blob: 3dbb55732b517fa96b354608b99dc3f717199d53 [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/vad_with_level.h"
#include <algorithm>
#include <array>
#include <cmath>
#include "api/array_view.h"
#include "common_audio/include/audio_util.h"
#include "common_audio/resampler/include/push_resampler.h"
#include "modules/audio_processing/agc2/agc2_common.h"
#include "modules/audio_processing/agc2/rnn_vad/common.h"
#include "modules/audio_processing/agc2/rnn_vad/features_extraction.h"
#include "modules/audio_processing/agc2/rnn_vad/rnn.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
using VoiceActivityDetector = VadLevelAnalyzer::VoiceActivityDetector;
// Default VAD that combines a resampler and the RNN VAD.
// Computes the speech probability on the first channel.
class Vad : public VoiceActivityDetector {
public:
Vad() = default;
Vad(const Vad&) = delete;
Vad& operator=(const Vad&) = delete;
~Vad() = default;
float ComputeProbability(AudioFrameView<const float> frame) override {
// The source number of channels is 1, because we always use the 1st
// channel.
resampler_.InitializeIfNeeded(
/*sample_rate_hz=*/static_cast<int>(frame.samples_per_channel() * 100),
rnn_vad::kSampleRate24kHz,
/*num_channels=*/1);
std::array<float, rnn_vad::kFrameSize10ms24kHz> work_frame;
// Feed the 1st channel to the resampler.
resampler_.Resample(frame.channel(0).data(), frame.samples_per_channel(),
work_frame.data(), rnn_vad::kFrameSize10ms24kHz);
std::array<float, rnn_vad::kFeatureVectorSize> feature_vector;
const bool is_silence = features_extractor_.CheckSilenceComputeFeatures(
work_frame, feature_vector);
return rnn_vad_.ComputeVadProbability(feature_vector, is_silence);
}
private:
PushResampler<float> resampler_;
rnn_vad::FeaturesExtractor features_extractor_;
rnn_vad::RnnBasedVad rnn_vad_;
};
// Returns an updated version of `p_old` by using instant decay and the given
// `attack` on a new VAD probability value `p_new`.
float SmoothedVadProbability(float p_old, float p_new, float attack) {
RTC_DCHECK_GT(attack, 0.f);
RTC_DCHECK_LE(attack, 1.f);
if (p_new < p_old || attack == 1.f) {
// Instant decay (or no smoothing).
return p_new;
} else {
// Attack phase.
return attack * p_new + (1.f - attack) * p_old;
}
}
} // namespace
VadLevelAnalyzer::VadLevelAnalyzer()
: VadLevelAnalyzer(kDefaultSmoothedVadProbabilityAttack,
std::make_unique<Vad>()) {}
VadLevelAnalyzer::VadLevelAnalyzer(float vad_probability_attack)
: VadLevelAnalyzer(vad_probability_attack, std::make_unique<Vad>()) {}
VadLevelAnalyzer::VadLevelAnalyzer(float vad_probability_attack,
std::unique_ptr<VoiceActivityDetector> vad)
: vad_(std::move(vad)), vad_probability_attack_(vad_probability_attack) {
RTC_DCHECK(vad_);
}
VadLevelAnalyzer::~VadLevelAnalyzer() = default;
VadLevelAnalyzer::Result VadLevelAnalyzer::AnalyzeFrame(
AudioFrameView<const float> frame) {
// Compute levels.
float peak = 0.f;
float rms = 0.f;
for (const auto& x : frame.channel(0)) {
peak = std::max(std::fabs(x), peak);
rms += x * x;
}
// Compute smoothed speech probability.
vad_probability_ = SmoothedVadProbability(
/*p_old=*/vad_probability_, /*p_new=*/vad_->ComputeProbability(frame),
vad_probability_attack_);
return {vad_probability_,
FloatS16ToDbfs(std::sqrt(rms / frame.samples_per_channel())),
FloatS16ToDbfs(peak)};
}
} // namespace webrtc