| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "common_video/h264/pps_parser.h" |
| |
| #include <cstdint> |
| #include <vector> |
| |
| #include "common_video/h264/h264_common.h" |
| #include "rtc_base/bit_buffer.h" |
| #include "rtc_base/checks.h" |
| |
| #define RETURN_EMPTY_ON_FAIL(x) \ |
| do { \ |
| if (!(x)) { \ |
| return absl::nullopt; \ |
| } \ |
| } while (0) |
| |
| namespace { |
| const int kMaxPicInitQpDeltaValue = 25; |
| const int kMinPicInitQpDeltaValue = -26; |
| } // namespace |
| |
| namespace webrtc { |
| |
| // General note: this is based off the 02/2014 version of the H.264 standard. |
| // You can find it on this page: |
| // http://www.itu.int/rec/T-REC-H.264 |
| |
| absl::optional<PpsParser::PpsState> PpsParser::ParsePps(const uint8_t* data, |
| size_t length) { |
| // First, parse out rbsp, which is basically the source buffer minus emulation |
| // bytes (the last byte of a 0x00 0x00 0x03 sequence). RBSP is defined in |
| // section 7.3.1 of the H.264 standard. |
| std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length); |
| rtc::BitBuffer bit_buffer(unpacked_buffer.data(), unpacked_buffer.size()); |
| return ParseInternal(&bit_buffer); |
| } |
| |
| bool PpsParser::ParsePpsIds(const uint8_t* data, |
| size_t length, |
| uint32_t* pps_id, |
| uint32_t* sps_id) { |
| RTC_DCHECK(pps_id); |
| RTC_DCHECK(sps_id); |
| // First, parse out rbsp, which is basically the source buffer minus emulation |
| // bytes (the last byte of a 0x00 0x00 0x03 sequence). RBSP is defined in |
| // section 7.3.1 of the H.264 standard. |
| std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length); |
| rtc::BitBuffer bit_buffer(unpacked_buffer.data(), unpacked_buffer.size()); |
| return ParsePpsIdsInternal(&bit_buffer, pps_id, sps_id); |
| } |
| |
| absl::optional<uint32_t> PpsParser::ParsePpsIdFromSlice(const uint8_t* data, |
| size_t length) { |
| std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length); |
| rtc::BitBuffer slice_reader(unpacked_buffer.data(), unpacked_buffer.size()); |
| |
| uint32_t golomb_tmp; |
| // first_mb_in_slice: ue(v) |
| if (!slice_reader.ReadExponentialGolomb(golomb_tmp)) |
| return absl::nullopt; |
| // slice_type: ue(v) |
| if (!slice_reader.ReadExponentialGolomb(golomb_tmp)) |
| return absl::nullopt; |
| // pic_parameter_set_id: ue(v) |
| uint32_t slice_pps_id; |
| if (!slice_reader.ReadExponentialGolomb(slice_pps_id)) |
| return absl::nullopt; |
| return slice_pps_id; |
| } |
| |
| absl::optional<PpsParser::PpsState> PpsParser::ParseInternal( |
| rtc::BitBuffer* bit_buffer) { |
| PpsState pps; |
| |
| RETURN_EMPTY_ON_FAIL(ParsePpsIdsInternal(bit_buffer, &pps.id, &pps.sps_id)); |
| |
| uint32_t bits_tmp; |
| uint32_t golomb_ignored; |
| // entropy_coding_mode_flag: u(1) |
| uint32_t entropy_coding_mode_flag; |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadBits(1, entropy_coding_mode_flag)); |
| pps.entropy_coding_mode_flag = entropy_coding_mode_flag != 0; |
| // bottom_field_pic_order_in_frame_present_flag: u(1) |
| uint32_t bottom_field_pic_order_in_frame_present_flag; |
| RETURN_EMPTY_ON_FAIL( |
| bit_buffer->ReadBits(1, bottom_field_pic_order_in_frame_present_flag)); |
| pps.bottom_field_pic_order_in_frame_present_flag = |
| bottom_field_pic_order_in_frame_present_flag != 0; |
| |
| // num_slice_groups_minus1: ue(v) |
| uint32_t num_slice_groups_minus1; |
| RETURN_EMPTY_ON_FAIL( |
| bit_buffer->ReadExponentialGolomb(num_slice_groups_minus1)); |
| if (num_slice_groups_minus1 > 0) { |
| uint32_t slice_group_map_type; |
| // slice_group_map_type: ue(v) |
| RETURN_EMPTY_ON_FAIL( |
| bit_buffer->ReadExponentialGolomb(slice_group_map_type)); |
| if (slice_group_map_type == 0) { |
| for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1; |
| ++i_group) { |
| // run_length_minus1[iGroup]: ue(v) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored)); |
| } |
| } else if (slice_group_map_type == 1) { |
| // TODO(sprang): Implement support for dispersed slice group map type. |
| // See 8.2.2.2 Specification for dispersed slice group map type. |
| } else if (slice_group_map_type == 2) { |
| for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1; |
| ++i_group) { |
| // top_left[iGroup]: ue(v) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored)); |
| // bottom_right[iGroup]: ue(v) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored)); |
| } |
| } else if (slice_group_map_type == 3 || slice_group_map_type == 4 || |
| slice_group_map_type == 5) { |
| // slice_group_change_direction_flag: u(1) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadBits(1, bits_tmp)); |
| // slice_group_change_rate_minus1: ue(v) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored)); |
| } else if (slice_group_map_type == 6) { |
| // pic_size_in_map_units_minus1: ue(v) |
| uint32_t pic_size_in_map_units_minus1; |
| RETURN_EMPTY_ON_FAIL( |
| bit_buffer->ReadExponentialGolomb(pic_size_in_map_units_minus1)); |
| uint32_t slice_group_id_bits = 0; |
| uint32_t num_slice_groups = num_slice_groups_minus1 + 1; |
| // If num_slice_groups is not a power of two an additional bit is required |
| // to account for the ceil() of log2() below. |
| if ((num_slice_groups & (num_slice_groups - 1)) != 0) |
| ++slice_group_id_bits; |
| while (num_slice_groups > 0) { |
| num_slice_groups >>= 1; |
| ++slice_group_id_bits; |
| } |
| for (uint32_t i = 0; i <= pic_size_in_map_units_minus1; i++) { |
| // slice_group_id[i]: u(v) |
| // Represented by ceil(log2(num_slice_groups_minus1 + 1)) bits. |
| RETURN_EMPTY_ON_FAIL( |
| bit_buffer->ReadBits(slice_group_id_bits, bits_tmp)); |
| } |
| } |
| } |
| // num_ref_idx_l0_default_active_minus1: ue(v) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored)); |
| // num_ref_idx_l1_default_active_minus1: ue(v) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored)); |
| // weighted_pred_flag: u(1) |
| uint32_t weighted_pred_flag; |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadBits(1, weighted_pred_flag)); |
| pps.weighted_pred_flag = weighted_pred_flag != 0; |
| // weighted_bipred_idc: u(2) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadBits(2, pps.weighted_bipred_idc)); |
| |
| // pic_init_qp_minus26: se(v) |
| RETURN_EMPTY_ON_FAIL( |
| bit_buffer->ReadSignedExponentialGolomb(pps.pic_init_qp_minus26)); |
| // Sanity-check parsed value |
| if (pps.pic_init_qp_minus26 > kMaxPicInitQpDeltaValue || |
| pps.pic_init_qp_minus26 < kMinPicInitQpDeltaValue) { |
| RETURN_EMPTY_ON_FAIL(false); |
| } |
| // pic_init_qs_minus26: se(v) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored)); |
| // chroma_qp_index_offset: se(v) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadExponentialGolomb(golomb_ignored)); |
| // deblocking_filter_control_present_flag: u(1) |
| // constrained_intra_pred_flag: u(1) |
| RETURN_EMPTY_ON_FAIL(bit_buffer->ReadBits(2, bits_tmp)); |
| // redundant_pic_cnt_present_flag: u(1) |
| RETURN_EMPTY_ON_FAIL( |
| bit_buffer->ReadBits(1, pps.redundant_pic_cnt_present_flag)); |
| |
| return pps; |
| } |
| |
| bool PpsParser::ParsePpsIdsInternal(rtc::BitBuffer* bit_buffer, |
| uint32_t* pps_id, |
| uint32_t* sps_id) { |
| if (pps_id == nullptr) |
| return false; |
| // pic_parameter_set_id: ue(v) |
| if (!bit_buffer->ReadExponentialGolomb(*pps_id)) |
| return false; |
| if (sps_id == nullptr) |
| return false; |
| // seq_parameter_set_id: ue(v) |
| if (!bit_buffer->ReadExponentialGolomb(*sps_id)) |
| return false; |
| return true; |
| } |
| |
| } // namespace webrtc |