blob: 448ba0b355e0c2b54e489ea558c561ab92296dd3 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/render_delay_buffer.h"
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "webrtc/base/array_view.h"
#include "webrtc/base/random.h"
#include "webrtc/modules/audio_processing/aec3/aec3_constants.h"
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
#include "webrtc/test/gtest.h"
namespace webrtc {
namespace {
std::string ProduceDebugText(int sample_rate_hz) {
std::ostringstream ss;
ss << "Sample rate: " << sample_rate_hz;
return ss.str();
}
std::string ProduceDebugText(int sample_rate_hz, size_t delay) {
std::ostringstream ss;
ss << "Sample rate: " << sample_rate_hz;
ss << ", Delay: " << delay;
return ss.str();
}
constexpr size_t kMaxApiCallJitter = 30;
} // namespace
// Verifies that the basic swap in the insert call works.
TEST(RenderDelayBuffer, InsertSwap) {
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> delay_buffer(RenderDelayBuffer::Create(
250, NumBandsForRate(rate), kMaxApiCallJitter));
for (size_t k = 0; k < 10; ++k) {
std::vector<std::vector<float>> block_to_insert(
NumBandsForRate(rate), std::vector<float>(kBlockSize, k + 1));
std::vector<std::vector<float>> reference_block = block_to_insert;
EXPECT_TRUE(delay_buffer->Insert(&block_to_insert));
EXPECT_NE(reference_block, block_to_insert);
}
}
}
// Verifies that the buffer passes the blocks in a bitexact manner when the
// delay is zero.
TEST(RenderDelayBuffer, BasicBitexactness) {
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> delay_buffer(RenderDelayBuffer::Create(
20, NumBandsForRate(rate), kMaxApiCallJitter));
for (size_t k = 0; k < 200; ++k) {
std::vector<std::vector<float>> block_to_insert(
NumBandsForRate(rate), std::vector<float>(kBlockSize, k));
std::vector<std::vector<float>> reference_block = block_to_insert;
EXPECT_TRUE(delay_buffer->Insert(&block_to_insert));
ASSERT_TRUE(delay_buffer->IsBlockAvailable());
const std::vector<std::vector<float>>& output_block =
delay_buffer->GetNext();
EXPECT_EQ(reference_block, output_block);
}
}
}
// Verifies that the buffer passes the blocks in a bitexact manner when the
// delay is non-zero.
TEST(RenderDelayBuffer, BitexactnessWithNonZeroDelay) {
constexpr size_t kMaxDelay = 200;
for (auto rate : {8000, 16000, 32000, 48000}) {
for (size_t delay = 0; delay < kMaxDelay; ++delay) {
SCOPED_TRACE(ProduceDebugText(rate, delay));
std::unique_ptr<RenderDelayBuffer> delay_buffer(RenderDelayBuffer::Create(
20 + kMaxDelay, NumBandsForRate(rate), kMaxApiCallJitter));
delay_buffer->SetDelay(delay);
for (size_t k = 0; k < 200 + delay; ++k) {
std::vector<std::vector<float>> block_to_insert(
NumBandsForRate(rate), std::vector<float>(kBlockSize, k));
EXPECT_TRUE(delay_buffer->Insert(&block_to_insert));
ASSERT_TRUE(delay_buffer->IsBlockAvailable());
const std::vector<std::vector<float>>& output_block =
delay_buffer->GetNext();
if (k >= delay) {
std::vector<std::vector<float>> reference_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, k - delay));
EXPECT_EQ(reference_block, output_block);
}
}
}
}
}
// Verifies that the buffer passes the blocks in a bitexact manner when the
// delay is zero and there is jitter in the Insert and GetNext calls.
TEST(RenderDelayBuffer, BasicBitexactnessWithJitter) {
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> delay_buffer(RenderDelayBuffer::Create(
20, NumBandsForRate(rate), kMaxApiCallJitter));
for (size_t k = 0; k < kMaxApiCallJitter; ++k) {
std::vector<std::vector<float>> block_to_insert(
NumBandsForRate(rate), std::vector<float>(kBlockSize, k));
EXPECT_TRUE(delay_buffer->Insert(&block_to_insert));
}
for (size_t k = 0; k < kMaxApiCallJitter; ++k) {
std::vector<std::vector<float>> reference_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, k));
ASSERT_TRUE(delay_buffer->IsBlockAvailable());
const std::vector<std::vector<float>>& output_block =
delay_buffer->GetNext();
EXPECT_EQ(reference_block, output_block);
}
EXPECT_FALSE(delay_buffer->IsBlockAvailable());
}
}
// Verifies that the buffer passes the blocks in a bitexact manner when the
// delay is non-zero and there is jitter in the Insert and GetNext calls.
TEST(RenderDelayBuffer, BitexactnessWithNonZeroDelayAndJitter) {
constexpr size_t kMaxDelay = 200;
for (auto rate : {8000, 16000, 32000, 48000}) {
for (size_t delay = 0; delay < kMaxDelay; ++delay) {
SCOPED_TRACE(ProduceDebugText(rate, delay));
std::unique_ptr<RenderDelayBuffer> delay_buffer(RenderDelayBuffer::Create(
20 + kMaxDelay, NumBandsForRate(rate), kMaxApiCallJitter));
delay_buffer->SetDelay(delay);
for (size_t j = 0; j < 10; ++j) {
for (size_t k = 0; k < kMaxApiCallJitter; ++k) {
const size_t block_value = k + j * kMaxApiCallJitter;
std::vector<std::vector<float>> block_to_insert(
NumBandsForRate(rate),
std::vector<float>(kBlockSize, block_value));
EXPECT_TRUE(delay_buffer->Insert(&block_to_insert));
}
for (size_t k = 0; k < kMaxApiCallJitter; ++k) {
ASSERT_TRUE(delay_buffer->IsBlockAvailable());
const std::vector<std::vector<float>>& output_block =
delay_buffer->GetNext();
const size_t block_value = k + j * kMaxApiCallJitter;
if (block_value >= delay) {
std::vector<std::vector<float>> reference_block(
NumBandsForRate(rate),
std::vector<float>(kBlockSize, block_value - delay));
EXPECT_EQ(reference_block, output_block);
}
}
}
}
}
}
// Verifies that no blocks present in the buffer are lost when the buffer is
// overflowed.
TEST(RenderDelayBuffer, BufferOverflowBitexactness) {
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> delay_buffer(RenderDelayBuffer::Create(
20, NumBandsForRate(rate), kMaxApiCallJitter));
for (size_t k = 0; k < kMaxApiCallJitter; ++k) {
std::vector<std::vector<float>> block_to_insert(
NumBandsForRate(rate), std::vector<float>(kBlockSize, k));
EXPECT_TRUE(delay_buffer->Insert(&block_to_insert));
}
std::vector<std::vector<float>> block_to_insert(
NumBandsForRate(rate),
std::vector<float>(kBlockSize, kMaxApiCallJitter + 1));
auto block_to_insert_copy = block_to_insert;
EXPECT_FALSE(delay_buffer->Insert(&block_to_insert));
EXPECT_EQ(block_to_insert_copy, block_to_insert);
for (size_t k = 0; k < kMaxApiCallJitter; ++k) {
std::vector<std::vector<float>> reference_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, k));
ASSERT_TRUE(delay_buffer->IsBlockAvailable());
const std::vector<std::vector<float>>& output_block =
delay_buffer->GetNext();
EXPECT_EQ(reference_block, output_block);
}
EXPECT_FALSE(delay_buffer->IsBlockAvailable());
}
}
// Verifies that the buffer overflow is correctly reported.
TEST(RenderDelayBuffer, BufferOverflow) {
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> delay_buffer(RenderDelayBuffer::Create(
20, NumBandsForRate(rate), kMaxApiCallJitter));
std::vector<std::vector<float>> block_to_insert(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
for (size_t k = 0; k < kMaxApiCallJitter; ++k) {
EXPECT_TRUE(delay_buffer->Insert(&block_to_insert));
}
EXPECT_FALSE(delay_buffer->Insert(&block_to_insert));
}
}
// Verifies that the check for available block works.
TEST(RenderDelayBuffer, AvailableBlock) {
constexpr size_t kNumBands = 1;
std::unique_ptr<RenderDelayBuffer> delay_buffer(
RenderDelayBuffer::Create(20, kNumBands, kMaxApiCallJitter));
EXPECT_FALSE(delay_buffer->IsBlockAvailable());
std::vector<std::vector<float>> input_block(
kNumBands, std::vector<float>(kBlockSize, 1.f));
EXPECT_TRUE(delay_buffer->Insert(&input_block));
ASSERT_TRUE(delay_buffer->IsBlockAvailable());
delay_buffer->GetNext();
EXPECT_FALSE(delay_buffer->IsBlockAvailable());
}
// Verifies that the maximum delay is computed correctly.
TEST(RenderDelayBuffer, MaxDelay) {
for (size_t max_delay = 1; max_delay < 20; ++max_delay) {
std::unique_ptr<RenderDelayBuffer> delay_buffer(
RenderDelayBuffer::Create(max_delay, 1, kMaxApiCallJitter));
EXPECT_EQ(max_delay, delay_buffer->MaxDelay());
}
}
// Verifies the SetDelay method.
TEST(RenderDelayBuffer, SetDelay) {
std::unique_ptr<RenderDelayBuffer> delay_buffer(
RenderDelayBuffer::Create(20, 1, kMaxApiCallJitter));
EXPECT_EQ(0u, delay_buffer->Delay());
for (size_t delay = 0; delay < 20; ++delay) {
delay_buffer->SetDelay(delay);
EXPECT_EQ(delay, delay_buffer->Delay());
}
}
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies the check for null insert.
// TODO(peah): Re-enable the test once the issue with memory leaks during DEATH
// tests on test bots has been fixed.
TEST(RenderDelayBuffer, DISABLED_NullPointerInInsert) {
std::unique_ptr<RenderDelayBuffer> delay_buffer(
RenderDelayBuffer::Create(20, 1, kMaxApiCallJitter));
EXPECT_DEATH(delay_buffer->Insert(nullptr), "");
}
// Verifies the check for feasible delay.
// TODO(peah): Re-enable the test once the issue with memory leaks during DEATH
// tests on test bots has been fixed.
TEST(RenderDelayBuffer, DISABLED_WrongDelay) {
std::unique_ptr<RenderDelayBuffer> delay_buffer(
RenderDelayBuffer::Create(20, 1, kMaxApiCallJitter));
EXPECT_DEATH(delay_buffer->SetDelay(21), "");
}
// Verifies the check for the number of bands in the inserted blocks.
TEST(RenderDelayBuffer, WrongNumberOfBands) {
for (auto rate : {16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> delay_buffer(RenderDelayBuffer::Create(
20, NumBandsForRate(rate), kMaxApiCallJitter));
std::vector<std::vector<float>> block_to_insert(
NumBandsForRate(rate < 48000 ? rate + 16000 : 16000),
std::vector<float>(kBlockSize, 0.f));
EXPECT_DEATH(delay_buffer->Insert(&block_to_insert), "");
}
}
// Verifies the check of the length of the inserted blocks.
TEST(RenderDelayBuffer, WrongBlockLength) {
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> delay_buffer(RenderDelayBuffer::Create(
20, NumBandsForRate(rate), kMaxApiCallJitter));
std::vector<std::vector<float>> block_to_insert(
NumBandsForRate(rate), std::vector<float>(kBlockSize - 1, 0.f));
EXPECT_DEATH(delay_buffer->Insert(&block_to_insert), "");
}
}
// Verifies the behavior when getting a block from an empty buffer.
// TODO(peah): Re-enable the test once the issue with memory leaks during DEATH
// tests on test bots has been fixed.
TEST(RenderDelayBuffer, DISABLED_GetNextWithNoAvailableBlockVariant1) {
std::unique_ptr<RenderDelayBuffer> delay_buffer(
RenderDelayBuffer::Create(20, 1, kMaxApiCallJitter));
EXPECT_DEATH(delay_buffer->GetNext(), "");
}
// Verifies the behavior when getting a block from an empty buffer.
// TODO(peah): Re-enable the test once the issue with memory leaks during DEATH
// tests on test bots has been fixed.
TEST(RenderDelayBuffer, DISABLED_GetNextWithNoAvailableBlockVariant2) {
std::unique_ptr<RenderDelayBuffer> delay_buffer(
RenderDelayBuffer::Create(20, 1, kMaxApiCallJitter));
std::vector<std::vector<float>> input_block(
1, std::vector<float>(kBlockSize, 1.f));
EXPECT_TRUE(delay_buffer->Insert(&input_block));
delay_buffer->GetNext();
EXPECT_DEATH(delay_buffer->GetNext(), "");
}
#endif
} // namespace webrtc