShift] = self->syntBuf[i];
}
// Update synthesis buffer.
UpdateBuffer(NULL, self->blockLen, self->anaLen, self->syntBuf);
for (i = 0; i < self->blockLen; ++i)
outFrame[0][i] =
WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, fout[i], WEBRTC_SPL_WORD16_MIN);
// For time-domain gain of HB.
if (flagHB == 1) {
for (i = 0; i < num_high_bands; ++i) {
for (j = 0; j < self->blockLen; ++j) {
outFrameHB[i][j] = WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
self->dataBufHB[i][j],
WEBRTC_SPL_WORD16_MIN);
}
}
}
return;
}
FFT(self, winData, self->anaLen, self->magnLen, real, imag, magn);
if (self->blockInd < END_STARTUP_SHORT) {
for (i = 0; i < self->magnLen; i++) {
self->initMagnEst[i] += magn[i];
}
}
ComputeDdBasedWienerFilter(self, magn, theFilter);
for (i = 0; i < self->magnLen; i++) {
// Flooring bottom.
if (theFilter[i] < self->denoiseBound) {
theFilter[i] = self->denoiseBound;
}
// Flooring top.
if (theFilter[i] > 1.f) {
theFilter[i] = 1.f;
}
if (self->blockInd < END_STARTUP_SHORT) {
theFilterTmp[i] =
(self->initMagnEst[i] - self->overdrive * self->parametricNoise[i]);
theFilterTmp[i] /= (self->initMagnEst[i] + 0.0001f);
// Flooring bottom.
if (theFilterTmp[i] < self->denoiseBound) {
theFilterTmp[i] = self->denoiseBound;
}
// Flooring top.
if (theFilterTmp[i] > 1.f) {
theFilterTmp[i] = 1.f;
}
// Weight the two suppression filters.
theFilter[i] *= (self->blockInd);
theFilterTmp[i] *= (END_STARTUP_SHORT - self->blockInd);
theFilter[i] += theFilterTmp[i];
theFilter[i] /= (END_STARTUP_SHORT);
}
self->smooth[i] = theFilter[i];
real[i] *= self->smooth[i];
imag[i] *= self->smooth[i];
}
// Keep track of |magn| spectrum for next frame.
memcpy(self->magnPrevProcess, magn, sizeof(*magn) * self->magnLen);
memcpy(self->noisePrev, self->noise, sizeof(self->noise[0]) * self->magnLen);
// Back to time domain.
IFFT(self, real, imag, self->magnLen, self->anaLen, winData);
// Scale factor: only do it after END_STARTUP_LONG time.
factor = 1.f;
if (self->gainmap == 1 && self->blockInd > END_STARTUP_LONG) {
factor1 = 1.f;
factor2 = 1.f;
energy2 = Energy(winData, self->anaLen);
gain = (float)sqrt(energy2 / (energy1 + 1.f));
// Scaling for new version.
if (gain > B_LIM) {
factor1 = 1.f + 1.3f * (gain - B_LIM);
if (gain * factor1 > 1.f) {
factor1 = 1.f / gain;
}
}
if (gain < B_LIM) {
// Don't reduce scale too much for pause regions:
// attenuation here should be controlled by flooring.
if (gain <= self->denoiseBound) {
gain = self->denoiseBound;
}
factor2 = 1.f - 0.3f * (B_LIM - gain);
}
// Combine both scales with speech/noise prob:
// note prior (priorSpeechProb) is not frequency dependent.
factor = self->priorSpeechProb * factor1 +
(1.f - self->priorSpeechProb) * factor2;
} // Out of self->gainmap == 1.
Windowing(self->window, winData, self->anaLen, winData);
// Synthesis.
for (i = 0; i < self->anaLen; i++) {
self->syntBuf[i] += factor * winData[i];
}
// Read out fully processed segment.
for (i = self->windShift; i < self->blockLen + self->windShift; i++) {
fout[i - self->windShift] = self->syntBuf[i];
}
// Update synthesis buffer.
UpdateBuffer(NULL, self->blockLen, self->anaLen, self->syntBuf);
for (i = 0; i < self->blockLen; ++i)
outFrame[0][i] =
WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, fout[i], WEBRTC_SPL_WORD16_MIN);
// For time-domain gain of HB.
if (flagHB == 1) {
// Average speech prob from low band.
// Average over second half (i.e., 4->8kHz) of frequencies spectrum.
avgProbSpeechHB = 0.0;
for (i = self->magnLen - deltaBweHB - 1; i < self->magnLen - 1; i++) {
avgProbSpeechHB += self->speechProb[i];
}
avgProbSpeechHB = avgProbSpeechHB / ((float)deltaBweHB);
// If the speech was suppressed by a component between Analyze and
// Process, for example the AEC, then it should not be considered speech
// for high band suppression purposes.
sumMagnAnalyze = 0;
sumMagnProcess = 0;
for (i = 0; i < self->magnLen; ++i) {
sumMagnAnalyze += self->magnPrevAnalyze[i];
sumMagnProcess += self->magnPrevProcess[i];
}
RTC_DCHECK_GT(sumMagnAnalyze, 0);
avgProbSpeechHB *= sumMagnProcess / sumMagnAnalyze;
// Average filter gain from low band.
// Average over second half (i.e., 4->8kHz) of frequencies spectrum.
avgFilterGainHB = 0.0;
for (i = self->magnLen - deltaGainHB - 1; i < self->magnLen - 1; i++) {
avgFilterGainHB += self->smooth[i];
}
avgFilterGainHB = avgFilterGainHB / ((float)(deltaGainHB));
avgProbSpeechHBTmp = 2.f * avgProbSpeechHB - 1.f;
// Gain based on speech probability.
gainModHB = 0.5f * (1.f + (float)tanh(gainMapParHB * avgProbSpeechHBTmp));
// Combine gain with low band gain.
gainTimeDomainHB = 0.5f * gainModHB + 0.5f * avgFilterGainHB;
if (avgProbSpeechHB >= 0.5f) {
gainTimeDomainHB = 0.25f * gainModHB + 0.75f * avgFilterGainHB;
}
gainTimeDomainHB = gainTimeDomainHB * decayBweHB;
// Make sure gain is within flooring range.
// Flooring bottom.
if (gainTimeDomainHB < self->denoiseBound) {
gainTimeDomainHB = self->denoiseBound;
}
// Flooring top.
if (gainTimeDomainHB > 1.f) {
gainTimeDomainHB = 1.f;
}
// Apply gain.
for (i = 0; i < num_high_bands; ++i) {
for (j = 0; j < self->blockLen; j++) {
outFrameHB[i][j] =
WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
gainTimeDomainHB * self->dataBufHB[i][j],
WEBRTC_SPL_WORD16_MIN);
}
}
} // End of H band gain computation.
}