| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "video/video_stream_encoder.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <limits> |
| #include <memory> |
| #include <numeric> |
| #include <optional> |
| #include <utility> |
| |
| #include "absl/algorithm/container.h" |
| #include "absl/cleanup/cleanup.h" |
| #include "absl/types/variant.h" |
| #include "api/field_trials_view.h" |
| #include "api/sequence_checker.h" |
| #include "api/task_queue/task_queue_base.h" |
| #include "api/video/encoded_image.h" |
| #include "api/video/i420_buffer.h" |
| #include "api/video/render_resolution.h" |
| #include "api/video/video_adaptation_reason.h" |
| #include "api/video/video_bitrate_allocator_factory.h" |
| #include "api/video/video_codec_constants.h" |
| #include "api/video/video_layers_allocation.h" |
| #include "api/video/video_stream_encoder_settings.h" |
| #include "api/video_codecs/sdp_video_format.h" |
| #include "api/video_codecs/video_encoder.h" |
| #include "call/adaptation/resource_adaptation_processor.h" |
| #include "call/adaptation/video_source_restrictions.h" |
| #include "call/adaptation/video_stream_adapter.h" |
| #include "common_video/frame_instrumentation_data.h" |
| #include "media/base/media_channel.h" |
| #include "modules/video_coding/include/video_codec_initializer.h" |
| #include "modules/video_coding/include/video_codec_interface.h" |
| #include "modules/video_coding/svc/scalability_mode_util.h" |
| #include "modules/video_coding/svc/svc_rate_allocator.h" |
| #include "modules/video_coding/utility/vp8_constants.h" |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/event.h" |
| #include "rtc_base/experiments/encoder_info_settings.h" |
| #include "rtc_base/experiments/rate_control_settings.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "rtc_base/system/no_unique_address.h" |
| #include "rtc_base/thread_annotations.h" |
| #include "rtc_base/trace_event.h" |
| #include "system_wrappers/include/metrics.h" |
| #include "video/adaptation/video_stream_encoder_resource_manager.h" |
| #include "video/alignment_adjuster.h" |
| #include "video/config/encoder_stream_factory.h" |
| #include "video/config/video_encoder_config.h" |
| #include "video/corruption_detection/frame_instrumentation_generator.h" |
| #include "video/frame_cadence_adapter.h" |
| #include "video/frame_dumping_encoder.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| // Time interval for logging frame counts. |
| const int64_t kFrameLogIntervalMs = 60000; |
| |
| // Time to keep a single cached pending frame in paused state. |
| const int64_t kPendingFrameTimeoutMs = 1000; |
| |
| constexpr char kFrameDropperFieldTrial[] = "WebRTC-FrameDropper"; |
| |
| // TODO(bugs.webrtc.org/13572): Remove this kill switch after deploying the |
| // feature. |
| constexpr char kSwitchEncoderOnInitializationFailuresFieldTrial[] = |
| "WebRTC-SwitchEncoderOnInitializationFailures"; |
| |
| const size_t kDefaultPayloadSize = 1440; |
| |
| const int64_t kParameterUpdateIntervalMs = 1000; |
| |
| constexpr int kDefaultMinScreenSharebps = 1200000; |
| |
| int GetNumSpatialLayers(const VideoCodec& codec) { |
| if (codec.codecType == kVideoCodecVP9) { |
| return codec.VP9().numberOfSpatialLayers; |
| } else if (codec.codecType == kVideoCodecAV1 && |
| codec.GetScalabilityMode().has_value()) { |
| return ScalabilityModeToNumSpatialLayers(*(codec.GetScalabilityMode())); |
| } else { |
| return 0; |
| } |
| } |
| |
| std::optional<EncodedImageCallback::DropReason> MaybeConvertDropReason( |
| VideoStreamEncoderObserver::DropReason reason) { |
| switch (reason) { |
| case VideoStreamEncoderObserver::DropReason::kMediaOptimization: |
| return EncodedImageCallback::DropReason::kDroppedByMediaOptimizations; |
| case VideoStreamEncoderObserver::DropReason::kEncoder: |
| return EncodedImageCallback::DropReason::kDroppedByEncoder; |
| default: |
| return std::nullopt; |
| } |
| } |
| |
| bool RequiresEncoderReset(const VideoCodec& prev_send_codec, |
| const VideoCodec& new_send_codec, |
| bool was_encode_called_since_last_initialization) { |
| // Does not check max/minBitrate or maxFramerate. |
| if (new_send_codec.codecType != prev_send_codec.codecType || |
| new_send_codec.width != prev_send_codec.width || |
| new_send_codec.height != prev_send_codec.height || |
| new_send_codec.qpMax != prev_send_codec.qpMax || |
| new_send_codec.numberOfSimulcastStreams != |
| prev_send_codec.numberOfSimulcastStreams || |
| new_send_codec.mode != prev_send_codec.mode || |
| new_send_codec.GetFrameDropEnabled() != |
| prev_send_codec.GetFrameDropEnabled()) { |
| return true; |
| } |
| |
| if (!was_encode_called_since_last_initialization && |
| (new_send_codec.startBitrate != prev_send_codec.startBitrate)) { |
| // If start bitrate has changed reconfigure encoder only if encoding had not |
| // yet started. |
| return true; |
| } |
| |
| switch (new_send_codec.codecType) { |
| case kVideoCodecVP8: |
| if (new_send_codec.VP8() != prev_send_codec.VP8()) { |
| return true; |
| } |
| break; |
| |
| case kVideoCodecVP9: |
| if (new_send_codec.VP9() != prev_send_codec.VP9()) { |
| return true; |
| } |
| break; |
| |
| case kVideoCodecH264: |
| if (new_send_codec.H264() != prev_send_codec.H264()) { |
| return true; |
| } |
| break; |
| case kVideoCodecH265: |
| // TODO(bugs.webrtc.org/13485): Implement new send codec H265 |
| [[fallthrough]]; |
| default: |
| break; |
| } |
| |
| for (unsigned char i = 0; i < new_send_codec.numberOfSimulcastStreams; ++i) { |
| if (!new_send_codec.simulcastStream[i].active) { |
| // No need to reset when stream is inactive. |
| continue; |
| } |
| |
| if (!prev_send_codec.simulcastStream[i].active || |
| new_send_codec.simulcastStream[i].width != |
| prev_send_codec.simulcastStream[i].width || |
| new_send_codec.simulcastStream[i].height != |
| prev_send_codec.simulcastStream[i].height || |
| new_send_codec.simulcastStream[i].numberOfTemporalLayers != |
| prev_send_codec.simulcastStream[i].numberOfTemporalLayers || |
| new_send_codec.simulcastStream[i].qpMax != |
| prev_send_codec.simulcastStream[i].qpMax) { |
| return true; |
| } |
| } |
| |
| if (new_send_codec.codecType == kVideoCodecVP9) { |
| size_t num_spatial_layers = new_send_codec.VP9().numberOfSpatialLayers; |
| for (unsigned char i = 0; i < num_spatial_layers; ++i) { |
| if (!new_send_codec.spatialLayers[i].active) { |
| // No need to reset when layer is inactive. |
| continue; |
| } |
| if (new_send_codec.spatialLayers[i].width != |
| prev_send_codec.spatialLayers[i].width || |
| new_send_codec.spatialLayers[i].height != |
| prev_send_codec.spatialLayers[i].height || |
| new_send_codec.spatialLayers[i].numberOfTemporalLayers != |
| prev_send_codec.spatialLayers[i].numberOfTemporalLayers || |
| new_send_codec.spatialLayers[i].qpMax != |
| prev_send_codec.spatialLayers[i].qpMax || |
| !prev_send_codec.spatialLayers[i].active) { |
| return true; |
| } |
| } |
| } |
| |
| if (new_send_codec.GetScalabilityMode() != |
| prev_send_codec.GetScalabilityMode()) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Limit allocation across TLs in bitrate allocation according to number of TLs |
| // in EncoderInfo. |
| VideoBitrateAllocation UpdateAllocationFromEncoderInfo( |
| const VideoBitrateAllocation& allocation, |
| const VideoEncoder::EncoderInfo& encoder_info) { |
| if (allocation.get_sum_bps() == 0) { |
| return allocation; |
| } |
| VideoBitrateAllocation new_allocation; |
| for (int si = 0; si < kMaxSpatialLayers; ++si) { |
| if (encoder_info.fps_allocation[si].size() == 1 && |
| allocation.IsSpatialLayerUsed(si)) { |
| // One TL is signalled to be used by the encoder. Do not distribute |
| // bitrate allocation across TLs (use sum at ti:0). |
| new_allocation.SetBitrate(si, 0, allocation.GetSpatialLayerSum(si)); |
| } else { |
| for (int ti = 0; ti < kMaxTemporalStreams; ++ti) { |
| if (allocation.HasBitrate(si, ti)) |
| new_allocation.SetBitrate(si, ti, allocation.GetBitrate(si, ti)); |
| } |
| } |
| } |
| new_allocation.set_bw_limited(allocation.is_bw_limited()); |
| return new_allocation; |
| } |
| |
| // Converts a VideoBitrateAllocation that contains allocated bitrate per layer, |
| // and an EncoderInfo that contains information about the actual encoder |
| // structure used by a codec. Stream structures can be Ksvc, Full SVC, Simulcast |
| // etc. |
| VideoLayersAllocation CreateVideoLayersAllocation( |
| const VideoCodec& encoder_config, |
| const VideoEncoder::RateControlParameters& current_rate, |
| const VideoEncoder::EncoderInfo& encoder_info) { |
| const VideoBitrateAllocation& target_bitrate = current_rate.target_bitrate; |
| VideoLayersAllocation layers_allocation; |
| if (target_bitrate.get_sum_bps() == 0) { |
| return layers_allocation; |
| } |
| |
| if (encoder_config.numberOfSimulcastStreams > 1) { |
| layers_allocation.resolution_and_frame_rate_is_valid = true; |
| for (int si = 0; si < encoder_config.numberOfSimulcastStreams; ++si) { |
| if (!target_bitrate.IsSpatialLayerUsed(si) || |
| target_bitrate.GetSpatialLayerSum(si) == 0) { |
| continue; |
| } |
| layers_allocation.active_spatial_layers.emplace_back(); |
| VideoLayersAllocation::SpatialLayer& spatial_layer = |
| layers_allocation.active_spatial_layers.back(); |
| spatial_layer.width = encoder_config.simulcastStream[si].width; |
| spatial_layer.height = encoder_config.simulcastStream[si].height; |
| spatial_layer.rtp_stream_index = si; |
| spatial_layer.spatial_id = 0; |
| auto frame_rate_fraction = |
| VideoEncoder::EncoderInfo::kMaxFramerateFraction; |
| if (encoder_info.fps_allocation[si].size() == 1) { |
| // One TL is signalled to be used by the encoder. Do not distribute |
| // bitrate allocation across TLs (use sum at tl:0). |
| spatial_layer.target_bitrate_per_temporal_layer.push_back( |
| DataRate::BitsPerSec(target_bitrate.GetSpatialLayerSum(si))); |
| frame_rate_fraction = encoder_info.fps_allocation[si][0]; |
| } else { // Temporal layers are supported. |
| uint32_t temporal_layer_bitrate_bps = 0; |
| for (size_t ti = 0; |
| ti < encoder_config.simulcastStream[si].numberOfTemporalLayers; |
| ++ti) { |
| if (!target_bitrate.HasBitrate(si, ti)) { |
| break; |
| } |
| if (ti < encoder_info.fps_allocation[si].size()) { |
| // Use frame rate of the top used temporal layer. |
| frame_rate_fraction = encoder_info.fps_allocation[si][ti]; |
| } |
| temporal_layer_bitrate_bps += target_bitrate.GetBitrate(si, ti); |
| spatial_layer.target_bitrate_per_temporal_layer.push_back( |
| DataRate::BitsPerSec(temporal_layer_bitrate_bps)); |
| } |
| } |
| // Encoder may drop frames internally if `maxFramerate` is set. |
| spatial_layer.frame_rate_fps = std::min<uint8_t>( |
| encoder_config.simulcastStream[si].maxFramerate, |
| rtc::saturated_cast<uint8_t>( |
| (current_rate.framerate_fps * frame_rate_fraction) / |
| VideoEncoder::EncoderInfo::kMaxFramerateFraction)); |
| } |
| } else if (encoder_config.numberOfSimulcastStreams == 1) { |
| // TODO(bugs.webrtc.org/12000): Implement support for AV1 with |
| // scalability. |
| const bool higher_spatial_depend_on_lower = |
| encoder_config.codecType == kVideoCodecVP9 && |
| encoder_config.VP9().interLayerPred == InterLayerPredMode::kOn; |
| layers_allocation.resolution_and_frame_rate_is_valid = true; |
| |
| std::vector<DataRate> aggregated_spatial_bitrate( |
| webrtc::kMaxTemporalStreams, DataRate::Zero()); |
| for (int si = 0; si < webrtc::kMaxSpatialLayers; ++si) { |
| layers_allocation.resolution_and_frame_rate_is_valid = true; |
| if (!target_bitrate.IsSpatialLayerUsed(si) || |
| target_bitrate.GetSpatialLayerSum(si) == 0) { |
| break; |
| } |
| layers_allocation.active_spatial_layers.emplace_back(); |
| VideoLayersAllocation::SpatialLayer& spatial_layer = |
| layers_allocation.active_spatial_layers.back(); |
| spatial_layer.width = encoder_config.spatialLayers[si].width; |
| spatial_layer.height = encoder_config.spatialLayers[si].height; |
| spatial_layer.rtp_stream_index = 0; |
| spatial_layer.spatial_id = si; |
| auto frame_rate_fraction = |
| VideoEncoder::EncoderInfo::kMaxFramerateFraction; |
| if (encoder_info.fps_allocation[si].size() == 1) { |
| // One TL is signalled to be used by the encoder. Do not distribute |
| // bitrate allocation across TLs (use sum at tl:0). |
| DataRate aggregated_temporal_bitrate = |
| DataRate::BitsPerSec(target_bitrate.GetSpatialLayerSum(si)); |
| aggregated_spatial_bitrate[0] += aggregated_temporal_bitrate; |
| if (higher_spatial_depend_on_lower) { |
| spatial_layer.target_bitrate_per_temporal_layer.push_back( |
| aggregated_spatial_bitrate[0]); |
| } else { |
| spatial_layer.target_bitrate_per_temporal_layer.push_back( |
| aggregated_temporal_bitrate); |
| } |
| frame_rate_fraction = encoder_info.fps_allocation[si][0]; |
| } else { // Temporal layers are supported. |
| DataRate aggregated_temporal_bitrate = DataRate::Zero(); |
| for (size_t ti = 0; |
| ti < encoder_config.spatialLayers[si].numberOfTemporalLayers; |
| ++ti) { |
| if (!target_bitrate.HasBitrate(si, ti)) { |
| break; |
| } |
| if (ti < encoder_info.fps_allocation[si].size()) { |
| // Use frame rate of the top used temporal layer. |
| frame_rate_fraction = encoder_info.fps_allocation[si][ti]; |
| } |
| aggregated_temporal_bitrate += |
| DataRate::BitsPerSec(target_bitrate.GetBitrate(si, ti)); |
| if (higher_spatial_depend_on_lower) { |
| spatial_layer.target_bitrate_per_temporal_layer.push_back( |
| aggregated_temporal_bitrate + aggregated_spatial_bitrate[ti]); |
| aggregated_spatial_bitrate[ti] += aggregated_temporal_bitrate; |
| } else { |
| spatial_layer.target_bitrate_per_temporal_layer.push_back( |
| aggregated_temporal_bitrate); |
| } |
| } |
| } |
| // Encoder may drop frames internally if `maxFramerate` is set. |
| spatial_layer.frame_rate_fps = std::min<uint8_t>( |
| encoder_config.spatialLayers[si].maxFramerate, |
| rtc::saturated_cast<uint8_t>( |
| (current_rate.framerate_fps * frame_rate_fraction) / |
| VideoEncoder::EncoderInfo::kMaxFramerateFraction)); |
| } |
| } |
| |
| return layers_allocation; |
| } |
| |
| VideoEncoder::EncoderInfo GetEncoderInfoWithBitrateLimitUpdate( |
| const VideoEncoder::EncoderInfo& info, |
| const VideoEncoderConfig& encoder_config, |
| bool default_limits_allowed) { |
| if (!default_limits_allowed || !info.resolution_bitrate_limits.empty() || |
| encoder_config.simulcast_layers.size() <= 1) { |
| return info; |
| } |
| // Bitrate limits are not configured and more than one layer is used, use |
| // the default limits (bitrate limits are not used for simulcast). |
| VideoEncoder::EncoderInfo new_info = info; |
| new_info.resolution_bitrate_limits = |
| EncoderInfoSettings::GetDefaultSinglecastBitrateLimits( |
| encoder_config.codec_type); |
| return new_info; |
| } |
| |
| int NumActiveStreams(const std::vector<VideoStream>& streams) { |
| int num_active = 0; |
| for (const auto& stream : streams) { |
| if (stream.active) |
| ++num_active; |
| } |
| return num_active; |
| } |
| |
| void ApplySpatialLayerBitrateLimits( |
| const VideoEncoder::EncoderInfo& encoder_info, |
| const VideoEncoderConfig& encoder_config, |
| VideoCodec* codec) { |
| if (!(GetNumSpatialLayers(*codec) > 0)) { |
| // ApplySpatialLayerBitrateLimits() supports VP9 and AV1 (the latter with |
| // scalability mode set) only. |
| return; |
| } |
| if (VideoStreamEncoderResourceManager::IsSimulcastOrMultipleSpatialLayers( |
| encoder_config, *codec) || |
| encoder_config.simulcast_layers.size() <= 1) { |
| // Resolution bitrate limits usage is restricted to singlecast. |
| return; |
| } |
| |
| // Get bitrate limits for active stream. |
| std::optional<uint32_t> pixels = |
| VideoStreamAdapter::GetSingleActiveLayerPixels(*codec); |
| if (!pixels.has_value()) { |
| return; |
| } |
| std::optional<VideoEncoder::ResolutionBitrateLimits> bitrate_limits = |
| encoder_info.GetEncoderBitrateLimitsForResolution(*pixels); |
| if (!bitrate_limits.has_value()) { |
| return; |
| } |
| // Index for the active stream. |
| std::optional<size_t> index; |
| for (size_t i = 0; i < encoder_config.simulcast_layers.size(); ++i) { |
| if (encoder_config.simulcast_layers[i].active) |
| index = i; |
| } |
| if (!index.has_value()) { |
| return; |
| } |
| int min_bitrate_bps; |
| if (encoder_config.simulcast_layers[*index].min_bitrate_bps <= 0) { |
| min_bitrate_bps = bitrate_limits->min_bitrate_bps; |
| } else { |
| min_bitrate_bps = encoder_config.simulcast_layers[*index].min_bitrate_bps; |
| } |
| int max_bitrate_bps; |
| if (encoder_config.simulcast_layers[*index].max_bitrate_bps <= 0) { |
| max_bitrate_bps = bitrate_limits->max_bitrate_bps; |
| } else { |
| max_bitrate_bps = |
| std::min(bitrate_limits->max_bitrate_bps, |
| encoder_config.simulcast_layers[*index].max_bitrate_bps); |
| } |
| if (min_bitrate_bps >= max_bitrate_bps) { |
| RTC_LOG(LS_WARNING) << "Bitrate limits not used, min_bitrate_bps " |
| << min_bitrate_bps << " >= max_bitrate_bps " |
| << max_bitrate_bps; |
| return; |
| } |
| |
| for (int i = 0; i < GetNumSpatialLayers(*codec); ++i) { |
| if (codec->spatialLayers[i].active) { |
| codec->spatialLayers[i].minBitrate = min_bitrate_bps / 1000; |
| codec->spatialLayers[i].maxBitrate = max_bitrate_bps / 1000; |
| codec->spatialLayers[i].targetBitrate = |
| std::min(codec->spatialLayers[i].targetBitrate, |
| codec->spatialLayers[i].maxBitrate); |
| break; |
| } |
| } |
| } |
| |
| void ApplyEncoderBitrateLimitsIfSingleActiveStream( |
| const VideoEncoder::EncoderInfo& encoder_info, |
| const std::vector<VideoStream>& encoder_config_layers, |
| std::vector<VideoStream>* streams) { |
| // Apply limits if simulcast with one active stream (expect lowest). |
| bool single_active_stream = |
| streams->size() > 1 && NumActiveStreams(*streams) == 1 && |
| !streams->front().active && NumActiveStreams(encoder_config_layers) == 1; |
| if (!single_active_stream) { |
| return; |
| } |
| |
| // Index for the active stream. |
| size_t index = 0; |
| for (size_t i = 0; i < encoder_config_layers.size(); ++i) { |
| if (encoder_config_layers[i].active) |
| index = i; |
| } |
| if (streams->size() < (index + 1) || !(*streams)[index].active) { |
| return; |
| } |
| |
| // Get bitrate limits for active stream. |
| std::optional<VideoEncoder::ResolutionBitrateLimits> encoder_bitrate_limits = |
| encoder_info.GetEncoderBitrateLimitsForResolution( |
| (*streams)[index].width * (*streams)[index].height); |
| if (!encoder_bitrate_limits) { |
| return; |
| } |
| |
| int min_bitrate_bps; |
| if (encoder_config_layers[index].min_bitrate_bps <= 0) { |
| min_bitrate_bps = encoder_bitrate_limits->min_bitrate_bps; |
| } else { |
| min_bitrate_bps = (*streams)[index].min_bitrate_bps; |
| } |
| int max_bitrate_bps; |
| if (encoder_config_layers[index].max_bitrate_bps <= 0) { |
| max_bitrate_bps = encoder_bitrate_limits->max_bitrate_bps; |
| } else { |
| max_bitrate_bps = std::min(encoder_bitrate_limits->max_bitrate_bps, |
| (*streams)[index].max_bitrate_bps); |
| } |
| if (min_bitrate_bps >= max_bitrate_bps) { |
| RTC_LOG(LS_WARNING) << "Encoder bitrate limits" |
| << " (min=" << encoder_bitrate_limits->min_bitrate_bps |
| << ", max=" << encoder_bitrate_limits->max_bitrate_bps |
| << ") do not intersect with stream limits" |
| << " (min=" << (*streams)[index].min_bitrate_bps |
| << ", max=" << (*streams)[index].max_bitrate_bps |
| << "). Encoder bitrate limits not used."; |
| return; |
| } |
| |
| (*streams)[index].min_bitrate_bps = min_bitrate_bps; |
| (*streams)[index].max_bitrate_bps = max_bitrate_bps; |
| (*streams)[index].target_bitrate_bps = |
| std::min((*streams)[index].target_bitrate_bps, |
| encoder_bitrate_limits->max_bitrate_bps); |
| } |
| |
| std::optional<int> ParseVp9LowTierCoreCountThreshold( |
| const FieldTrialsView& trials) { |
| FieldTrialFlag disable_low_tier("Disabled"); |
| FieldTrialParameter<int> max_core_count("max_core_count", 2); |
| ParseFieldTrial({&disable_low_tier, &max_core_count}, |
| trials.Lookup("WebRTC-VP9-LowTierOptimizations")); |
| if (disable_low_tier.Get()) { |
| return std::nullopt; |
| } |
| return max_core_count.Get(); |
| } |
| |
| std::optional<int> ParseEncoderThreadLimit(const FieldTrialsView& trials) { |
| FieldTrialOptional<int> encoder_thread_limit("encoder_thread_limit"); |
| ParseFieldTrial({&encoder_thread_limit}, |
| trials.Lookup("WebRTC-VideoEncoderSettings")); |
| return encoder_thread_limit.GetOptional(); |
| } |
| |
| } // namespace |
| |
| VideoStreamEncoder::EncoderRateSettings::EncoderRateSettings() |
| : rate_control(), |
| encoder_target(DataRate::Zero()), |
| stable_encoder_target(DataRate::Zero()) {} |
| |
| VideoStreamEncoder::EncoderRateSettings::EncoderRateSettings( |
| const VideoBitrateAllocation& bitrate, |
| double framerate_fps, |
| DataRate bandwidth_allocation, |
| DataRate encoder_target, |
| DataRate stable_encoder_target) |
| : rate_control(bitrate, framerate_fps, bandwidth_allocation), |
| encoder_target(encoder_target), |
| stable_encoder_target(stable_encoder_target) {} |
| |
| bool VideoStreamEncoder::EncoderRateSettings::operator==( |
| const EncoderRateSettings& rhs) const { |
| return rate_control == rhs.rate_control && |
| encoder_target == rhs.encoder_target && |
| stable_encoder_target == rhs.stable_encoder_target; |
| } |
| |
| bool VideoStreamEncoder::EncoderRateSettings::operator!=( |
| const EncoderRateSettings& rhs) const { |
| return !(*this == rhs); |
| } |
| |
| class VideoStreamEncoder::DegradationPreferenceManager |
| : public DegradationPreferenceProvider { |
| public: |
| explicit DegradationPreferenceManager( |
| VideoStreamAdapter* video_stream_adapter) |
| : degradation_preference_(DegradationPreference::DISABLED), |
| is_screenshare_(false), |
| effective_degradation_preference_(DegradationPreference::DISABLED), |
| video_stream_adapter_(video_stream_adapter) { |
| RTC_DCHECK(video_stream_adapter_); |
| sequence_checker_.Detach(); |
| } |
| |
| ~DegradationPreferenceManager() override = default; |
| |
| DegradationPreference degradation_preference() const override { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| return effective_degradation_preference_; |
| } |
| |
| void SetDegradationPreference(DegradationPreference degradation_preference) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| degradation_preference_ = degradation_preference; |
| MaybeUpdateEffectiveDegradationPreference(); |
| } |
| |
| void SetIsScreenshare(bool is_screenshare) { |
| RTC_DCHECK_RUN_ON(&sequence_checker_); |
| is_screenshare_ = is_screenshare; |
| MaybeUpdateEffectiveDegradationPreference(); |
| } |
| |
| private: |
| void MaybeUpdateEffectiveDegradationPreference() |
| RTC_RUN_ON(&sequence_checker_) { |
| DegradationPreference effective_degradation_preference = |
| (is_screenshare_ && |
| degradation_preference_ == DegradationPreference::BALANCED) |
| ? DegradationPreference::MAINTAIN_RESOLUTION |
| : degradation_preference_; |
| |
| if (effective_degradation_preference != effective_degradation_preference_) { |
| effective_degradation_preference_ = effective_degradation_preference; |
| video_stream_adapter_->SetDegradationPreference( |
| effective_degradation_preference); |
| } |
| } |
| |
| RTC_NO_UNIQUE_ADDRESS SequenceChecker sequence_checker_; |
| DegradationPreference degradation_preference_ |
| RTC_GUARDED_BY(&sequence_checker_); |
| bool is_screenshare_ RTC_GUARDED_BY(&sequence_checker_); |
| DegradationPreference effective_degradation_preference_ |
| RTC_GUARDED_BY(&sequence_checker_); |
| VideoStreamAdapter* video_stream_adapter_ RTC_GUARDED_BY(&sequence_checker_); |
| }; |
| |
| VideoStreamEncoder::VideoStreamEncoder( |
| const Environment& env, |
| uint32_t number_of_cores, |
| VideoStreamEncoderObserver* encoder_stats_observer, |
| const VideoStreamEncoderSettings& settings, |
| std::unique_ptr<OveruseFrameDetector> overuse_detector, |
| std::unique_ptr<FrameCadenceAdapterInterface> frame_cadence_adapter, |
| std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter> |
| encoder_queue, |
| BitrateAllocationCallbackType allocation_cb_type, |
| webrtc::VideoEncoderFactory::EncoderSelectorInterface* encoder_selector) |
| : env_(env), |
| worker_queue_(TaskQueueBase::Current()), |
| number_of_cores_(number_of_cores), |
| settings_(settings), |
| allocation_cb_type_(allocation_cb_type), |
| rate_control_settings_(env_.field_trials()), |
| encoder_selector_from_constructor_(encoder_selector), |
| encoder_selector_from_factory_( |
| encoder_selector_from_constructor_ |
| ? nullptr |
| : settings.encoder_factory->GetEncoderSelector()), |
| encoder_selector_(encoder_selector_from_constructor_ |
| ? encoder_selector_from_constructor_ |
| : encoder_selector_from_factory_.get()), |
| encoder_stats_observer_(encoder_stats_observer), |
| frame_cadence_adapter_(std::move(frame_cadence_adapter)), |
| delta_ntp_internal_ms_(env_.clock().CurrentNtpInMilliseconds() - |
| env_.clock().TimeInMilliseconds()), |
| last_frame_log_ms_(env_.clock().TimeInMilliseconds()), |
| next_frame_types_(1, VideoFrameType::kVideoFrameDelta), |
| input_state_provider_(encoder_stats_observer), |
| video_stream_adapter_( |
| std::make_unique<VideoStreamAdapter>(&input_state_provider_, |
| encoder_stats_observer, |
| env_.field_trials())), |
| degradation_preference_manager_( |
| std::make_unique<DegradationPreferenceManager>( |
| video_stream_adapter_.get())), |
| stream_resource_manager_(&input_state_provider_, |
| encoder_stats_observer, |
| &env_.clock(), |
| settings_.experiment_cpu_load_estimator, |
| std::move(overuse_detector), |
| degradation_preference_manager_.get(), |
| env_.field_trials()), |
| video_source_sink_controller_(/*sink=*/frame_cadence_adapter_.get(), |
| /*source=*/nullptr), |
| default_limits_allowed_(!env_.field_trials().IsEnabled( |
| "WebRTC-DefaultBitrateLimitsKillSwitch")), |
| qp_parsing_allowed_( |
| !env_.field_trials().IsEnabled("WebRTC-QpParsingKillSwitch")), |
| switch_encoder_on_init_failures_(!env_.field_trials().IsDisabled( |
| kSwitchEncoderOnInitializationFailuresFieldTrial)), |
| vp9_low_tier_core_threshold_( |
| ParseVp9LowTierCoreCountThreshold(env_.field_trials())), |
| experimental_encoder_thread_limit_( |
| ParseEncoderThreadLimit(env_.field_trials())), |
| encoder_queue_(std::move(encoder_queue)) { |
| TRACE_EVENT0("webrtc", "VideoStreamEncoder::VideoStreamEncoder"); |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| RTC_DCHECK(encoder_stats_observer); |
| RTC_DCHECK_GE(number_of_cores, 1); |
| |
| frame_cadence_adapter_->Initialize(&cadence_callback_); |
| stream_resource_manager_.Initialize(encoder_queue_.get()); |
| |
| encoder_queue_->PostTask([this] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| |
| resource_adaptation_processor_ = |
| std::make_unique<ResourceAdaptationProcessor>( |
| video_stream_adapter_.get()); |
| |
| stream_resource_manager_.SetAdaptationProcessor( |
| resource_adaptation_processor_.get(), video_stream_adapter_.get()); |
| resource_adaptation_processor_->AddResourceLimitationsListener( |
| &stream_resource_manager_); |
| video_stream_adapter_->AddRestrictionsListener(&stream_resource_manager_); |
| video_stream_adapter_->AddRestrictionsListener(this); |
| stream_resource_manager_.MaybeInitializePixelLimitResource(); |
| |
| // Add the stream resource manager's resources to the processor. |
| adaptation_constraints_ = stream_resource_manager_.AdaptationConstraints(); |
| for (auto* constraint : adaptation_constraints_) { |
| video_stream_adapter_->AddAdaptationConstraint(constraint); |
| } |
| }); |
| } |
| |
| VideoStreamEncoder::~VideoStreamEncoder() { |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| RTC_DCHECK(!video_source_sink_controller_.HasSource()) |
| << "Must call ::Stop() before destruction."; |
| |
| // The queue must be destroyed before its pointer is invalidated to avoid race |
| // between destructor and running task that check if function is called on the |
| // encoder_queue_. |
| // std::unique_ptr destructor does the same two operations in reverse order as |
| // it doesn't expect member would be used after its destruction has started. |
| encoder_queue_.get_deleter()(encoder_queue_.get()); |
| encoder_queue_.release(); |
| } |
| |
| void VideoStreamEncoder::Stop() { |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| video_source_sink_controller_.SetSource(nullptr); |
| |
| rtc::Event shutdown_event; |
| absl::Cleanup shutdown = [&shutdown_event] { shutdown_event.Set(); }; |
| encoder_queue_->PostTask([this, shutdown = std::move(shutdown)] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| if (resource_adaptation_processor_) { |
| // We're no longer interested in restriction updates, which may get |
| // triggered as part of removing resources. |
| video_stream_adapter_->RemoveRestrictionsListener(this); |
| video_stream_adapter_->RemoveRestrictionsListener( |
| &stream_resource_manager_); |
| resource_adaptation_processor_->RemoveResourceLimitationsListener( |
| &stream_resource_manager_); |
| // Stop and remove resources and delete adaptation processor. |
| stream_resource_manager_.StopManagedResources(); |
| for (auto* constraint : adaptation_constraints_) { |
| video_stream_adapter_->RemoveAdaptationConstraint(constraint); |
| } |
| for (auto& resource : additional_resources_) { |
| stream_resource_manager_.RemoveResource(resource); |
| } |
| additional_resources_.clear(); |
| stream_resource_manager_.SetAdaptationProcessor(nullptr, nullptr); |
| resource_adaptation_processor_.reset(); |
| } |
| rate_allocator_ = nullptr; |
| ReleaseEncoder(); |
| encoder_ = nullptr; |
| frame_cadence_adapter_ = nullptr; |
| frame_instrumentation_generator_ = nullptr; |
| }); |
| shutdown_event.Wait(rtc::Event::kForever); |
| } |
| |
| void VideoStreamEncoder::SetFecControllerOverride( |
| FecControllerOverride* fec_controller_override) { |
| encoder_queue_->PostTask([this, fec_controller_override] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| RTC_DCHECK(!fec_controller_override_); |
| fec_controller_override_ = fec_controller_override; |
| if (encoder_) { |
| encoder_->SetFecControllerOverride(fec_controller_override_); |
| } |
| }); |
| } |
| |
| void VideoStreamEncoder::AddAdaptationResource( |
| rtc::scoped_refptr<Resource> resource) { |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| TRACE_EVENT0("webrtc", "VideoStreamEncoder::AddAdaptationResource"); |
| // Map any externally added resources as kCpu for the sake of stats reporting. |
| // TODO(hbos): Make the manager map any unknown resources to kCpu and get rid |
| // of this MapResourceToReason() call. |
| TRACE_EVENT_ASYNC_BEGIN0( |
| "webrtc", "VideoStreamEncoder::AddAdaptationResource(latency)", this); |
| encoder_queue_->PostTask([this, resource = std::move(resource)] { |
| TRACE_EVENT_ASYNC_END0( |
| "webrtc", "VideoStreamEncoder::AddAdaptationResource(latency)", this); |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| additional_resources_.push_back(resource); |
| stream_resource_manager_.AddResource(resource, VideoAdaptationReason::kCpu); |
| }); |
| } |
| |
| std::vector<rtc::scoped_refptr<Resource>> |
| VideoStreamEncoder::GetAdaptationResources() { |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| // In practice, this method is only called by tests to verify operations that |
| // run on the encoder queue. So rather than force PostTask() operations to |
| // be accompanied by an event and a `Wait()`, we'll use PostTask + Wait() |
| // here. |
| rtc::Event event; |
| std::vector<rtc::scoped_refptr<Resource>> resources; |
| encoder_queue_->PostTask([&] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| resources = resource_adaptation_processor_->GetResources(); |
| event.Set(); |
| }); |
| event.Wait(rtc::Event::kForever); |
| return resources; |
| } |
| |
| void VideoStreamEncoder::SetSource( |
| rtc::VideoSourceInterface<VideoFrame>* source, |
| const DegradationPreference& degradation_preference) { |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| video_source_sink_controller_.SetSource(source); |
| input_state_provider_.OnHasInputChanged(source); |
| |
| // This may trigger reconfiguring the QualityScaler on the encoder queue. |
| encoder_queue_->PostTask([this, degradation_preference] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| degradation_preference_manager_->SetDegradationPreference( |
| degradation_preference); |
| stream_resource_manager_.SetDegradationPreferences(degradation_preference); |
| if (encoder_) { |
| stream_resource_manager_.ConfigureQualityScaler( |
| encoder_->GetEncoderInfo()); |
| stream_resource_manager_.ConfigureBandwidthQualityScaler( |
| encoder_->GetEncoderInfo()); |
| } |
| }); |
| } |
| |
| void VideoStreamEncoder::SetSink(EncoderSink* sink, bool rotation_applied) { |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| video_source_sink_controller_.SetRotationApplied(rotation_applied); |
| video_source_sink_controller_.PushSourceSinkSettings(); |
| |
| encoder_queue_->PostTask([this, sink] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| sink_ = sink; |
| }); |
| } |
| |
| void VideoStreamEncoder::SetStartBitrate(int start_bitrate_bps) { |
| encoder_queue_->PostTask([this, start_bitrate_bps] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| RTC_LOG(LS_INFO) << "SetStartBitrate " << start_bitrate_bps; |
| encoder_target_bitrate_bps_ = |
| start_bitrate_bps != 0 ? std::optional<uint32_t>(start_bitrate_bps) |
| : std::nullopt; |
| stream_resource_manager_.SetStartBitrate( |
| DataRate::BitsPerSec(start_bitrate_bps)); |
| }); |
| } |
| |
| void VideoStreamEncoder::ConfigureEncoder(VideoEncoderConfig config, |
| size_t max_data_payload_length) { |
| ConfigureEncoder(std::move(config), max_data_payload_length, nullptr); |
| } |
| |
| void VideoStreamEncoder::ConfigureEncoder(VideoEncoderConfig config, |
| size_t max_data_payload_length, |
| SetParametersCallback callback) { |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| |
| // Inform source about max configured framerate, |
| // requested_resolution and which layers are active. |
| int max_framerate = -1; |
| // Is any layer active. |
| bool active = false; |
| // The max requested_resolution. |
| std::optional<rtc::VideoSinkWants::FrameSize> requested_resolution; |
| for (const auto& stream : config.simulcast_layers) { |
| active |= stream.active; |
| if (stream.active) { |
| max_framerate = std::max(stream.max_framerate, max_framerate); |
| } |
| // Note: we propagate the highest requested_resolution regardless |
| // if layer is active or not. |
| if (stream.requested_resolution) { |
| if (!requested_resolution) { |
| requested_resolution.emplace(stream.requested_resolution->width, |
| stream.requested_resolution->height); |
| } else { |
| requested_resolution.emplace( |
| std::max(stream.requested_resolution->width, |
| requested_resolution->width), |
| std::max(stream.requested_resolution->height, |
| requested_resolution->height)); |
| } |
| } |
| } |
| if (requested_resolution != |
| video_source_sink_controller_.requested_resolution() || |
| active != video_source_sink_controller_.active() || |
| max_framerate != |
| video_source_sink_controller_.frame_rate_upper_limit().value_or(-1)) { |
| video_source_sink_controller_.SetRequestedResolution(requested_resolution); |
| if (max_framerate >= 0) { |
| video_source_sink_controller_.SetFrameRateUpperLimit(max_framerate); |
| } else { |
| video_source_sink_controller_.SetFrameRateUpperLimit(std::nullopt); |
| } |
| video_source_sink_controller_.SetActive(active); |
| video_source_sink_controller_.PushSourceSinkSettings(); |
| } |
| |
| encoder_queue_->PostTask([this, config = std::move(config), |
| max_data_payload_length, |
| callback = std::move(callback)]() mutable { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| RTC_DCHECK(sink_); |
| RTC_LOG(LS_INFO) << "ConfigureEncoder requested."; |
| |
| // Set up the frame cadence adapter according to if we're going to do |
| // screencast. The final number of spatial layers is based on info |
| // in `send_codec_`, which is computed based on incoming frame |
| // dimensions which can only be determined later. |
| // |
| // Note: zero-hertz mode isn't enabled by this alone. Constraints also |
| // have to be set up with min_fps = 0 and max_fps > 0. |
| if (config.content_type == VideoEncoderConfig::ContentType::kScreen) { |
| frame_cadence_adapter_->SetZeroHertzModeEnabled( |
| FrameCadenceAdapterInterface::ZeroHertzModeParams{}); |
| } else { |
| frame_cadence_adapter_->SetZeroHertzModeEnabled(std::nullopt); |
| } |
| |
| pending_encoder_creation_ = |
| (!encoder_ || encoder_config_.video_format != config.video_format || |
| max_data_payload_length_ != max_data_payload_length); |
| encoder_config_ = std::move(config); |
| max_data_payload_length_ = max_data_payload_length; |
| pending_encoder_reconfiguration_ = true; |
| |
| if (settings_.enable_frame_instrumentation_generator) { |
| frame_instrumentation_generator_ = |
| std::make_unique<FrameInstrumentationGenerator>( |
| encoder_config_.codec_type); |
| } |
| |
| // Reconfigure the encoder now if the frame resolution is known. |
| // Otherwise, the reconfiguration is deferred until the next frame to |
| // minimize the number of reconfigurations. The codec configuration |
| // depends on incoming video frame size. |
| if (last_frame_info_) { |
| if (callback) { |
| encoder_configuration_callbacks_.push_back(std::move(callback)); |
| } |
| |
| ReconfigureEncoder(); |
| } else { |
| webrtc::InvokeSetParametersCallback(callback, webrtc::RTCError::OK()); |
| } |
| }); |
| } |
| |
| // We should reduce the number of 'full' ReconfigureEncoder(). If only need |
| // subset of it at runtime, consider handle it in |
| // VideoStreamEncoder::EncodeVideoFrame() when encoder_info_ != info. |
| void VideoStreamEncoder::ReconfigureEncoder() { |
| // Running on the encoder queue. |
| RTC_DCHECK(pending_encoder_reconfiguration_); |
| RTC_LOG(LS_INFO) << "[VSE] " << __func__ |
| << " [encoder_config=" << encoder_config_.ToString() << "]"; |
| |
| bool encoder_reset_required = false; |
| if (pending_encoder_creation_) { |
| // Destroy existing encoder instance before creating a new one. Otherwise |
| // attempt to create another instance will fail if encoder factory |
| // supports only single instance of encoder of given type. |
| encoder_.reset(); |
| |
| encoder_ = MaybeCreateFrameDumpingEncoderWrapper( |
| settings_.encoder_factory->Create(env_, encoder_config_.video_format), |
| env_.field_trials()); |
| if (!encoder_) { |
| RTC_LOG(LS_ERROR) << "CreateVideoEncoder failed, failing encoder format: " |
| << encoder_config_.video_format.ToString(); |
| RequestEncoderSwitch(); |
| return; |
| } |
| |
| if (encoder_selector_) { |
| encoder_selector_->OnCurrentEncoder(encoder_config_.video_format); |
| } |
| |
| encoder_->SetFecControllerOverride(fec_controller_override_); |
| |
| encoder_reset_required = true; |
| } |
| |
| // TODO(webrtc:14451) : Move AlignmentAdjuster into EncoderStreamFactory |
| // Possibly adjusts scale_resolution_down_by in `encoder_config_` to limit the |
| // alignment value. |
| AlignmentAdjuster::GetAlignmentAndMaybeAdjustScaleFactors( |
| encoder_->GetEncoderInfo(), &encoder_config_, std::nullopt); |
| |
| std::vector<VideoStream> streams; |
| if (encoder_config_.video_stream_factory) { |
| // Note: only tests set their own EncoderStreamFactory... |
| streams = encoder_config_.video_stream_factory->CreateEncoderStreams( |
| env_.field_trials(), last_frame_info_->width, last_frame_info_->height, |
| encoder_config_); |
| } else { |
| auto factory = rtc::make_ref_counted<cricket::EncoderStreamFactory>( |
| encoder_->GetEncoderInfo(), latest_restrictions_); |
| |
| streams = factory->CreateEncoderStreams( |
| env_.field_trials(), last_frame_info_->width, last_frame_info_->height, |
| encoder_config_); |
| } |
| |
| // TODO(webrtc:14451) : Move AlignmentAdjuster into EncoderStreamFactory |
| // Get alignment when actual number of layers are known. |
| int alignment = AlignmentAdjuster::GetAlignmentAndMaybeAdjustScaleFactors( |
| encoder_->GetEncoderInfo(), &encoder_config_, streams.size()); |
| |
| // Check that the higher layers do not try to set number of temporal layers |
| // to less than 1. |
| // TODO(brandtr): Get rid of the wrapping optional as it serves no purpose |
| // at this layer. |
| #if RTC_DCHECK_IS_ON |
| for (const auto& stream : streams) { |
| RTC_DCHECK_GE(stream.num_temporal_layers.value_or(1), 1); |
| } |
| #endif |
| |
| // TODO(ilnik): If configured resolution is significantly less than provided, |
| // e.g. because there are not enough SSRCs for all simulcast streams, |
| // signal new resolutions via SinkWants to video source. |
| |
| // Stream dimensions may be not equal to given because of a simulcast |
| // restrictions. |
| auto highest_stream = absl::c_max_element( |
| streams, [](const webrtc::VideoStream& a, const webrtc::VideoStream& b) { |
| return std::tie(a.width, a.height) < std::tie(b.width, b.height); |
| }); |
| int highest_stream_width = static_cast<int>(highest_stream->width); |
| int highest_stream_height = static_cast<int>(highest_stream->height); |
| // Dimension may be reduced to be, e.g. divisible by 4. |
| RTC_CHECK_GE(last_frame_info_->width, highest_stream_width); |
| RTC_CHECK_GE(last_frame_info_->height, highest_stream_height); |
| crop_width_ = last_frame_info_->width - highest_stream_width; |
| crop_height_ = last_frame_info_->height - highest_stream_height; |
| |
| if (!encoder_->GetEncoderInfo().is_qp_trusted.value_or(true)) { |
| // when qp is not trusted, we priorities to using the |
| // |resolution_bitrate_limits| provided by the decoder. |
| const std::vector<VideoEncoder::ResolutionBitrateLimits>& bitrate_limits = |
| encoder_->GetEncoderInfo().resolution_bitrate_limits.empty() |
| ? EncoderInfoSettings:: |
| GetDefaultSinglecastBitrateLimitsWhenQpIsUntrusted() |
| : encoder_->GetEncoderInfo().resolution_bitrate_limits; |
| |
| // For BandwidthQualityScaler, its implement based on a certain pixel_count |
| // correspond a certain bps interval. In fact, WebRTC default max_bps is |
| // 2500Kbps when width * height > 960 * 540. For example, we assume: |
| // 1.the camera support 1080p. |
| // 2.ResolutionBitrateLimits set 720p bps interval is [1500Kbps,2000Kbps]. |
| // 3.ResolutionBitrateLimits set 1080p bps interval is [2000Kbps,2500Kbps]. |
| // We will never be stable at 720p due to actual encoding bps of 720p and |
| // 1080p are both 2500Kbps. So it is necessary to do a linear interpolation |
| // to get a certain bitrate for certain pixel_count. It also doesn't work |
| // for 960*540 and 640*520, we will nerver be stable at 640*520 due to their |
| // |target_bitrate_bps| are both 2000Kbps. |
| std::optional<VideoEncoder::ResolutionBitrateLimits> |
| qp_untrusted_bitrate_limit = EncoderInfoSettings:: |
| GetSinglecastBitrateLimitForResolutionWhenQpIsUntrusted( |
| last_frame_info_->width * last_frame_info_->height, |
| bitrate_limits); |
| |
| if (qp_untrusted_bitrate_limit) { |
| // bandwidth_quality_scaler is only used for singlecast. |
| if (streams.size() == 1 && encoder_config_.simulcast_layers.size() == 1) { |
| VideoStream& stream = streams.back(); |
| stream.max_bitrate_bps = |
| std::min(stream.max_bitrate_bps, |
| qp_untrusted_bitrate_limit->max_bitrate_bps); |
| stream.min_bitrate_bps = |
| std::min(stream.max_bitrate_bps, |
| qp_untrusted_bitrate_limit->min_bitrate_bps); |
| // If it is screen share mode, the minimum value of max_bitrate should |
| // be greater than/equal to 1200kbps. |
| if (encoder_config_.content_type == |
| VideoEncoderConfig::ContentType::kScreen) { |
| stream.max_bitrate_bps = |
| std::max(stream.max_bitrate_bps, kDefaultMinScreenSharebps); |
| } |
| stream.target_bitrate_bps = stream.max_bitrate_bps; |
| } |
| } |
| } else { |
| std::optional<VideoEncoder::ResolutionBitrateLimits> |
| encoder_bitrate_limits = |
| encoder_->GetEncoderInfo().GetEncoderBitrateLimitsForResolution( |
| last_frame_info_->width * last_frame_info_->height); |
| |
| if (encoder_bitrate_limits) { |
| if (streams.size() == 1 && encoder_config_.simulcast_layers.size() == 1) { |
| // Bitrate limits can be set by app (in SDP or RtpEncodingParameters) |
| // or/and can be provided by encoder. In presence of both set of |
| // limits, the final set is derived as their intersection. |
| int min_bitrate_bps; |
| if (encoder_config_.simulcast_layers[0].min_bitrate_bps <= 0) { |
| min_bitrate_bps = encoder_bitrate_limits->min_bitrate_bps; |
| } else { |
| min_bitrate_bps = std::max(encoder_bitrate_limits->min_bitrate_bps, |
| streams.back().min_bitrate_bps); |
| } |
| |
| int max_bitrate_bps; |
| // The API max bitrate comes from both `encoder_config_.max_bitrate_bps` |
| // and `encoder_config_.simulcast_layers[0].max_bitrate_bps`. |
| std::optional<int> api_max_bitrate_bps; |
| if (encoder_config_.simulcast_layers[0].max_bitrate_bps > 0) { |
| api_max_bitrate_bps = |
| encoder_config_.simulcast_layers[0].max_bitrate_bps; |
| } |
| if (encoder_config_.max_bitrate_bps > 0) { |
| api_max_bitrate_bps = api_max_bitrate_bps.has_value() |
| ? std::min(encoder_config_.max_bitrate_bps, |
| *api_max_bitrate_bps) |
| : encoder_config_.max_bitrate_bps; |
| } |
| if (!api_max_bitrate_bps.has_value()) { |
| max_bitrate_bps = encoder_bitrate_limits->max_bitrate_bps; |
| } else { |
| max_bitrate_bps = std::min(encoder_bitrate_limits->max_bitrate_bps, |
| streams.back().max_bitrate_bps); |
| } |
| |
| if (min_bitrate_bps < max_bitrate_bps) { |
| streams.back().min_bitrate_bps = min_bitrate_bps; |
| streams.back().max_bitrate_bps = max_bitrate_bps; |
| streams.back().target_bitrate_bps = |
| std::min(streams.back().target_bitrate_bps, |
| encoder_bitrate_limits->max_bitrate_bps); |
| } else { |
| RTC_LOG(LS_WARNING) |
| << "Bitrate limits provided by encoder" |
| << " (min=" << encoder_bitrate_limits->min_bitrate_bps |
| << ", max=" << encoder_bitrate_limits->max_bitrate_bps |
| << ") do not intersect with limits set by app" |
| << " (min=" << streams.back().min_bitrate_bps |
| << ", max=" << api_max_bitrate_bps.value_or(-1) |
| << "). The app bitrate limits will be used."; |
| } |
| } |
| } |
| } |
| |
| ApplyEncoderBitrateLimitsIfSingleActiveStream( |
| GetEncoderInfoWithBitrateLimitUpdate( |
| encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_), |
| encoder_config_.simulcast_layers, &streams); |
| |
| VideoCodec codec = VideoCodecInitializer::SetupCodec( |
| env_.field_trials(), encoder_config_, streams); |
| |
| if (encoder_config_.codec_type == kVideoCodecVP9 || |
| encoder_config_.codec_type == kVideoCodecAV1) { |
| // Spatial layers configuration might impose some parity restrictions, |
| // thus some cropping might be needed. |
| RTC_CHECK_GE(last_frame_info_->width, codec.width); |
| RTC_CHECK_GE(last_frame_info_->height, codec.height); |
| crop_width_ = last_frame_info_->width - codec.width; |
| crop_height_ = last_frame_info_->height - codec.height; |
| ApplySpatialLayerBitrateLimits( |
| GetEncoderInfoWithBitrateLimitUpdate(encoder_->GetEncoderInfo(), |
| encoder_config_, |
| default_limits_allowed_), |
| encoder_config_, &codec); |
| } |
| |
| char log_stream_buf[4 * 1024]; |
| rtc::SimpleStringBuilder log_stream(log_stream_buf); |
| log_stream << "ReconfigureEncoder: simulcast streams: "; |
| for (size_t i = 0; i < codec.numberOfSimulcastStreams; ++i) { |
| std::optional<ScalabilityMode> scalability_mode = |
| codec.simulcastStream[i].GetScalabilityMode(); |
| if (scalability_mode) { |
| log_stream << "{" << i << ": " << codec.simulcastStream[i].width << "x" |
| << codec.simulcastStream[i].height << " " |
| << ScalabilityModeToString(*scalability_mode) |
| << ", min_kbps: " << codec.simulcastStream[i].minBitrate |
| << ", target_kbps: " << codec.simulcastStream[i].targetBitrate |
| << ", max_kbps: " << codec.simulcastStream[i].maxBitrate |
| << ", max_fps: " << codec.simulcastStream[i].maxFramerate |
| << ", max_qp: " << codec.simulcastStream[i].qpMax |
| << ", num_tl: " |
| << codec.simulcastStream[i].numberOfTemporalLayers |
| << ", active: " |
| << (codec.simulcastStream[i].active ? "true" : "false") << "}"; |
| } |
| } |
| if (encoder_config_.codec_type == kVideoCodecVP9 || |
| encoder_config_.codec_type == kVideoCodecAV1) { |
| log_stream << ", spatial layers: "; |
| for (int i = 0; i < GetNumSpatialLayers(codec); ++i) { |
| log_stream << "{" << i << ": " << codec.spatialLayers[i].width << "x" |
| << codec.spatialLayers[i].height |
| << ", min_kbps: " << codec.spatialLayers[i].minBitrate |
| << ", target_kbps: " << codec.spatialLayers[i].targetBitrate |
| << ", max_kbps: " << codec.spatialLayers[i].maxBitrate |
| << ", max_fps: " << codec.spatialLayers[i].maxFramerate |
| << ", max_qp: " << codec.spatialLayers[i].qpMax << ", num_tl: " |
| << codec.spatialLayers[i].numberOfTemporalLayers |
| << ", active: " |
| << (codec.spatialLayers[i].active ? "true" : "false") << "}"; |
| } |
| } |
| RTC_LOG(LS_INFO) << "[VSE] " << log_stream.str(); |
| |
| codec.startBitrate = std::max(encoder_target_bitrate_bps_.value_or(0) / 1000, |
| codec.minBitrate); |
| codec.startBitrate = std::min(codec.startBitrate, codec.maxBitrate); |
| codec.expect_encode_from_texture = last_frame_info_->is_texture; |
| // Make sure the start bit rate is sane... |
| RTC_DCHECK_LE(codec.startBitrate, 1000000); |
| max_framerate_ = codec.maxFramerate; |
| |
| // The resolutions that we're actually encoding with. |
| std::vector<rtc::VideoSinkWants::FrameSize> encoder_resolutions; |
| // TODO(hbos): For the case of SVC, also make use of `codec.spatialLayers`. |
| // For now, SVC layers are handled by the VP9 encoder. |
| for (const auto& simulcastStream : codec.simulcastStream) { |
| if (!simulcastStream.active) |
| continue; |
| encoder_resolutions.emplace_back(simulcastStream.width, |
| simulcastStream.height); |
| } |
| |
| worker_queue_->PostTask(SafeTask( |
| task_safety_.flag(), |
| [this, alignment, |
| encoder_resolutions = std::move(encoder_resolutions)]() { |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| if (alignment != video_source_sink_controller_.resolution_alignment() || |
| encoder_resolutions != |
| video_source_sink_controller_.resolutions()) { |
| video_source_sink_controller_.SetResolutionAlignment(alignment); |
| video_source_sink_controller_.SetResolutions( |
| std::move(encoder_resolutions)); |
| video_source_sink_controller_.PushSourceSinkSettings(); |
| } |
| })); |
| |
| rate_allocator_ = settings_.bitrate_allocator_factory->Create(env_, codec); |
| rate_allocator_->SetLegacyConferenceMode( |
| encoder_config_.legacy_conference_mode); |
| |
| // Reset (release existing encoder) if one exists and anything except |
| // start bitrate or max framerate has changed. |
| if (!encoder_reset_required) { |
| encoder_reset_required = RequiresEncoderReset( |
| send_codec_, codec, was_encode_called_since_last_initialization_); |
| } |
| |
| if (codec.codecType == VideoCodecType::kVideoCodecVP9 && |
| number_of_cores_ <= vp9_low_tier_core_threshold_.value_or(0)) { |
| codec.SetVideoEncoderComplexity(VideoCodecComplexity::kComplexityLow); |
| } |
| |
| quality_convergence_controller_.Initialize( |
| codec.numberOfSimulcastStreams, encoder_->GetEncoderInfo().min_qp, |
| codec.codecType, env_.field_trials()); |
| |
| send_codec_ = codec; |
| |
| // Keep the same encoder, as long as the video_format is unchanged. |
| // Encoder creation block is split in two since EncoderInfo needed to start |
| // CPU adaptation with the correct settings should be polled after |
| // encoder_->InitEncode(). |
| if (encoder_reset_required) { |
| ReleaseEncoder(); |
| const size_t max_data_payload_length = max_data_payload_length_ > 0 |
| ? max_data_payload_length_ |
| : kDefaultPayloadSize; |
| VideoEncoder::Settings settings = VideoEncoder::Settings( |
| settings_.capabilities, number_of_cores_, max_data_payload_length); |
| settings.encoder_thread_limit = experimental_encoder_thread_limit_; |
| int error = encoder_->InitEncode(&send_codec_, settings); |
| if (error != 0) { |
| RTC_LOG(LS_ERROR) << "Failed to initialize the encoder associated with " |
| "codec type: " |
| << CodecTypeToPayloadString(send_codec_.codecType) |
| << " (" << send_codec_.codecType |
| << "). Error: " << error; |
| ReleaseEncoder(); |
| } else { |
| encoder_initialized_ = true; |
| encoder_->RegisterEncodeCompleteCallback(this); |
| frame_encode_metadata_writer_.OnEncoderInit(send_codec_); |
| next_frame_types_.clear(); |
| next_frame_types_.resize( |
| std::max(static_cast<int>(codec.numberOfSimulcastStreams), 1), |
| VideoFrameType::kVideoFrameKey); |
| } |
| |
| frame_encode_metadata_writer_.Reset(); |
| last_encode_info_ms_ = std::nullopt; |
| was_encode_called_since_last_initialization_ = false; |
| } |
| |
| // Inform dependents of updated encoder settings. |
| OnEncoderSettingsChanged(); |
| |
| if (encoder_initialized_) { |
| RTC_LOG(LS_VERBOSE) << " max bitrate " << codec.maxBitrate |
| << " start bitrate " << codec.startBitrate |
| << " max frame rate " << codec.maxFramerate |
| << " max payload size " << max_data_payload_length_; |
| } else { |
| RTC_LOG(LS_ERROR) << "[VSE] Failed to configure encoder."; |
| rate_allocator_ = nullptr; |
| } |
| |
| if (pending_encoder_creation_) { |
| stream_resource_manager_.ConfigureEncodeUsageResource(); |
| pending_encoder_creation_ = false; |
| } |
| |
| int num_layers; |
| if (codec.codecType == kVideoCodecVP8) { |
| num_layers = codec.VP8()->numberOfTemporalLayers; |
| } else if (codec.codecType == kVideoCodecVP9) { |
| num_layers = codec.VP9()->numberOfTemporalLayers; |
| } else if (codec.codecType == kVideoCodecAV1 && |
| codec.GetScalabilityMode().has_value()) { |
| num_layers = |
| ScalabilityModeToNumTemporalLayers(*(codec.GetScalabilityMode())); |
| } else if (codec.codecType == kVideoCodecH264) { |
| num_layers = codec.H264()->numberOfTemporalLayers; |
| } else if (codec.codecType == kVideoCodecGeneric && |
| codec.numberOfSimulcastStreams > 0) { |
| // This is mainly for unit testing, disabling frame dropping. |
| // TODO(sprang): Add a better way to disable frame dropping. |
| num_layers = codec.simulcastStream[0].numberOfTemporalLayers; |
| } else { |
| // TODO(bugs.webrtc.org/13485): Implement H265 temporal layer |
| num_layers = 1; |
| } |
| |
| frame_dropper_.Reset(); |
| frame_dropper_.SetRates(codec.startBitrate, max_framerate_); |
| // Force-disable frame dropper if either: |
| // * We have screensharing with layers. |
| // * "WebRTC-FrameDropper" field trial is "Disabled". |
| force_disable_frame_dropper_ = |
| env_.field_trials().IsDisabled(kFrameDropperFieldTrial) || |
| (num_layers > 1 && codec.mode == VideoCodecMode::kScreensharing); |
| |
| const VideoEncoder::EncoderInfo info = encoder_->GetEncoderInfo(); |
| if (rate_control_settings_.UseEncoderBitrateAdjuster()) { |
| bitrate_adjuster_ = std::make_unique<EncoderBitrateAdjuster>( |
| codec, env_.field_trials(), env_.clock()); |
| bitrate_adjuster_->OnEncoderInfo(info); |
| } |
| |
| if (rate_allocator_ && last_encoder_rate_settings_) { |
| // We have a new rate allocator instance and already configured target |
| // bitrate. Update the rate allocation and notify observers. |
| // We must invalidate the last_encoder_rate_settings_ to ensure |
| // the changes get propagated to all listeners. |
| EncoderRateSettings rate_settings = *last_encoder_rate_settings_; |
| last_encoder_rate_settings_.reset(); |
| rate_settings.rate_control.framerate_fps = GetInputFramerateFps(); |
| |
| SetEncoderRates(UpdateBitrateAllocation(rate_settings)); |
| } |
| |
| encoder_stats_observer_->OnEncoderReconfigured(encoder_config_, streams); |
| |
| pending_encoder_reconfiguration_ = false; |
| |
| bool is_svc = false; |
| bool single_stream_or_non_first_inactive = true; |
| for (size_t i = 1; i < encoder_config_.number_of_streams; ++i) { |
| if (encoder_config_.simulcast_layers[i].active) { |
| single_stream_or_non_first_inactive = false; |
| break; |
| } |
| } |
| // Set min_bitrate_bps, max_bitrate_bps, and max padding bit rate for VP9 |
| // and AV1 and leave only one stream containing all necessary information. |
| if ((encoder_config_.codec_type == kVideoCodecVP9 || |
| encoder_config_.codec_type == kVideoCodecAV1) && |
| single_stream_or_non_first_inactive) { |
| // Lower max bitrate to the level codec actually can produce. |
| streams[0].max_bitrate_bps = |
| std::min(streams[0].max_bitrate_bps, |
| SvcRateAllocator::GetMaxBitrate(codec).bps<int>()); |
| streams[0].min_bitrate_bps = codec.spatialLayers[0].minBitrate * 1000; |
| // target_bitrate_bps specifies the maximum padding bitrate. |
| streams[0].target_bitrate_bps = |
| SvcRateAllocator::GetPaddingBitrate(codec).bps<int>(); |
| streams[0].width = streams.back().width; |
| streams[0].height = streams.back().height; |
| is_svc = GetNumSpatialLayers(codec) > 1; |
| streams.resize(1); |
| } |
| |
| sink_->OnEncoderConfigurationChanged( |
| std::move(streams), is_svc, encoder_config_.content_type, |
| encoder_config_.min_transmit_bitrate_bps); |
| |
| stream_resource_manager_.ConfigureQualityScaler(info); |
| stream_resource_manager_.ConfigureBandwidthQualityScaler(info); |
| |
| webrtc::RTCError encoder_configuration_result = webrtc::RTCError::OK(); |
| |
| if (!encoder_initialized_) { |
| RTC_LOG(LS_WARNING) << "Failed to initialize " |
| << CodecTypeToPayloadString(codec.codecType) |
| << " encoder." |
| << "switch_encoder_on_init_failures: " |
| << switch_encoder_on_init_failures_; |
| |
| if (switch_encoder_on_init_failures_) { |
| RequestEncoderSwitch(); |
| } else { |
| encoder_configuration_result = |
| webrtc::RTCError(RTCErrorType::UNSUPPORTED_OPERATION); |
| } |
| } |
| |
| if (!encoder_configuration_callbacks_.empty()) { |
| for (auto& callback : encoder_configuration_callbacks_) { |
| webrtc::InvokeSetParametersCallback(callback, |
| encoder_configuration_result); |
| } |
| encoder_configuration_callbacks_.clear(); |
| } |
| } |
| |
| void VideoStreamEncoder::RequestEncoderSwitch() { |
| bool is_encoder_switching_supported = |
| settings_.encoder_switch_request_callback != nullptr; |
| bool is_encoder_selector_available = encoder_selector_ != nullptr; |
| |
| RTC_LOG(LS_INFO) << "RequestEncoderSwitch." |
| << " is_encoder_selector_available: " |
| << is_encoder_selector_available |
| << " is_encoder_switching_supported: " |
| << is_encoder_switching_supported; |
| |
| if (!is_encoder_switching_supported) { |
| return; |
| } |
| |
| // If encoder selector is available, switch to the encoder it prefers. |
| // Otherwise try switching to VP8 (default WebRTC codec). |
| std::optional<SdpVideoFormat> preferred_fallback_encoder; |
| if (is_encoder_selector_available) { |
| preferred_fallback_encoder = encoder_selector_->OnEncoderBroken(); |
| } |
| |
| if (!preferred_fallback_encoder) { |
| preferred_fallback_encoder = |
| SdpVideoFormat(CodecTypeToPayloadString(kVideoCodecVP8)); |
| } |
| |
| settings_.encoder_switch_request_callback->RequestEncoderSwitch( |
| *preferred_fallback_encoder, /*allow_default_fallback=*/true); |
| } |
| |
| void VideoStreamEncoder::OnEncoderSettingsChanged() { |
| EncoderSettings encoder_settings( |
| GetEncoderInfoWithBitrateLimitUpdate( |
| encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_), |
| encoder_config_.Copy(), send_codec_); |
| stream_resource_manager_.SetEncoderSettings(encoder_settings); |
| input_state_provider_.OnEncoderSettingsChanged(encoder_settings); |
| bool is_screenshare = encoder_settings.encoder_config().content_type == |
| VideoEncoderConfig::ContentType::kScreen; |
| degradation_preference_manager_->SetIsScreenshare(is_screenshare); |
| if (is_screenshare) { |
| frame_cadence_adapter_->SetZeroHertzModeEnabled( |
| FrameCadenceAdapterInterface::ZeroHertzModeParams{ |
| send_codec_.numberOfSimulcastStreams}); |
| } |
| } |
| |
| void VideoStreamEncoder::OnFrame(Timestamp post_time, |
| bool queue_overload, |
| const VideoFrame& video_frame) { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| VideoFrame incoming_frame = video_frame; |
| |
| // In some cases, e.g., when the frame from decoder is fed to encoder, |
| // the timestamp may be set to the future. As the encoding pipeline assumes |
| // capture time to be less than present time, we should reset the capture |
| // timestamps here. Otherwise there may be issues with RTP send stream. |
| if (incoming_frame.timestamp_us() > post_time.us()) |
| incoming_frame.set_timestamp_us(post_time.us()); |
| |
| // Capture time may come from clock with an offset and drift from clock_. |
| int64_t capture_ntp_time_ms; |
| if (video_frame.ntp_time_ms() > 0) { |
| capture_ntp_time_ms = video_frame.ntp_time_ms(); |
| } else if (video_frame.render_time_ms() != 0) { |
| capture_ntp_time_ms = video_frame.render_time_ms() + delta_ntp_internal_ms_; |
| } else { |
| capture_ntp_time_ms = post_time.ms() + delta_ntp_internal_ms_; |
| } |
| incoming_frame.set_ntp_time_ms(capture_ntp_time_ms); |
| |
| // Convert NTP time, in ms, to RTP timestamp. |
| const int kMsToRtpTimestamp = 90; |
| incoming_frame.set_rtp_timestamp( |
| kMsToRtpTimestamp * static_cast<uint32_t>(incoming_frame.ntp_time_ms())); |
| |
| // Identifier should remain the same for newly produced incoming frame and the |
| // received |video_frame|. |
| incoming_frame.set_capture_time_identifier( |
| video_frame.capture_time_identifier()); |
| |
| if (incoming_frame.ntp_time_ms() <= last_captured_timestamp_) { |
| // We don't allow the same capture time for two frames, drop this one. |
| RTC_LOG(LS_WARNING) << "Same/old NTP timestamp (" |
| << incoming_frame.ntp_time_ms() |
| << " <= " << last_captured_timestamp_ |
| << ") for incoming frame. Dropping."; |
| ProcessDroppedFrame(incoming_frame, |
| VideoStreamEncoderObserver::DropReason::kBadTimestamp); |
| return; |
| } |
| |
| bool log_stats = false; |
| if (post_time.ms() - last_frame_log_ms_ > kFrameLogIntervalMs) { |
| last_frame_log_ms_ = post_time.ms(); |
| log_stats = true; |
| } |
| |
| last_captured_timestamp_ = incoming_frame.ntp_time_ms(); |
| |
| encoder_stats_observer_->OnIncomingFrame(incoming_frame.width(), |
| incoming_frame.height()); |
| if (frame_instrumentation_generator_) { |
| frame_instrumentation_generator_->OnCapturedFrame(incoming_frame); |
| } |
| ++captured_frame_count_; |
| bool cwnd_frame_drop = |
| cwnd_frame_drop_interval_ && |
| (cwnd_frame_counter_++ % cwnd_frame_drop_interval_.value() == 0); |
| if (!queue_overload && !cwnd_frame_drop) { |
| MaybeEncodeVideoFrame(incoming_frame, post_time.us()); |
| } else { |
| if (cwnd_frame_drop) { |
| // Frame drop by congestion window pushback. Do not encode this |
| // frame. |
| ++dropped_frame_cwnd_pushback_count_; |
| } else { |
| // There is a newer frame in flight. Do not encode this frame. |
| RTC_LOG(LS_VERBOSE) |
| << "Incoming frame dropped due to that the encoder is blocked."; |
| ++dropped_frame_encoder_block_count_; |
| } |
| ProcessDroppedFrame( |
| incoming_frame, |
| cwnd_frame_drop |
| ? VideoStreamEncoderObserver::DropReason::kCongestionWindow |
| : VideoStreamEncoderObserver::DropReason::kEncoderQueue); |
| } |
| if (log_stats) { |
| RTC_LOG(LS_INFO) << "Number of frames: captured " << captured_frame_count_ |
| << ", dropped (due to congestion window pushback) " |
| << dropped_frame_cwnd_pushback_count_ |
| << ", dropped (due to encoder blocked) " |
| << dropped_frame_encoder_block_count_ << ", interval_ms " |
| << kFrameLogIntervalMs; |
| captured_frame_count_ = 0; |
| dropped_frame_cwnd_pushback_count_ = 0; |
| dropped_frame_encoder_block_count_ = 0; |
| } |
| } |
| |
| void VideoStreamEncoder::OnDiscardedFrame() { |
| encoder_stats_observer_->OnFrameDropped( |
| VideoStreamEncoderObserver::DropReason::kSource); |
| } |
| |
| bool VideoStreamEncoder::EncoderPaused() const { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| // Pause video if paused by caller or as long as the network is down or the |
| // pacer queue has grown too large in buffered mode. |
| // If the pacer queue has grown too large or the network is down, |
| // `last_encoder_rate_settings_->encoder_target` will be 0. |
| return !last_encoder_rate_settings_ || |
| last_encoder_rate_settings_->encoder_target == DataRate::Zero(); |
| } |
| |
| void VideoStreamEncoder::TraceFrameDropStart() { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| // Start trace event only on the first frame after encoder is paused. |
| if (!encoder_paused_and_dropped_frame_) { |
| TRACE_EVENT_ASYNC_BEGIN0("webrtc", "EncoderPaused", this); |
| } |
| encoder_paused_and_dropped_frame_ = true; |
| } |
| |
| void VideoStreamEncoder::TraceFrameDropEnd() { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| // End trace event on first frame after encoder resumes, if frame was dropped. |
| if (encoder_paused_and_dropped_frame_) { |
| TRACE_EVENT_ASYNC_END0("webrtc", "EncoderPaused", this); |
| } |
| encoder_paused_and_dropped_frame_ = false; |
| } |
| |
| VideoStreamEncoder::EncoderRateSettings |
| VideoStreamEncoder::UpdateBitrateAllocation( |
| const EncoderRateSettings& rate_settings) { |
| VideoBitrateAllocation new_allocation; |
| // Only call allocators if bitrate > 0 (ie, not suspended), otherwise they |
| // might cap the bitrate to the min bitrate configured. |
| if (rate_allocator_ && rate_settings.encoder_target > DataRate::Zero()) { |
| new_allocation = rate_allocator_->Allocate(VideoBitrateAllocationParameters( |
| rate_settings.encoder_target, rate_settings.stable_encoder_target, |
| rate_settings.rate_control.framerate_fps)); |
| } |
| |
| EncoderRateSettings new_rate_settings = rate_settings; |
| new_rate_settings.rate_control.target_bitrate = new_allocation; |
| new_rate_settings.rate_control.bitrate = new_allocation; |
| // VideoBitrateAllocator subclasses may allocate a bitrate higher than the |
| // target in order to sustain the min bitrate of the video codec. In this |
| // case, make sure the bandwidth allocation is at least equal the allocation |
| // as that is part of the document contract for that field. |
| new_rate_settings.rate_control.bandwidth_allocation = |
| std::max(new_rate_settings.rate_control.bandwidth_allocation, |
| DataRate::BitsPerSec( |
| new_rate_settings.rate_control.bitrate.get_sum_bps())); |
| |
| if (bitrate_adjuster_) { |
| VideoBitrateAllocation adjusted_allocation = |
| bitrate_adjuster_->AdjustRateAllocation(new_rate_settings.rate_control); |
| RTC_LOG(LS_VERBOSE) << "Adjusting allocation, fps = " |
| << rate_settings.rate_control.framerate_fps << ", from " |
| << new_allocation.ToString() << ", to " |
| << adjusted_allocation.ToString(); |
| new_rate_settings.rate_control.bitrate = adjusted_allocation; |
| } |
| |
| return new_rate_settings; |
| } |
| |
| uint32_t VideoStreamEncoder::GetInputFramerateFps() { |
| const uint32_t default_fps = max_framerate_ != -1 ? max_framerate_ : 30; |
| |
| // This method may be called after we cleared out the frame_cadence_adapter_ |
| // reference in Stop(). In such a situation it's probably not important with a |
| // decent estimate. |
| std::optional<uint32_t> input_fps = |
| frame_cadence_adapter_ ? frame_cadence_adapter_->GetInputFrameRateFps() |
| : std::nullopt; |
| if (!input_fps || *input_fps == 0) { |
| return default_fps; |
| } |
| return *input_fps; |
| } |
| |
| void VideoStreamEncoder::SetEncoderRates( |
| const EncoderRateSettings& rate_settings) { |
| RTC_DCHECK_GT(rate_settings.rate_control.framerate_fps, 0.0); |
| bool rate_control_changed = |
| (!last_encoder_rate_settings_.has_value() || |
| last_encoder_rate_settings_->rate_control != rate_settings.rate_control); |
| // For layer allocation signal we care only about the target bitrate (not the |
| // adjusted one) and the target fps. |
| bool layer_allocation_changed = |
| !last_encoder_rate_settings_.has_value() || |
| last_encoder_rate_settings_->rate_control.target_bitrate != |
| rate_settings.rate_control.target_bitrate || |
| last_encoder_rate_settings_->rate_control.framerate_fps != |
| rate_settings.rate_control.framerate_fps; |
| |
| if (last_encoder_rate_settings_ != rate_settings) { |
| last_encoder_rate_settings_ = rate_settings; |
| } |
| |
| if (!encoder_) |
| return; |
| |
| // Make the cadence adapter know if streams were disabled. |
| for (int spatial_index = 0; |
| spatial_index != send_codec_.numberOfSimulcastStreams; ++spatial_index) { |
| frame_cadence_adapter_->UpdateLayerStatus( |
| spatial_index, |
| /*enabled=*/rate_settings.rate_control.target_bitrate |
| .GetSpatialLayerSum(spatial_index) > 0); |
| } |
| |
| // `bitrate_allocation` is 0 it means that the network is down or the send |
| // pacer is full. We currently don't pass this on to the encoder since it is |
| // unclear how current encoder implementations behave when given a zero target |
| // bitrate. |
| // TODO(perkj): Make sure all known encoder implementations handle zero |
| // target bitrate and remove this check. |
| if (rate_settings.rate_control.bitrate.get_sum_bps() == 0) |
| return; |
| |
| if (rate_control_changed) { |
| encoder_->SetRates(rate_settings.rate_control); |
| |
| encoder_stats_observer_->OnBitrateAllocationUpdated( |
| send_codec_, rate_settings.rate_control.bitrate); |
| frame_encode_metadata_writer_.OnSetRates( |
| rate_settings.rate_control.bitrate, |
| static_cast<uint32_t>(rate_settings.rate_control.framerate_fps + 0.5)); |
| stream_resource_manager_.SetEncoderRates(rate_settings.rate_control); |
| if (layer_allocation_changed && |
| allocation_cb_type_ == |
| BitrateAllocationCallbackType::kVideoLayersAllocation) { |
| sink_->OnVideoLayersAllocationUpdated(CreateVideoLayersAllocation( |
| send_codec_, rate_settings.rate_control, encoder_->GetEncoderInfo())); |
| } |
| } |
| if ((allocation_cb_type_ == |
| BitrateAllocationCallbackType::kVideoBitrateAllocation) || |
| (encoder_config_.content_type == |
| VideoEncoderConfig::ContentType::kScreen && |
| allocation_cb_type_ == BitrateAllocationCallbackType:: |
| kVideoBitrateAllocationWhenScreenSharing)) { |
| sink_->OnBitrateAllocationUpdated( |
| // Update allocation according to info from encoder. An encoder may |
| // choose to not use all layers due to for example HW. |
| UpdateAllocationFromEncoderInfo( |
| rate_settings.rate_control.target_bitrate, |
| encoder_->GetEncoderInfo())); |
| } |
| } |
| |
| void VideoStreamEncoder::MaybeEncodeVideoFrame(const VideoFrame& video_frame, |
| int64_t time_when_posted_us) { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| input_state_provider_.OnFrameSizeObserved(video_frame.size()); |
| |
| if (!last_frame_info_ || video_frame.width() != last_frame_info_->width || |
| video_frame.height() != last_frame_info_->height || |
| video_frame.is_texture() != last_frame_info_->is_texture) { |
| if ((!last_frame_info_ || video_frame.width() != last_frame_info_->width || |
| video_frame.height() != last_frame_info_->height) && |
| settings_.encoder_switch_request_callback && encoder_selector_) { |
| if (auto encoder = encoder_selector_->OnResolutionChange( |
| {video_frame.width(), video_frame.height()})) { |
| settings_.encoder_switch_request_callback->RequestEncoderSwitch( |
| *encoder, /*allow_default_fallback=*/false); |
| } |
| } |
| |
| pending_encoder_reconfiguration_ = true; |
| last_frame_info_ = VideoFrameInfo(video_frame.width(), video_frame.height(), |
| video_frame.is_texture()); |
| RTC_LOG(LS_INFO) << "Video frame parameters changed: dimensions=" |
| << last_frame_info_->width << "x" |
| << last_frame_info_->height |
| << ", texture=" << last_frame_info_->is_texture << "."; |
| // Force full frame update, since resolution has changed. |
| accumulated_update_rect_ = |
| VideoFrame::UpdateRect{0, 0, video_frame.width(), video_frame.height()}; |
| } |
| |
| // We have to create the encoder before the frame drop logic, |
| // because the latter depends on encoder_->GetScalingSettings. |
| // According to the testcase |
| // InitialFrameDropOffWhenEncoderDisabledScaling, the return value |
| // from GetScalingSettings should enable or disable the frame drop. |
| uint32_t framerate_fps = GetInputFramerateFps(); |
| |
| int64_t now_ms = env_.clock().TimeInMilliseconds(); |
| if (pending_encoder_reconfiguration_) { |
| ReconfigureEncoder(); |
| last_parameters_update_ms_.emplace(now_ms); |
| } else if (!last_parameters_update_ms_ || |
| now_ms - *last_parameters_update_ms_ >= |
| kParameterUpdateIntervalMs) { |
| if (last_encoder_rate_settings_) { |
| // Clone rate settings before update, so that SetEncoderRates() will |
| // actually detect the change between the input and |
| // `last_encoder_rate_setings_`, triggering the call to SetRate() on the |
| // encoder. |
| EncoderRateSettings new_rate_settings = *last_encoder_rate_settings_; |
| new_rate_settings.rate_control.framerate_fps = |
| static_cast<double>(framerate_fps); |
| SetEncoderRates(UpdateBitrateAllocation(new_rate_settings)); |
| } |
| last_parameters_update_ms_.emplace(now_ms); |
| } |
| |
| // Because pending frame will be dropped in any case, we need to |
| // remember its updated region. |
| if (pending_frame_) { |
| ProcessDroppedFrame(*pending_frame_, |
| VideoStreamEncoderObserver::DropReason::kEncoderQueue); |
| } |
| |
| if (DropDueToSize(video_frame.size())) { |
| RTC_LOG(LS_INFO) << "Dropping frame. Too large for target bitrate."; |
| stream_resource_manager_.OnFrameDroppedDueToSize(); |
| // Storing references to a native buffer risks blocking frame capture. |
| if (video_frame.video_frame_buffer()->type() != |
| VideoFrameBuffer::Type::kNative) { |
| pending_frame_ = video_frame; |
| pending_frame_post_time_us_ = time_when_posted_us; |
| } else { |
| // Ensure that any previously stored frame is dropped. |
| pending_frame_.reset(); |
| ProcessDroppedFrame( |
| video_frame, VideoStreamEncoderObserver::DropReason::kEncoderQueue); |
| } |
| return; |
| } |
| stream_resource_manager_.OnMaybeEncodeFrame(); |
| |
| if (EncoderPaused()) { |
| // Storing references to a native buffer risks blocking frame capture. |
| if (video_frame.video_frame_buffer()->type() != |
| VideoFrameBuffer::Type::kNative) { |
| if (pending_frame_) |
| TraceFrameDropStart(); |
| pending_frame_ = video_frame; |
| pending_frame_post_time_us_ = time_when_posted_us; |
| } else { |
| // Ensure that any previously stored frame is dropped. |
| pending_frame_.reset(); |
| TraceFrameDropStart(); |
| ProcessDroppedFrame( |
| video_frame, VideoStreamEncoderObserver::DropReason::kEncoderQueue); |
| } |
| return; |
| } |
| |
| pending_frame_.reset(); |
| |
| frame_dropper_.Leak(framerate_fps); |
| // Frame dropping is enabled iff frame dropping is not force-disabled, and |
| // rate controller is not trusted. |
| const bool frame_dropping_enabled = |
| !force_disable_frame_dropper_ && |
| !encoder_info_.has_trusted_rate_controller; |
| frame_dropper_.Enable(frame_dropping_enabled); |
| if (frame_dropping_enabled && frame_dropper_.DropFrame()) { |
| RTC_LOG(LS_VERBOSE) |
| << "Drop Frame: " |
| "target bitrate " |
| << (last_encoder_rate_settings_ |
| ? last_encoder_rate_settings_->encoder_target.bps() |
| : 0) |
| << ", input frame rate " << framerate_fps; |
| ProcessDroppedFrame( |
| video_frame, |
| VideoStreamEncoderObserver::DropReason::kMediaOptimization); |
| return; |
| } |
| |
| EncodeVideoFrame(video_frame, time_when_posted_us); |
| } |
| |
| void VideoStreamEncoder::EncodeVideoFrame(const VideoFrame& video_frame, |
| int64_t time_when_posted_us) { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| RTC_LOG(LS_VERBOSE) << __func__ << " posted " << time_when_posted_us |
| << " ntp time " << video_frame.ntp_time_ms(); |
| |
| // If the encoder fail we can't continue to encode frames. When this happens |
| // the WebrtcVideoSender is notified and the whole VideoSendStream is |
| // recreated. |
| if (encoder_failed_ || !encoder_initialized_) |
| return; |
| |
| // It's possible that EncodeVideoFrame can be called after we've completed |
| // a Stop() operation. Check if the encoder_ is set before continuing. |
| // See: bugs.webrtc.org/12857 |
| if (!encoder_) |
| return; |
| |
| TraceFrameDropEnd(); |
| |
| // Encoder metadata needs to be updated before encode complete callback. |
| const VideoEncoder::EncoderInfo info = encoder_->GetEncoderInfo(); |
| if (info.implementation_name != encoder_info_.implementation_name || |
| info.is_hardware_accelerated != encoder_info_.is_hardware_accelerated) { |
| encoder_stats_observer_->OnEncoderImplementationChanged({ |
| .name = info.implementation_name, |
| .is_hardware_accelerated = info.is_hardware_accelerated, |
| }); |
| if (bitrate_adjuster_) { |
| // Encoder implementation changed, reset overshoot detector states. |
| bitrate_adjuster_->Reset(); |
| } |
| } |
| |
| if (encoder_info_ != info) { |
| OnEncoderSettingsChanged(); |
| stream_resource_manager_.ConfigureEncodeUsageResource(); |
| // Re-configure scalers when encoder info changed. Consider two cases: |
| // 1. When the status of the scaler changes from enabled to disabled, if we |
| // don't do this CL, scaler will adapt up/down to trigger an unnecessary |
| // full ReconfigureEncoder() when the scaler should be banned. |
| // 2. When the status of the scaler changes from disabled to enabled, if we |
| // don't do this CL, scaler will not work until some code trigger |
| // ReconfigureEncoder(). In extreme cases, the scaler doesn't even work for |
| // a long time when we expect that the scaler should work. |
| stream_resource_manager_.ConfigureQualityScaler(info); |
| stream_resource_manager_.ConfigureBandwidthQualityScaler(info); |
| |
| RTC_LOG(LS_INFO) << "[VSE] Encoder info changed to " << info.ToString(); |
| } |
| |
| if (bitrate_adjuster_) { |
| for (size_t si = 0; si < kMaxSpatialLayers; ++si) { |
| if (info.fps_allocation[si] != encoder_info_.fps_allocation[si]) { |
| bitrate_adjuster_->OnEncoderInfo(info); |
| break; |
| } |
| } |
| } |
| encoder_info_ = info; |
| last_encode_info_ms_ = env_.clock().TimeInMilliseconds(); |
| |
| VideoFrame out_frame(video_frame); |
| // Crop or scale the frame if needed. Dimension may be reduced to fit encoder |
| // requirements, e.g. some encoders may require them to be divisible by 4. |
| if ((crop_width_ > 0 || crop_height_ > 0) && |
| (out_frame.video_frame_buffer()->type() != |
| VideoFrameBuffer::Type::kNative || |
| !info.supports_native_handle)) { |
| int cropped_width = video_frame.width() - crop_width_; |
| int cropped_height = video_frame.height() - crop_height_; |
| rtc::scoped_refptr<VideoFrameBuffer> cropped_buffer; |
| // TODO(ilnik): Remove scaling if cropping is too big, as it should never |
| // happen after SinkWants signaled correctly from ReconfigureEncoder. |
| VideoFrame::UpdateRect update_rect = video_frame.update_rect(); |
| if (crop_width_ < 4 && crop_height_ < 4) { |
| // The difference is small, crop without scaling. |
| int offset_x = (crop_width_ + 1) / 2; |
| int offset_y = (crop_height_ + 1) / 2; |
| // Make sure offset is even so that u/v plane becomes aligned if u/v plane |
| // is subsampled. |
| offset_x -= offset_x % 2; |
| offset_y -= offset_y % 2; |
| cropped_buffer = video_frame.video_frame_buffer()->CropAndScale( |
| offset_x, offset_y, cropped_width, cropped_height, cropped_width, |
| cropped_height); |
| update_rect.offset_x -= offset_x; |
| update_rect.offset_y -= offset_y; |
| update_rect.Intersect( |
| VideoFrame::UpdateRect{0, 0, cropped_width, cropped_height}); |
| |
| } else { |
| // The difference is large, scale it. |
| cropped_buffer = video_frame.video_frame_buffer()->Scale(cropped_width, |
| cropped_height); |
| if (!update_rect.IsEmpty()) { |
| // Since we can't reason about pixels after scaling, we invalidate whole |
| // picture, if anything changed. |
| update_rect = |
| VideoFrame::UpdateRect{0, 0, cropped_width, cropped_height}; |
| } |
| } |
| if (!cropped_buffer) { |
| RTC_LOG(LS_ERROR) << "Cropping and scaling frame failed, dropping frame."; |
| return; |
| } |
| |
| out_frame.set_video_frame_buffer(cropped_buffer); |
| out_frame.set_update_rect(update_rect); |
| out_frame.set_ntp_time_ms(video_frame.ntp_time_ms()); |
| out_frame.set_capture_time_identifier( |
| video_frame.capture_time_identifier()); |
| // Since accumulated_update_rect_ is constructed before cropping, |
| // we can't trust it. If any changes were pending, we invalidate whole |
| // frame here. |
| if (!accumulated_update_rect_.IsEmpty()) { |
| accumulated_update_rect_ = |
| VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()}; |
| accumulated_update_rect_is_valid_ = false; |
| } |
| } |
| |
| if (!accumulated_update_rect_is_valid_) { |
| out_frame.clear_update_rect(); |
| } else if (!accumulated_update_rect_.IsEmpty() && |
| out_frame.has_update_rect()) { |
| accumulated_update_rect_.Union(out_frame.update_rect()); |
| accumulated_update_rect_.Intersect( |
| VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()}); |
| out_frame.set_update_rect(accumulated_update_rect_); |
| accumulated_update_rect_.MakeEmptyUpdate(); |
| } |
| accumulated_update_rect_is_valid_ = true; |
| |
| TRACE_EVENT_ASYNC_STEP_INTO0("webrtc", "Video", video_frame.render_time_ms(), |
| "Encode"); |
| |
| stream_resource_manager_.OnEncodeStarted(out_frame, time_when_posted_us); |
| |
| // The encoder should get the size that it expects. |
| RTC_DCHECK(send_codec_.width <= out_frame.width() && |
| send_codec_.height <= out_frame.height()) |
| << "Encoder configured to " << send_codec_.width << "x" |
| << send_codec_.height << " received a too small frame " |
| << out_frame.width() << "x" << out_frame.height(); |
| |
| TRACE_EVENT2("webrtc", "webrtc::VideoEncoder::Encode", "rtp_timestamp", |
| out_frame.rtp_timestamp(), "storage_representation", |
| out_frame.video_frame_buffer()->storage_representation()); |
| |
| frame_encode_metadata_writer_.OnEncodeStarted(out_frame); |
| |
| const int32_t encode_status = encoder_->Encode(out_frame, &next_frame_types_); |
| was_encode_called_since_last_initialization_ = true; |
| |
| if (encode_status < 0) { |
| RTC_LOG(LS_ERROR) << "Encoder failed, failing encoder format: " |
| << encoder_config_.video_format.ToString(); |
| RequestEncoderSwitch(); |
| return; |
| } |
| |
| for (auto& it : next_frame_types_) { |
| it = VideoFrameType::kVideoFrameDelta; |
| } |
| } |
| |
| void VideoStreamEncoder::RequestRefreshFrame() { |
| worker_queue_->PostTask(SafeTask(task_safety_.flag(), [this] { |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| video_source_sink_controller_.RequestRefreshFrame(); |
| })); |
| } |
| |
| void VideoStreamEncoder::SendKeyFrame( |
| const std::vector<VideoFrameType>& layers) { |
| if (!encoder_queue_->IsCurrent()) { |
| encoder_queue_->PostTask([this, layers] { SendKeyFrame(layers); }); |
| return; |
| } |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| TRACE_EVENT0("webrtc", "OnKeyFrameRequest"); |
| RTC_DCHECK(!next_frame_types_.empty()); |
| |
| if (frame_cadence_adapter_) |
| frame_cadence_adapter_->ProcessKeyFrameRequest(); |
| |
| if (!encoder_) { |
| RTC_DLOG(LS_INFO) << __func__ << " no encoder."; |
| return; // Shutting down, or not configured yet. |
| } |
| |
| if (!layers.empty()) { |
| RTC_DCHECK_EQ(layers.size(), next_frame_types_.size()); |
| for (size_t i = 0; i < layers.size() && i < next_frame_types_.size(); i++) { |
| next_frame_types_[i] = layers[i]; |
| } |
| } else { |
| std::fill(next_frame_types_.begin(), next_frame_types_.end(), |
| VideoFrameType::kVideoFrameKey); |
| } |
| } |
| |
| void VideoStreamEncoder::OnLossNotification( |
| const VideoEncoder::LossNotification& loss_notification) { |
| if (!encoder_queue_->IsCurrent()) { |
| encoder_queue_->PostTask( |
| [this, loss_notification] { OnLossNotification(loss_notification); }); |
| return; |
| } |
| |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| if (encoder_) { |
| encoder_->OnLossNotification(loss_notification); |
| } |
| } |
| |
| EncodedImage VideoStreamEncoder::AugmentEncodedImage( |
| const EncodedImage& encoded_image, |
| const CodecSpecificInfo* codec_specific_info) { |
| EncodedImage image_copy(encoded_image); |
| // We could either have simulcast layers or spatial layers. |
| // TODO(https://crbug.com/webrtc/14891): If we want to support a mix of |
| // simulcast and SVC we'll also need to consider the case where we have both |
| // simulcast and spatial indices. |
| int stream_idx = encoded_image.SpatialIndex().value_or( |
| encoded_image.SimulcastIndex().value_or(0)); |
| |
| frame_encode_metadata_writer_.FillMetadataAndTimingInfo(stream_idx, |
| &image_copy); |
| frame_encode_metadata_writer_.UpdateBitstream(codec_specific_info, |
| &image_copy); |
| VideoCodecType codec_type = codec_specific_info |
| ? codec_specific_info->codecType |
| : VideoCodecType::kVideoCodecGeneric; |
| if (image_copy.qp_ < 0 && qp_parsing_allowed_) { |
| // Parse encoded frame QP if that was not provided by encoder. |
| image_copy.qp_ = |
| qp_parser_ |
| .Parse(codec_type, stream_idx, image_copy.data(), image_copy.size()) |
| .value_or(-1); |
| } |
| |
| TRACE_EVENT2("webrtc", "VideoStreamEncoder::AugmentEncodedImage", |
| "stream_idx", stream_idx, "qp", image_copy.qp_); |
| RTC_LOG(LS_VERBOSE) << __func__ << " ntp time " << encoded_image.NtpTimeMs() |
| << " stream_idx " << stream_idx << " qp " |
| << image_copy.qp_; |
| return image_copy; |
| } |
| |
| EncodedImageCallback::Result VideoStreamEncoder::OnEncodedImage( |
| const EncodedImage& encoded_image, |
| const CodecSpecificInfo* codec_specific_info) { |
| TRACE_EVENT_INSTANT1("webrtc", "VCMEncodedFrameCallback::Encoded", |
| TRACE_EVENT_SCOPE_GLOBAL, "timestamp", |
| encoded_image.RtpTimestamp()); |
| |
| const size_t simulcast_index = encoded_image.SimulcastIndex().value_or(0); |
| const VideoCodecType codec_type = codec_specific_info |
| ? codec_specific_info->codecType |
| : VideoCodecType::kVideoCodecGeneric; |
| EncodedImage image_copy = |
| AugmentEncodedImage(encoded_image, codec_specific_info); |
| |
| // Post a task because `send_codec_` requires `encoder_queue_` lock and we |
| // need to update on quality convergence. |
| unsigned int image_width = image_copy._encodedWidth; |
| unsigned int image_height = image_copy._encodedHeight; |
| encoder_queue_->PostTask([this, codec_type, image_width, image_height, |
| simulcast_index, qp = image_copy.qp_, |
| is_steady_state_refresh_frame = |
| image_copy.IsSteadyStateRefreshFrame()] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| |
| // Check if the encoded image has reached target quality. |
| bool at_target_quality = |
| quality_convergence_controller_.AddSampleAndCheckTargetQuality( |
| simulcast_index, qp, is_steady_state_refresh_frame); |
| |
| // Let the frame cadence adapter know about quality convergence. |
| if (frame_cadence_adapter_) |
| frame_cadence_adapter_->UpdateLayerQualityConvergence(simulcast_index, |
| at_target_quality); |
| |
| // Currently, the internal quality scaler is used for VP9 instead of the |
| // webrtc qp scaler (in the no-svc case or if only a single spatial layer is |
| // encoded). It has to be explicitly detected and reported to adaptation |
| // metrics. |
| if (codec_type == VideoCodecType::kVideoCodecVP9 && |
| send_codec_.VP9()->automaticResizeOn) { |
| unsigned int expected_width = send_codec_.width; |
| unsigned int expected_height = send_codec_.height; |
| int num_active_layers = 0; |
| for (int i = 0; i < send_codec_.VP9()->numberOfSpatialLayers; ++i) { |
| if (send_codec_.spatialLayers[i].active) { |
| ++num_active_layers; |
| expected_width = send_codec_.spatialLayers[i].width; |
| expected_height = send_codec_.spatialLayers[i].height; |
| } |
| } |
| RTC_DCHECK_LE(num_active_layers, 1) |
| << "VP9 quality scaling is enabled for " |
| "SVC with several active layers."; |
| encoder_stats_observer_->OnEncoderInternalScalerUpdate( |
| image_width < expected_width || image_height < expected_height); |
| } |
| }); |
| |
| // Encoded is called on whatever thread the real encoder implementation run |
| // on. In the case of hardware encoders, there might be several encoders |
| // running in parallel on different threads. |
| encoder_stats_observer_->OnSendEncodedImage(image_copy, codec_specific_info); |
| |
| std::unique_ptr<CodecSpecificInfo> codec_specific_info_copy; |
| if (codec_specific_info && frame_instrumentation_generator_) { |
| std::optional< |
| absl::variant<FrameInstrumentationSyncData, FrameInstrumentationData>> |
| frame_instrumentation_data = |
| frame_instrumentation_generator_->OnEncodedImage(image_copy); |
| RTC_CHECK(!codec_specific_info->frame_instrumentation_data.has_value()) |
| << "CodecSpecificInfo must not have frame_instrumentation_data set."; |
| if (frame_instrumentation_data.has_value()) { |
| codec_specific_info_copy = |
| std::make_unique<CodecSpecificInfo>(*codec_specific_info); |
| codec_specific_info_copy->frame_instrumentation_data = |
| frame_instrumentation_data; |
| codec_specific_info = codec_specific_info_copy.get(); |
| } |
| } |
| EncodedImageCallback::Result result = |
| sink_->OnEncodedImage(image_copy, codec_specific_info); |
| |
| // We are only interested in propagating the meta-data about the image, not |
| // encoded data itself, to the post encode function. Since we cannot be sure |
| // the pointer will still be valid when run on the task queue, set it to null. |
| DataSize frame_size = DataSize::Bytes(image_copy.size()); |
| image_copy.ClearEncodedData(); |
| |
| int temporal_index = 0; |
| if (encoded_image.TemporalIndex()) { |
| // Give precedence to the metadata on EncodedImage, if available. |
| temporal_index = *encoded_image.TemporalIndex(); |
| } else if (codec_specific_info) { |
| if (codec_specific_info->codecType == kVideoCodecVP9) { |
| temporal_index = codec_specific_info->codecSpecific.VP9.temporal_idx; |
| } else if (codec_specific_info->codecType == kVideoCodecVP8) { |
| temporal_index = codec_specific_info->codecSpecific.VP8.temporalIdx; |
| } |
| } |
| if (temporal_index == kNoTemporalIdx) { |
| temporal_index = 0; |
| } |
| |
| RunPostEncode(image_copy, env_.clock().CurrentTime().us(), temporal_index, |
| frame_size); |
| |
| if (result.error == Result::OK) { |
| // In case of an internal encoder running on a separate thread, the |
| // decision to drop a frame might be a frame late and signaled via |
| // atomic flag. This is because we can't easily wait for the worker thread |
| // without risking deadlocks, eg during shutdown when the worker thread |
| // might be waiting for the internal encoder threads to stop. |
| if (pending_frame_drops_.load() > 0) { |
| int pending_drops = pending_frame_drops_.fetch_sub(1); |
| RTC_DCHECK_GT(pending_drops, 0); |
| result.drop_next_frame = true; |
| } |
| } |
| |
| return result; |
| } |
| |
| void VideoStreamEncoder::OnDroppedFrame(DropReason reason) { |
| sink_->OnDroppedFrame(reason); |
| encoder_queue_->PostTask([this, reason] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| stream_resource_manager_.OnFrameDropped(reason); |
| }); |
| } |
| |
| DataRate VideoStreamEncoder::UpdateTargetBitrate(DataRate target_bitrate, |
| double cwnd_reduce_ratio) { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| DataRate updated_target_bitrate = target_bitrate; |
| |
| // Drop frames when congestion window pushback ratio is larger than 1 |
| // percent and target bitrate is larger than codec min bitrate. |
| // When target_bitrate is 0 means codec is paused, skip frame dropping. |
| if (cwnd_reduce_ratio > 0.01 && target_bitrate.bps() > 0 && |
| target_bitrate.bps() > send_codec_.minBitrate * 1000) { |
| int reduce_bitrate_bps = std::min( |
| static_cast<int>(target_bitrate.bps() * cwnd_reduce_ratio), |
| static_cast<int>(target_bitrate.bps() - send_codec_.minBitrate * 1000)); |
| if (reduce_bitrate_bps > 0) { |
| // At maximum the congestion window can drop 1/2 frames. |
| cwnd_frame_drop_interval_ = std::max( |
| 2, static_cast<int>(target_bitrate.bps() / reduce_bitrate_bps)); |
| // Reduce target bitrate accordingly. |
| updated_target_bitrate = |
| target_bitrate - (target_bitrate / cwnd_frame_drop_interval_.value()); |
| return updated_target_bitrate; |
| } |
| } |
| cwnd_frame_drop_interval_.reset(); |
| return updated_target_bitrate; |
| } |
| |
| void VideoStreamEncoder::OnBitrateUpdated(DataRate target_bitrate, |
| DataRate stable_target_bitrate, |
| DataRate link_allocation, |
| uint8_t fraction_lost, |
| int64_t round_trip_time_ms, |
| double cwnd_reduce_ratio) { |
| RTC_DCHECK_GE(link_allocation, target_bitrate); |
| if (!encoder_queue_->IsCurrent()) { |
| encoder_queue_->PostTask([this, target_bitrate, stable_target_bitrate, |
| link_allocation, fraction_lost, |
| round_trip_time_ms, cwnd_reduce_ratio] { |
| DataRate updated_target_bitrate = |
| UpdateTargetBitrate(target_bitrate, cwnd_reduce_ratio); |
| OnBitrateUpdated(updated_target_bitrate, stable_target_bitrate, |
| link_allocation, fraction_lost, round_trip_time_ms, |
| cwnd_reduce_ratio); |
| }); |
| return; |
| } |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| |
| const bool video_is_suspended = target_bitrate == DataRate::Zero(); |
| const bool video_suspension_changed = video_is_suspended != EncoderPaused(); |
| |
| if (!video_is_suspended && settings_.encoder_switch_request_callback && |
| encoder_selector_) { |
| if (auto encoder = encoder_selector_->OnAvailableBitrate(link_allocation)) { |
| settings_.encoder_switch_request_callback->RequestEncoderSwitch( |
| *encoder, /*allow_default_fallback=*/false); |
| } |
| } |
| |
| RTC_DCHECK(sink_) << "sink_ must be set before the encoder is active."; |
| |
| RTC_LOG(LS_VERBOSE) << "OnBitrateUpdated, bitrate " << target_bitrate.bps() |
| << " stable bitrate = " << stable_target_bitrate.bps() |
| << " link allocation bitrate = " << link_allocation.bps() |
| << " packet loss " << static_cast<int>(fraction_lost) |
| << " rtt " << round_trip_time_ms; |
| |
| if (encoder_) { |
| encoder_->OnPacketLossRateUpdate(static_cast<float>(fraction_lost) / 256.f); |
| encoder_->OnRttUpdate(round_trip_time_ms); |
| } |
| |
| uint32_t framerate_fps = GetInputFramerateFps(); |
| frame_dropper_.SetRates((target_bitrate.bps() + 500) / 1000, framerate_fps); |
| |
| EncoderRateSettings new_rate_settings{ |
| VideoBitrateAllocation(), static_cast<double>(framerate_fps), |
| link_allocation, target_bitrate, stable_target_bitrate}; |
| SetEncoderRates(UpdateBitrateAllocation(new_rate_settings)); |
| |
| if (target_bitrate.bps() != 0) |
| encoder_target_bitrate_bps_ = target_bitrate.bps(); |
| |
| stream_resource_manager_.SetTargetBitrate(target_bitrate); |
| |
| if (video_suspension_changed) { |
| RTC_LOG(LS_INFO) << "Video suspend state changed to: " |
| << (video_is_suspended ? "suspended" : "not suspended"); |
| encoder_stats_observer_->OnSuspendChange(video_is_suspended); |
| |
| if (!video_is_suspended && pending_frame_ && |
| !DropDueToSize(pending_frame_->size())) { |
| // A pending stored frame can be processed. |
| int64_t pending_time_us = |
| env_.clock().CurrentTime().us() - pending_frame_post_time_us_; |
| if (pending_time_us < kPendingFrameTimeoutMs * 1000) |
| EncodeVideoFrame(*pending_frame_, pending_frame_post_time_us_); |
| pending_frame_.reset(); |
| } else if (!video_is_suspended && !pending_frame_ && |
| encoder_paused_and_dropped_frame_) { |
| // A frame was enqueued during pause-state, but since it was a native |
| // frame we could not store it in `pending_frame_` so request a |
| // refresh-frame instead. |
| RequestRefreshFrame(); |
| } |
| } |
| } |
| |
| bool VideoStreamEncoder::DropDueToSize(uint32_t source_pixel_count) const { |
| if (!encoder_ || !stream_resource_manager_.DropInitialFrames() || |
| !encoder_target_bitrate_bps_ || |
| !stream_resource_manager_.SingleActiveStreamPixels()) { |
| return false; |
| } |
| |
| int pixel_count = std::min( |
| source_pixel_count, *stream_resource_manager_.SingleActiveStreamPixels()); |
| |
| uint32_t bitrate_bps = |
| stream_resource_manager_.UseBandwidthAllocationBps().value_or( |
| encoder_target_bitrate_bps_.value()); |
| |
| std::optional<VideoEncoder::ResolutionBitrateLimits> encoder_bitrate_limits = |
| GetEncoderInfoWithBitrateLimitUpdate( |
| encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_) |
| .GetEncoderBitrateLimitsForResolution(pixel_count); |
| |
| if (encoder_bitrate_limits.has_value()) { |
| // Use bitrate limits provided by encoder. |
| return bitrate_bps < |
| static_cast<uint32_t>(encoder_bitrate_limits->min_start_bitrate_bps); |
| } |
| |
| if (bitrate_bps < 300000 /* qvga */) { |
| return pixel_count > 320 * 240; |
| } else if (bitrate_bps < 500000 /* vga */) { |
| return pixel_count > 640 * 480; |
| } |
| return false; |
| } |
| |
| void VideoStreamEncoder::OnVideoSourceRestrictionsUpdated( |
| VideoSourceRestrictions restrictions, |
| const VideoAdaptationCounters& adaptation_counters, |
| rtc::scoped_refptr<Resource> reason, |
| const VideoSourceRestrictions& unfiltered_restrictions) { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| RTC_LOG(LS_INFO) << "Updating sink restrictions from " |
| << (reason ? reason->Name() : std::string("<null>")) |
| << " to " << restrictions.ToString(); |
| |
| if (frame_cadence_adapter_) { |
| frame_cadence_adapter_->UpdateVideoSourceRestrictions( |
| restrictions.max_frame_rate()); |
| } |
| |
| bool max_pixels_updated = |
| (latest_restrictions_.has_value() |
| ? latest_restrictions_->max_pixels_per_frame() |
| : std::nullopt) != restrictions.max_pixels_per_frame(); |
| |
| // TODO(webrtc:14451) Split video_source_sink_controller_ |
| // so that ownership on restrictions/wants is kept on &encoder_queue_ |
| latest_restrictions_ = restrictions; |
| |
| // When the `requested_resolution` API is used, we need to reconfigure any |
| // time the restricted resolution is updated. When that API isn't used, the |
| // encoder settings are relative to the frame size and reconfiguration happens |
| // automatically on new frame size and we don't need to reconfigure here. |
| if (encoder_ && max_pixels_updated && |
| encoder_config_.HasRequestedResolution()) { |
| // The encoder will be reconfigured on the next frame. |
| pending_encoder_reconfiguration_ = true; |
| } |
| |
| worker_queue_->PostTask(SafeTask( |
| task_safety_.flag(), [this, restrictions = std::move(restrictions)]() { |
| RTC_DCHECK_RUN_ON(worker_queue_); |
| video_source_sink_controller_.SetRestrictions(std::move(restrictions)); |
| video_source_sink_controller_.PushSourceSinkSettings(); |
| })); |
| } |
| |
| void VideoStreamEncoder::RunPostEncode(const EncodedImage& encoded_image, |
| int64_t time_sent_us, |
| int temporal_index, |
| DataSize frame_size) { |
| if (!encoder_queue_->IsCurrent()) { |
| encoder_queue_->PostTask([this, encoded_image, time_sent_us, temporal_index, |
| frame_size] { |
| RunPostEncode(encoded_image, time_sent_us, temporal_index, frame_size); |
| }); |
| return; |
| } |
| |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| |
| std::optional<int> encode_duration_us; |
| if (encoded_image.timing_.flags != VideoSendTiming::kInvalid) { |
| encode_duration_us = |
| TimeDelta::Millis(encoded_image.timing_.encode_finish_ms - |
| encoded_image.timing_.encode_start_ms) |
| .us(); |
| } |
| |
| // Run post encode tasks, such as overuse detection and frame rate/drop |
| // stats for internal encoders. |
| const bool keyframe = |
| encoded_image._frameType == VideoFrameType::kVideoFrameKey; |
| |
| if (!frame_size.IsZero()) { |
| frame_dropper_.Fill(frame_size.bytes(), !keyframe); |
| } |
| |
| stream_resource_manager_.OnEncodeCompleted(encoded_image, time_sent_us, |
| encode_duration_us, frame_size); |
| if (bitrate_adjuster_) { |
| // We could either have simulcast layers or spatial layers. |
| // TODO(https://crbug.com/webrtc/14891): If we want to support a mix of |
| // simulcast and SVC we'll also need to consider the case where we have both |
| // simulcast and spatial indices. |
| int stream_index = std::max(encoded_image.SimulcastIndex().value_or(0), |
| encoded_image.SpatialIndex().value_or(0)); |
| bitrate_adjuster_->OnEncodedFrame(frame_size, stream_index, temporal_index); |
| } |
| } |
| |
| void VideoStreamEncoder::ReleaseEncoder() { |
| if (!encoder_ || !encoder_initialized_) { |
| return; |
| } |
| encoder_->Release(); |
| encoder_initialized_ = false; |
| TRACE_EVENT0("webrtc", "VCMGenericEncoder::Release"); |
| } |
| |
| void VideoStreamEncoder::InjectAdaptationResource( |
| rtc::scoped_refptr<Resource> resource, |
| VideoAdaptationReason reason) { |
| encoder_queue_->PostTask([this, resource = std::move(resource), reason] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| additional_resources_.push_back(resource); |
| stream_resource_manager_.AddResource(resource, reason); |
| }); |
| } |
| |
| void VideoStreamEncoder::InjectAdaptationConstraint( |
| AdaptationConstraint* adaptation_constraint) { |
| rtc::Event event; |
| encoder_queue_->PostTask([this, adaptation_constraint, &event] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| if (!resource_adaptation_processor_) { |
| // The VideoStreamEncoder was stopped and the processor destroyed before |
| // this task had a chance to execute. No action needed. |
| return; |
| } |
| adaptation_constraints_.push_back(adaptation_constraint); |
| video_stream_adapter_->AddAdaptationConstraint(adaptation_constraint); |
| event.Set(); |
| }); |
| event.Wait(rtc::Event::kForever); |
| } |
| |
| void VideoStreamEncoder::AddRestrictionsListenerForTesting( |
| VideoSourceRestrictionsListener* restrictions_listener) { |
| rtc::Event event; |
| encoder_queue_->PostTask([this, restrictions_listener, &event] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| RTC_DCHECK(resource_adaptation_processor_); |
| video_stream_adapter_->AddRestrictionsListener(restrictions_listener); |
| event.Set(); |
| }); |
| event.Wait(rtc::Event::kForever); |
| } |
| |
| void VideoStreamEncoder::RemoveRestrictionsListenerForTesting( |
| VideoSourceRestrictionsListener* restrictions_listener) { |
| rtc::Event event; |
| encoder_queue_->PostTask([this, restrictions_listener, &event] { |
| RTC_DCHECK_RUN_ON(encoder_queue_.get()); |
| RTC_DCHECK(resource_adaptation_processor_); |
| video_stream_adapter_->RemoveRestrictionsListener(restrictions_listener); |
| event.Set(); |
| }); |
| event.Wait(rtc::Event::kForever); |
| } |
| |
| // RTC_RUN_ON(&encoder_queue_) |
| void VideoStreamEncoder::ProcessDroppedFrame( |
| const VideoFrame& frame, |
| VideoStreamEncoderObserver::DropReason reason) { |
| accumulated_update_rect_.Union(frame.update_rect()); |
| accumulated_update_rect_is_valid_ &= frame.has_update_rect(); |
| if (auto converted_reason = MaybeConvertDropReason(reason)) { |
| OnDroppedFrame(*converted_reason); |
| } |
| encoder_stats_observer_->OnFrameDropped(reason); |
| } |
| |
| } // namespace webrtc |