blob: cdaca67fbe8590701a471d41e08d118fcfb9ef44 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "system_wrappers/include/ntp_time.h"
#include <random>
#include "system_wrappers/include/clock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr uint32_t kNtpSec = 0x12345678;
constexpr uint32_t kNtpFrac = 0x23456789;
constexpr int64_t kOneSecQ32x32 = uint64_t{1} << 32;
constexpr int64_t kOneMsQ32x32 = 4294967;
TEST(NtpTimeTest, NoValueMeansInvalid) {
NtpTime ntp;
EXPECT_FALSE(ntp.Valid());
}
TEST(NtpTimeTest, CanResetValue) {
NtpTime ntp(kNtpSec, kNtpFrac);
EXPECT_TRUE(ntp.Valid());
ntp.Reset();
EXPECT_FALSE(ntp.Valid());
}
TEST(NtpTimeTest, CanGetWhatIsSet) {
NtpTime ntp;
ntp.Set(kNtpSec, kNtpFrac);
EXPECT_EQ(kNtpSec, ntp.seconds());
EXPECT_EQ(kNtpFrac, ntp.fractions());
}
TEST(NtpTimeTest, SetIsSameAs2ParameterConstructor) {
NtpTime ntp1(kNtpSec, kNtpFrac);
NtpTime ntp2;
EXPECT_NE(ntp1, ntp2);
ntp2.Set(kNtpSec, kNtpFrac);
EXPECT_EQ(ntp1, ntp2);
}
TEST(NtpTimeTest, ToMsMeansToNtpMilliseconds) {
SimulatedClock clock(0x123456789abc);
NtpTime ntp = clock.CurrentNtpTime();
EXPECT_EQ(ntp.ToMs(), Clock::NtpToMs(ntp.seconds(), ntp.fractions()));
EXPECT_EQ(ntp.ToMs(), clock.CurrentNtpInMilliseconds());
}
TEST(NtpTimeTest, CanExplicitlyConvertToAndFromUint64) {
uint64_t untyped_time = 0x123456789;
NtpTime time(untyped_time);
EXPECT_EQ(untyped_time, static_cast<uint64_t>(time));
EXPECT_EQ(NtpTime(0x12345678, 0x90abcdef), NtpTime(0x1234567890abcdef));
}
TEST(NtpTimeTest, VerifyInt64MsToQ32x32NearZero) {
// Zero
EXPECT_EQ(Int64MsToQ32x32(0), 0);
// Zero + 1 millisecond
EXPECT_EQ(Int64MsToQ32x32(1), kOneMsQ32x32);
// Zero - 1 millisecond
EXPECT_EQ(Int64MsToQ32x32(-1), -kOneMsQ32x32);
// Zero + 1 second
EXPECT_EQ(Int64MsToQ32x32(1000), kOneSecQ32x32);
// Zero - 1 second
EXPECT_EQ(Int64MsToQ32x32(-1000), -kOneSecQ32x32);
}
TEST(NtpTimeTest, VerifyInt64MsToUQ32x32NearZero) {
// Zero
EXPECT_EQ(Int64MsToUQ32x32(0), uint64_t{0});
// Zero + 1 millisecond
EXPECT_EQ(Int64MsToUQ32x32(1), uint64_t{kOneMsQ32x32});
// Zero - 1 millisecond
EXPECT_EQ(Int64MsToUQ32x32(-1), uint64_t{0}); // Clamped
// Zero + 1 second
EXPECT_EQ(Int64MsToUQ32x32(1000), uint64_t{kOneSecQ32x32});
// Zero - 1 second
EXPECT_EQ(Int64MsToUQ32x32(-1000), uint64_t{0}); // Clamped
}
TEST(NtpTimeTest, VerifyQ32x32ToInt64MsNearZero) {
// Zero
EXPECT_EQ(Q32x32ToInt64Ms(0), 0);
// Zero + 1 millisecond
EXPECT_EQ(Q32x32ToInt64Ms(kOneMsQ32x32), 1);
// Zero - 1 millisecond
EXPECT_EQ(Q32x32ToInt64Ms(-kOneMsQ32x32), -1);
// Zero + 1 second
EXPECT_EQ(Q32x32ToInt64Ms(kOneSecQ32x32), 1000);
// Zero - 1 second
EXPECT_EQ(Q32x32ToInt64Ms(-kOneSecQ32x32), -1000);
}
TEST(NtpTimeTest, VerifyUQ32x32ToInt64MsNearZero) {
// Zero
EXPECT_EQ(UQ32x32ToInt64Ms(0), 0);
// Zero + 1 millisecond
EXPECT_EQ(UQ32x32ToInt64Ms(kOneMsQ32x32), 1);
// Zero + 1 second
EXPECT_EQ(UQ32x32ToInt64Ms(kOneSecQ32x32), 1000);
}
TEST(NtpTimeTest, VerifyInt64MsToQ32x32NearMax) {
constexpr int64_t kMaxQ32x32 = std::numeric_limits<int64_t>::max();
constexpr int64_t kBoundaryMs = (kMaxQ32x32 >> 32) * 1000 + 999;
// Max
const int64_t boundary_q32x32 = Int64MsToQ32x32(kBoundaryMs);
EXPECT_LE(boundary_q32x32, kMaxQ32x32);
EXPECT_GT(boundary_q32x32, kMaxQ32x32 - kOneMsQ32x32);
// Max + 1 millisecond
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs + 1), kMaxQ32x32); // Clamped
// Max - 1 millisecond
EXPECT_LE(Int64MsToQ32x32(kBoundaryMs - 1), kMaxQ32x32 - kOneMsQ32x32);
// Max + 1 second
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs + 1000), kMaxQ32x32); // Clamped
// Max - 1 second
EXPECT_LE(Int64MsToQ32x32(kBoundaryMs - 1000), kMaxQ32x32 - kOneSecQ32x32);
}
TEST(NtpTimeTest, VerifyInt64MsToUQ32x32NearMax) {
constexpr uint64_t kMaxUQ32x32 = std::numeric_limits<uint64_t>::max();
constexpr int64_t kBoundaryMs = (kMaxUQ32x32 >> 32) * 1000 + 999;
// Max
const uint64_t boundary_uq32x32 = Int64MsToUQ32x32(kBoundaryMs);
EXPECT_LE(boundary_uq32x32, kMaxUQ32x32);
EXPECT_GT(boundary_uq32x32, kMaxUQ32x32 - kOneMsQ32x32);
// Max + 1 millisecond
EXPECT_EQ(Int64MsToUQ32x32(kBoundaryMs + 1), kMaxUQ32x32); // Clamped
// Max - 1 millisecond
EXPECT_LE(Int64MsToUQ32x32(kBoundaryMs - 1), kMaxUQ32x32 - kOneMsQ32x32);
// Max + 1 second
EXPECT_EQ(Int64MsToUQ32x32(kBoundaryMs + 1000), kMaxUQ32x32); // Clamped
// Max - 1 second
EXPECT_LE(Int64MsToUQ32x32(kBoundaryMs - 1000), kMaxUQ32x32 - kOneSecQ32x32);
}
TEST(NtpTimeTest, VerifyQ32x32ToInt64MsNearMax) {
constexpr int64_t kMaxQ32x32 = std::numeric_limits<int64_t>::max();
constexpr int64_t kBoundaryMs = (kMaxQ32x32 >> 32) * 1000 + 1000;
// Max
EXPECT_EQ(Q32x32ToInt64Ms(kMaxQ32x32), kBoundaryMs);
// Max - 1 millisecond
EXPECT_EQ(Q32x32ToInt64Ms(kMaxQ32x32 - kOneMsQ32x32), kBoundaryMs - 1);
// Max - 1 second
EXPECT_EQ(Q32x32ToInt64Ms(kMaxQ32x32 - kOneSecQ32x32), kBoundaryMs - 1000);
}
TEST(NtpTimeTest, VerifyUQ32x32ToInt64MsNearMax) {
constexpr uint64_t kMaxUQ32x32 = std::numeric_limits<uint64_t>::max();
constexpr int64_t kBoundaryMs = (kMaxUQ32x32 >> 32) * 1000 + 1000;
// Max
EXPECT_EQ(UQ32x32ToInt64Ms(kMaxUQ32x32), kBoundaryMs);
// Max - 1 millisecond
EXPECT_EQ(UQ32x32ToInt64Ms(kMaxUQ32x32 - kOneMsQ32x32), kBoundaryMs - 1);
// Max - 1 second
EXPECT_EQ(UQ32x32ToInt64Ms(kMaxUQ32x32 - kOneSecQ32x32), kBoundaryMs - 1000);
}
TEST(NtpTimeTest, VerifyInt64MsToQ32x32NearMin) {
constexpr int64_t kBoundaryQ32x32 = 0x8000000000000000;
constexpr int64_t kBoundaryMs = -int64_t{0x80000000} * 1000;
// Min
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs), kBoundaryQ32x32);
// Min + 1 millisecond
EXPECT_EQ(Q32x32ToInt64Ms(Int64MsToQ32x32(kBoundaryMs + 1)), kBoundaryMs + 1);
// Min - 1 millisecond
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs - 1), kBoundaryQ32x32); // Clamped
// Min + 1 second
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs + 1000),
kBoundaryQ32x32 + kOneSecQ32x32);
// Min - 1 second
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs - 1000), kBoundaryQ32x32); // Clamped
}
TEST(NtpTimeTest, VerifyQ32x32ToInt64MsNearMin) {
constexpr int64_t kBoundaryQ32x32 = 0x8000000000000000;
constexpr int64_t kBoundaryMs = -int64_t{0x80000000} * 1000;
// Min
EXPECT_EQ(Q32x32ToInt64Ms(kBoundaryQ32x32), kBoundaryMs);
// Min + 1 millisecond
EXPECT_EQ(Q32x32ToInt64Ms(kBoundaryQ32x32 + kOneMsQ32x32), kBoundaryMs + 1);
// Min + 1 second
EXPECT_EQ(Q32x32ToInt64Ms(kBoundaryQ32x32 + kOneSecQ32x32),
kBoundaryMs + 1000);
}
TEST(NtpTimeTest, VerifyInt64MsToQ32x32RoundTrip) {
constexpr int kIterations = 50000;
std::mt19937 generator(123456789);
std::uniform_int_distribution<int64_t> distribution(
Q32x32ToInt64Ms(std::numeric_limits<int64_t>::min()),
Q32x32ToInt64Ms(std::numeric_limits<int64_t>::max()));
for (int iteration = 0; iteration < kIterations; ++iteration) {
int64_t input_ms = distribution(generator);
int64_t transit_q32x32 = Int64MsToQ32x32(input_ms);
int64_t output_ms = Q32x32ToInt64Ms(transit_q32x32);
ASSERT_EQ(input_ms, output_ms)
<< "iteration = " << iteration << ", input_ms = " << input_ms
<< ", transit_q32x32 = " << transit_q32x32
<< ", output_ms = " << output_ms;
}
}
TEST(NtpTimeTest, VerifyInt64MsToUQ32x32RoundTrip) {
constexpr int kIterations = 50000;
std::mt19937 generator(123456789);
std::uniform_int_distribution<uint64_t> distribution(
UQ32x32ToInt64Ms(std::numeric_limits<uint64_t>::min()),
UQ32x32ToInt64Ms(std::numeric_limits<uint64_t>::max()));
for (int iteration = 0; iteration < kIterations; ++iteration) {
uint64_t input_ms = distribution(generator);
uint64_t transit_uq32x32 = Int64MsToUQ32x32(input_ms);
uint64_t output_ms = UQ32x32ToInt64Ms(transit_uq32x32);
ASSERT_EQ(input_ms, output_ms)
<< "iteration = " << iteration << ", input_ms = " << input_ms
<< ", transit_uq32x32 = " << transit_uq32x32
<< ", output_ms = " << output_ms;
}
}
} // namespace
} // namespace webrtc