blob: c8ef7211e895f8cffc47db8619ee1f35114349c2 [file] [log] [blame]
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/task_queue.h"
#include <mmsystem.h>
#include <string.h>
#include <algorithm>
#include "webrtc/base/arraysize.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
namespace rtc {
namespace {
#define WM_RUN_TASK WM_USER + 1
#define WM_QUEUE_DELAYED_TASK WM_USER + 2
DWORD g_queue_ptr_tls = 0;
BOOL CALLBACK InitializeTls(PINIT_ONCE init_once, void* param, void** context) {
g_queue_ptr_tls = TlsAlloc();
return TRUE;
}
DWORD GetQueuePtrTls() {
static INIT_ONCE init_once = INIT_ONCE_STATIC_INIT;
::InitOnceExecuteOnce(&init_once, InitializeTls, nullptr, nullptr);
return g_queue_ptr_tls;
}
struct ThreadStartupData {
Event* started;
void* thread_context;
};
void CALLBACK InitializeQueueThread(ULONG_PTR param) {
MSG msg;
::PeekMessage(&msg, nullptr, WM_USER, WM_USER, PM_NOREMOVE);
ThreadStartupData* data = reinterpret_cast<ThreadStartupData*>(param);
::TlsSetValue(GetQueuePtrTls(), data->thread_context);
data->started->Set();
}
} // namespace
class TaskQueue::MultimediaTimer {
public:
// kMaxTimers defines the limit of how many MultimediaTimer instances should
// be created.
// Background: The maximum number of supported handles for Wait functions, is
// MAXIMUM_WAIT_OBJECTS - 1 (63).
// There are some ways to work around the limitation but as it turns out, the
// limit of concurrently active multimedia timers per process, is much lower,
// or 16. So there isn't much value in going to the lenghts required to
// overcome the Wait limitations.
// kMaxTimers is larger than 16 though since it is possible that 'complete' or
// signaled timers that haven't been handled, are counted as part of
// kMaxTimers and thus a multimedia timer can actually be queued even though
// as far as we're concerned, there are more than 16 that are pending.
static const int kMaxTimers = MAXIMUM_WAIT_OBJECTS - 1;
// Controls how many MultimediaTimer instances a queue can hold before
// attempting to garbage collect (GC) timers that aren't in use.
static const int kInstanceThresholdGC = 8;
MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {}
MultimediaTimer(MultimediaTimer&& timer)
: event_(timer.event_),
timer_id_(timer.timer_id_),
task_(std::move(timer.task_)) {
RTC_DCHECK(event_);
timer.event_ = nullptr;
timer.timer_id_ = 0;
}
~MultimediaTimer() { Close(); }
// Implementing this operator is required because of the way
// some stl algorithms work, such as std::rotate().
MultimediaTimer& operator=(MultimediaTimer&& timer) {
if (this != &timer) {
Close();
event_ = timer.event_;
timer.event_ = nullptr;
task_ = std::move(timer.task_);
timer_id_ = timer.timer_id_;
timer.timer_id_ = 0;
}
return *this;
}
bool StartOneShotTimer(std::unique_ptr<QueuedTask> task, UINT delay_ms) {
RTC_DCHECK_EQ(0, timer_id_);
RTC_DCHECK(event_ != nullptr);
RTC_DCHECK(!task_.get());
RTC_DCHECK(task.get());
task_ = std::move(task);
timer_id_ =
::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0,
TIME_ONESHOT | TIME_CALLBACK_EVENT_SET);
return timer_id_ != 0;
}
std::unique_ptr<QueuedTask> Cancel() {
if (timer_id_) {
::timeKillEvent(timer_id_);
timer_id_ = 0;
}
return std::move(task_);
}
void OnEventSignaled() {
RTC_DCHECK_NE(0, timer_id_);
timer_id_ = 0;
task_->Run() ? task_.reset() : static_cast<void>(task_.release());
}
HANDLE event() const { return event_; }
bool is_active() const { return timer_id_ != 0; }
private:
void Close() {
Cancel();
if (event_) {
::CloseHandle(event_);
event_ = nullptr;
}
}
HANDLE event_ = nullptr;
MMRESULT timer_id_ = 0;
std::unique_ptr<QueuedTask> task_;
RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer);
};
TaskQueue::TaskQueue(const char* queue_name)
: thread_(&TaskQueue::ThreadMain, this, queue_name) {
RTC_DCHECK(queue_name);
thread_.Start();
Event event(false, false);
ThreadStartupData startup = {&event, this};
RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread,
reinterpret_cast<ULONG_PTR>(&startup)));
event.Wait(Event::kForever);
}
TaskQueue::~TaskQueue() {
RTC_DCHECK(!IsCurrent());
while (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) {
RTC_CHECK_EQ(ERROR_NOT_ENOUGH_QUOTA, ::GetLastError());
Sleep(1);
}
thread_.Stop();
}
// static
TaskQueue* TaskQueue::Current() {
return static_cast<TaskQueue*>(::TlsGetValue(GetQueuePtrTls()));
}
// static
bool TaskQueue::IsCurrent(const char* queue_name) {
TaskQueue* current = Current();
return current && current->thread_.name().compare(queue_name) == 0;
}
bool TaskQueue::IsCurrent() const {
return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef());
}
void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
if (::PostThreadMessage(thread_.GetThreadRef(), WM_RUN_TASK, 0,
reinterpret_cast<LPARAM>(task.get()))) {
task.release();
}
}
void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
WPARAM wparam;
#if defined(_WIN64)
// GetTickCount() returns a fairly coarse tick count (resolution or about 8ms)
// so this compensation isn't that accurate, but since we have unused 32 bits
// on Win64, we might as well use them.
wparam = (static_cast<WPARAM>(::GetTickCount()) << 32) | milliseconds;
#else
wparam = milliseconds;
#endif
if (::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, wparam,
reinterpret_cast<LPARAM>(task.get()))) {
task.release();
}
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue) {
QueuedTask* task_ptr = task.release();
QueuedTask* reply_task_ptr = reply.release();
DWORD reply_thread_id = reply_queue->thread_.GetThreadRef();
PostTask([task_ptr, reply_task_ptr, reply_thread_id]() {
if (task_ptr->Run())
delete task_ptr;
// If the thread's message queue is full, we can't queue the task and will
// have to drop it (i.e. delete).
if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0,
reinterpret_cast<LPARAM>(reply_task_ptr))) {
delete reply_task_ptr;
}
});
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply) {
return PostTaskAndReply(std::move(task), std::move(reply), Current());
}
// static
void TaskQueue::ThreadMain(void* context) {
HANDLE timer_handles[MultimediaTimer::kMaxTimers];
// Active multimedia timers.
std::vector<MultimediaTimer> mm_timers;
// Tasks that have been queued by using SetTimer/WM_TIMER.
DelayedTasks delayed_tasks;
while (true) {
RTC_DCHECK(mm_timers.size() <= arraysize(timer_handles));
DWORD count = 0;
for (const auto& t : mm_timers) {
if (!t.is_active())
break;
timer_handles[count++] = t.event();
}
// Make sure we do an alertable wait as that's required to allow APCs to run
// (e.g. required for InitializeQueueThread and stopping the thread in
// PlatformThread).
DWORD result = ::MsgWaitForMultipleObjectsEx(count, timer_handles, INFINITE,
QS_ALLEVENTS, MWMO_ALERTABLE);
RTC_CHECK_NE(WAIT_FAILED, result);
// If we're not waiting for any timers, then count will be equal to
// WAIT_OBJECT_0. If we're waiting for timers, then |count| represents
// "One more than the number of timers", which means that there's a
// message in the queue that needs to be handled.
// If |result| is less than |count|, then its value will be the index of the
// timer that has been signaled.
if (result == (WAIT_OBJECT_0 + count)) {
if (!ProcessQueuedMessages(&delayed_tasks, &mm_timers))
break;
} else if (result < (WAIT_OBJECT_0 + count)) {
mm_timers[result].OnEventSignaled();
RTC_DCHECK(!mm_timers[result].is_active());
// Reuse timer events by moving inactive timers to the back of the vector.
// When new delayed tasks are queued, they'll get reused.
if (mm_timers.size() > 1) {
auto it = mm_timers.begin() + result;
std::rotate(it, it + 1, mm_timers.end());
}
// Collect some garbage.
if (mm_timers.size() > MultimediaTimer::kInstanceThresholdGC) {
const auto inactive = std::find_if(
mm_timers.begin(), mm_timers.end(),
[](const MultimediaTimer& t) { return !t.is_active(); });
if (inactive != mm_timers.end()) {
// Since inactive timers are always moved to the back, we can
// safely delete all timers following the first inactive one.
mm_timers.erase(inactive, mm_timers.end());
}
}
} else {
RTC_DCHECK_EQ(WAIT_IO_COMPLETION, result);
}
}
}
// static
bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks,
std::vector<MultimediaTimer>* timers) {
MSG msg = {};
while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
msg.message != WM_QUIT) {
if (!msg.hwnd) {
switch (msg.message) {
case WM_RUN_TASK: {
QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam);
if (task->Run())
delete task;
break;
}
case WM_QUEUE_DELAYED_TASK: {
std::unique_ptr<QueuedTask> task(
reinterpret_cast<QueuedTask*>(msg.lParam));
uint32_t milliseconds = msg.wParam & 0xFFFFFFFF;
#if defined(_WIN64)
// Subtract the time it took to queue the timer.
const DWORD now = GetTickCount();
DWORD post_time = now - (msg.wParam >> 32);
milliseconds =
post_time > milliseconds ? 0 : milliseconds - post_time;
#endif
bool timer_queued = false;
if (timers->size() < MultimediaTimer::kMaxTimers) {
MultimediaTimer* timer = nullptr;
auto available = std::find_if(
timers->begin(), timers->end(),
[](const MultimediaTimer& t) { return !t.is_active(); });
if (available != timers->end()) {
timer = &(*available);
} else {
timers->emplace_back();
timer = &timers->back();
}
timer_queued =
timer->StartOneShotTimer(std::move(task), milliseconds);
if (!timer_queued) {
// No more multimedia timers can be queued.
// Detach the task and fall back on SetTimer.
task = timer->Cancel();
}
}
// When we fail to use multimedia timers, we fall back on the more
// coarse SetTimer/WM_TIMER approach.
if (!timer_queued) {
UINT_PTR timer_id = ::SetTimer(nullptr, 0, milliseconds, nullptr);
delayed_tasks->insert(std::make_pair(timer_id, task.release()));
}
break;
}
case WM_TIMER: {
::KillTimer(nullptr, msg.wParam);
auto found = delayed_tasks->find(msg.wParam);
RTC_DCHECK(found != delayed_tasks->end());
if (!found->second->Run())
found->second.release();
delayed_tasks->erase(found);
break;
}
default:
RTC_NOTREACHED();
break;
}
} else {
::TranslateMessage(&msg);
::DispatchMessage(&msg);
}
}
return msg.message != WM_QUIT;
}
} // namespace rtc