blob: effbf1e08ff052e515315150ec56db16f83b8715 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cstring>
#include "webrtc/base/array_view.h"
#include "webrtc/base/buffer.h"
#include "webrtc/base/criticalsection.h"
#include "webrtc/base/event.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/race_checker.h"
#include "webrtc/base/scoped_ref_ptr.h"
#include "webrtc/base/thread_annotations.h"
#include "webrtc/modules/audio_device/audio_device_impl.h"
#include "webrtc/modules/audio_device/include/audio_device.h"
#include "webrtc/modules/audio_device/include/mock_audio_transport.h"
#include "webrtc/system_wrappers/include/sleep.h"
#include "webrtc/test/gmock.h"
#include "webrtc/test/gtest.h"
using ::testing::_;
using ::testing::AtLeast;
using ::testing::Ge;
using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::NotNull;
namespace webrtc {
namespace {
// #define ENABLE_DEBUG_PRINTF
#ifdef ENABLE_DEBUG_PRINTF
#define PRINTD(...) fprintf(stderr, __VA_ARGS__);
#else
#define PRINTD(...) ((void)0)
#endif
#define PRINT(...) fprintf(stderr, __VA_ARGS__);
// Don't run these tests in combination with sanitizers.
#if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER)
#define SKIP_TEST_IF_NOT(requirements_satisfied) \
do { \
if (!requirements_satisfied) { \
return; \
} \
} while (false)
#else
// Or if other audio-related requirements are not met.
#define SKIP_TEST_IF_NOT(requirements_satisfied) \
do { \
return; \
} while (false)
#endif
// Number of callbacks (input or output) the tests waits for before we set
// an event indicating that the test was OK.
static constexpr size_t kNumCallbacks = 10;
// Max amount of time we wait for an event to be set while counting callbacks.
static constexpr int kTestTimeOutInMilliseconds = 10 * 1000;
// Average number of audio callbacks per second assuming 10ms packet size.
static constexpr size_t kNumCallbacksPerSecond = 100;
// Run the full-duplex test during this time (unit is in seconds).
static constexpr int kFullDuplexTimeInSec = 5;
enum class TransportType {
kInvalid,
kPlay,
kRecord,
kPlayAndRecord,
};
// Interface for processing the audio stream. Real implementations can e.g.
// run audio in loopback, read audio from a file or perform latency
// measurements.
class AudioStream {
public:
virtual void Write(rtc::ArrayView<const int16_t> source, size_t channels) = 0;
virtual void Read(rtc::ArrayView<int16_t> destination, size_t channels) = 0;
virtual ~AudioStream() = default;
};
} // namespace
// Simple first in first out (FIFO) class that wraps a list of 16-bit audio
// buffers of fixed size and allows Write and Read operations. The idea is to
// store recorded audio buffers (using Write) and then read (using Read) these
// stored buffers with as short delay as possible when the audio layer needs
// data to play out. The number of buffers in the FIFO will stabilize under
// normal conditions since there will be a balance between Write and Read calls.
// The container is a std::list container and access is protected with a lock
// since both sides (playout and recording) are driven by its own thread.
// Note that, we know by design that the size of the audio buffer will not
// change over time and that both sides will use the same size.
class FifoAudioStream : public AudioStream {
public:
void Write(rtc::ArrayView<const int16_t> source, size_t channels) override {
EXPECT_EQ(channels, 1u);
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
const size_t size = [&] {
rtc::CritScope lock(&lock_);
fifo_.push_back(Buffer16(source.data(), source.size()));
return fifo_.size();
}();
if (size > max_size_) {
max_size_ = size;
}
// Add marker once per second to signal that audio is active.
if (write_count_++ % 100 == 0) {
PRINT(".");
}
written_elements_ += size;
}
void Read(rtc::ArrayView<int16_t> destination, size_t channels) override {
EXPECT_EQ(channels, 1u);
rtc::CritScope lock(&lock_);
if (fifo_.empty()) {
std::fill(destination.begin(), destination.end(), 0);
} else {
const Buffer16& buffer = fifo_.front();
RTC_CHECK_EQ(buffer.size(), destination.size());
std::copy(buffer.begin(), buffer.end(), destination.begin());
fifo_.pop_front();
}
}
size_t size() const {
rtc::CritScope lock(&lock_);
return fifo_.size();
}
size_t max_size() const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
return max_size_;
}
size_t average_size() const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
return 0.5 + static_cast<float>(written_elements_ / write_count_);
}
using Buffer16 = rtc::BufferT<int16_t>;
rtc::CriticalSection lock_;
rtc::RaceChecker race_checker_;
std::list<Buffer16> fifo_ GUARDED_BY(lock_);
size_t write_count_ GUARDED_BY(race_checker_) = 0;
size_t max_size_ GUARDED_BY(race_checker_) = 0;
size_t written_elements_ GUARDED_BY(race_checker_) = 0;
};
// Mocks the AudioTransport object and proxies actions for the two callbacks
// (RecordedDataIsAvailable and NeedMorePlayData) to different implementations
// of AudioStreamInterface.
class MockAudioTransport : public test::MockAudioTransport {
public:
explicit MockAudioTransport(TransportType type) : type_(type) {}
~MockAudioTransport() {}
// Set default actions of the mock object. We are delegating to fake
// implementation where the number of callbacks is counted and an event
// is set after a certain number of callbacks. Audio parameters are also
// checked.
void HandleCallbacks(rtc::Event* event,
AudioStream* audio_stream,
int num_callbacks) {
event_ = event;
audio_stream_ = audio_stream;
num_callbacks_ = num_callbacks;
if (play_mode()) {
ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _))
.WillByDefault(
Invoke(this, &MockAudioTransport::RealNeedMorePlayData));
}
if (rec_mode()) {
ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _))
.WillByDefault(
Invoke(this, &MockAudioTransport::RealRecordedDataIsAvailable));
}
}
int32_t RealRecordedDataIsAvailable(const void* audio_buffer,
const size_t samples_per_channel,
const size_t bytes_per_frame,
const size_t channels,
const uint32_t sample_rate,
const uint32_t total_delay_ms,
const int32_t clock_drift,
const uint32_t current_mic_level,
const bool typing_status,
uint32_t& new_mic_level) {
EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks.";
LOG(INFO) << "+";
// Store audio parameters once in the first callback. For all other
// callbacks, verify that the provided audio parameters are maintained and
// that each callback corresponds to 10ms for any given sample rate.
if (!record_parameters_.is_complete()) {
record_parameters_.reset(sample_rate, channels, samples_per_channel);
} else {
EXPECT_EQ(samples_per_channel, record_parameters_.frames_per_buffer());
EXPECT_EQ(bytes_per_frame, record_parameters_.GetBytesPerFrame());
EXPECT_EQ(channels, record_parameters_.channels());
EXPECT_EQ(static_cast<int>(sample_rate),
record_parameters_.sample_rate());
EXPECT_EQ(samples_per_channel,
record_parameters_.frames_per_10ms_buffer());
}
rec_count_++;
// Write audio data to audio stream object if one has been injected.
if (audio_stream_) {
audio_stream_->Write(
rtc::MakeArrayView(static_cast<const int16_t*>(audio_buffer),
samples_per_channel * channels),
channels);
}
// Signal the event after given amount of callbacks.
if (ReceivedEnoughCallbacks()) {
event_->Set();
}
return 0;
}
int32_t RealNeedMorePlayData(const size_t samples_per_channel,
const size_t bytes_per_frame,
const size_t channels,
const uint32_t sample_rate,
void* audio_buffer,
size_t& samples_per_channel_out,
int64_t* elapsed_time_ms,
int64_t* ntp_time_ms) {
EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks.";
LOG(INFO) << "-";
// Store audio parameters once in the first callback. For all other
// callbacks, verify that the provided audio parameters are maintained and
// that each callback corresponds to 10ms for any given sample rate.
if (!playout_parameters_.is_complete()) {
playout_parameters_.reset(sample_rate, channels, samples_per_channel);
} else {
EXPECT_EQ(samples_per_channel, playout_parameters_.frames_per_buffer());
EXPECT_EQ(bytes_per_frame, playout_parameters_.GetBytesPerFrame());
EXPECT_EQ(channels, playout_parameters_.channels());
EXPECT_EQ(static_cast<int>(sample_rate),
playout_parameters_.sample_rate());
EXPECT_EQ(samples_per_channel,
playout_parameters_.frames_per_10ms_buffer());
}
play_count_++;
samples_per_channel_out = samples_per_channel;
// Read audio data from audio stream object if one has been injected.
if (audio_stream_) {
audio_stream_->Read(
rtc::MakeArrayView(static_cast<int16_t*>(audio_buffer),
samples_per_channel * channels),
channels);
} else {
// Fill the audio buffer with zeros to avoid disturbing audio.
const size_t num_bytes = samples_per_channel * bytes_per_frame;
std::memset(audio_buffer, 0, num_bytes);
}
// Signal the event after given amount of callbacks.
if (ReceivedEnoughCallbacks()) {
event_->Set();
}
return 0;
}
bool ReceivedEnoughCallbacks() {
bool recording_done = false;
if (rec_mode()) {
recording_done = rec_count_ >= num_callbacks_;
} else {
recording_done = true;
}
bool playout_done = false;
if (play_mode()) {
playout_done = play_count_ >= num_callbacks_;
} else {
playout_done = true;
}
return recording_done && playout_done;
}
bool play_mode() const {
return type_ == TransportType::kPlay ||
type_ == TransportType::kPlayAndRecord;
}
bool rec_mode() const {
return type_ == TransportType::kRecord ||
type_ == TransportType::kPlayAndRecord;
}
private:
TransportType type_ = TransportType::kInvalid;
rtc::Event* event_ = nullptr;
AudioStream* audio_stream_ = nullptr;
size_t num_callbacks_ = 0;
size_t play_count_ = 0;
size_t rec_count_ = 0;
AudioParameters playout_parameters_;
AudioParameters record_parameters_;
};
// AudioDeviceTest test fixture.
class AudioDeviceTest : public ::testing::Test {
protected:
AudioDeviceTest() : event_(false, false) {
#if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER)
rtc::LogMessage::LogToDebug(rtc::LS_INFO);
// Add extra logging fields here if needed for debugging.
// rtc::LogMessage::LogTimestamps();
// rtc::LogMessage::LogThreads();
audio_device_ =
AudioDeviceModule::Create(0, AudioDeviceModule::kPlatformDefaultAudio);
EXPECT_NE(audio_device_.get(), nullptr);
AudioDeviceModule::AudioLayer audio_layer;
int got_platform_audio_layer =
audio_device_->ActiveAudioLayer(&audio_layer);
if (got_platform_audio_layer != 0 ||
audio_layer == AudioDeviceModule::kLinuxAlsaAudio) {
requirements_satisfied_ = false;
}
if (requirements_satisfied_) {
EXPECT_EQ(0, audio_device_->Init());
const int16_t num_playout_devices = audio_device_->PlayoutDevices();
const int16_t num_record_devices = audio_device_->RecordingDevices();
requirements_satisfied_ =
num_playout_devices > 0 && num_record_devices > 0;
}
#else
requirements_satisfied_ = false;
#endif
if (requirements_satisfied_) {
EXPECT_EQ(0, audio_device_->SetPlayoutDevice(0));
EXPECT_EQ(0, audio_device_->InitSpeaker());
EXPECT_EQ(0, audio_device_->SetRecordingDevice(0));
EXPECT_EQ(0, audio_device_->InitMicrophone());
EXPECT_EQ(0, audio_device_->StereoPlayoutIsAvailable(&stereo_playout_));
EXPECT_EQ(0, audio_device_->SetStereoPlayout(stereo_playout_));
// Avoid asking for input stereo support and always record in mono
// since asking can cause issues in combination with remote desktop.
// See https://bugs.chromium.org/p/webrtc/issues/detail?id=7397 for
// details.
EXPECT_EQ(0, audio_device_->SetStereoRecording(false));
EXPECT_EQ(0, audio_device_->SetAGC(false));
EXPECT_FALSE(audio_device_->AGC());
}
}
virtual ~AudioDeviceTest() {
if (audio_device_) {
EXPECT_EQ(0, audio_device_->Terminate());
}
}
bool requirements_satisfied() const { return requirements_satisfied_; }
rtc::Event* event() { return &event_; }
const rtc::scoped_refptr<AudioDeviceModule>& audio_device() const {
return audio_device_;
}
void StartPlayout() {
EXPECT_FALSE(audio_device()->Playing());
EXPECT_EQ(0, audio_device()->InitPlayout());
EXPECT_TRUE(audio_device()->PlayoutIsInitialized());
EXPECT_EQ(0, audio_device()->StartPlayout());
EXPECT_TRUE(audio_device()->Playing());
}
void StopPlayout() {
EXPECT_EQ(0, audio_device()->StopPlayout());
EXPECT_FALSE(audio_device()->Playing());
EXPECT_FALSE(audio_device()->PlayoutIsInitialized());
}
void StartRecording() {
EXPECT_FALSE(audio_device()->Recording());
EXPECT_EQ(0, audio_device()->InitRecording());
EXPECT_TRUE(audio_device()->RecordingIsInitialized());
EXPECT_EQ(0, audio_device()->StartRecording());
EXPECT_TRUE(audio_device()->Recording());
}
void StopRecording() {
EXPECT_EQ(0, audio_device()->StopRecording());
EXPECT_FALSE(audio_device()->Recording());
EXPECT_FALSE(audio_device()->RecordingIsInitialized());
}
private:
bool requirements_satisfied_ = true;
rtc::Event event_;
rtc::scoped_refptr<AudioDeviceModule> audio_device_;
bool stereo_playout_ = false;
};
// Uses the test fixture to create, initialize and destruct the ADM.
TEST_F(AudioDeviceTest, ConstructDestruct) {}
TEST_F(AudioDeviceTest, InitTerminate) {
SKIP_TEST_IF_NOT(requirements_satisfied());
// Initialization is part of the test fixture.
EXPECT_TRUE(audio_device()->Initialized());
EXPECT_EQ(0, audio_device()->Terminate());
EXPECT_FALSE(audio_device()->Initialized());
}
// Tests Start/Stop playout without any registered audio callback.
TEST_F(AudioDeviceTest, StartStopPlayout) {
SKIP_TEST_IF_NOT(requirements_satisfied());
StartPlayout();
StopPlayout();
StartPlayout();
StopPlayout();
}
// Tests Start/Stop recording without any registered audio callback.
TEST_F(AudioDeviceTest, StartStopRecording) {
SKIP_TEST_IF_NOT(requirements_satisfied());
StartRecording();
StopRecording();
StartRecording();
StopRecording();
}
// Start playout and verify that the native audio layer starts asking for real
// audio samples to play out using the NeedMorePlayData() callback.
// Note that we can't add expectations on audio parameters in EXPECT_CALL
// since parameter are not provided in the each callback. We therefore test and
// verify the parameters in the fake audio transport implementation instead.
TEST_F(AudioDeviceTest, StartPlayoutVerifyCallbacks) {
SKIP_TEST_IF_NOT(requirements_satisfied());
MockAudioTransport mock(TransportType::kPlay);
mock.HandleCallbacks(event(), nullptr, kNumCallbacks);
EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
event()->Wait(kTestTimeOutInMilliseconds);
StopPlayout();
}
// Start recording and verify that the native audio layer starts providing real
// audio samples using the RecordedDataIsAvailable() callback.
TEST_F(AudioDeviceTest, StartRecordingVerifyCallbacks) {
SKIP_TEST_IF_NOT(requirements_satisfied());
MockAudioTransport mock(TransportType::kRecord);
mock.HandleCallbacks(event(), nullptr, kNumCallbacks);
EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _,
false, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartRecording();
event()->Wait(kTestTimeOutInMilliseconds);
StopRecording();
}
// Start playout and recording (full-duplex audio) and verify that audio is
// active in both directions.
TEST_F(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) {
SKIP_TEST_IF_NOT(requirements_satisfied());
MockAudioTransport mock(TransportType::kPlayAndRecord);
mock.HandleCallbacks(event(), nullptr, kNumCallbacks);
EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _,
false, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
StartRecording();
event()->Wait(kTestTimeOutInMilliseconds);
StopRecording();
StopPlayout();
}
// Start playout and recording and store recorded data in an intermediate FIFO
// buffer from which the playout side then reads its samples in the same order
// as they were stored. Under ideal circumstances, a callback sequence would
// look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-'
// means 'packet played'. Under such conditions, the FIFO would contain max 1,
// with an average somewhere in (0,1) depending on how long the packets are
// buffered. However, under more realistic conditions, the size
// of the FIFO will vary more due to an unbalance between the two sides.
// This test tries to verify that the device maintains a balanced callback-
// sequence by running in loopback for a few seconds while measuring the size
// (max and average) of the FIFO. The size of the FIFO is increased by the
// recording side and decreased by the playout side.
TEST_F(AudioDeviceTest, RunPlayoutAndRecordingInFullDuplex) {
SKIP_TEST_IF_NOT(requirements_satisfied());
NiceMock<MockAudioTransport> mock(TransportType::kPlayAndRecord);
FifoAudioStream audio_stream;
mock.HandleCallbacks(event(), &audio_stream,
kFullDuplexTimeInSec * kNumCallbacksPerSecond);
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
// Run both sides in mono to make the loopback packet handling less complex.
// The test works for stereo as well; the only requirement is that both sides
// use the same configuration.
EXPECT_EQ(0, audio_device()->SetStereoPlayout(false));
EXPECT_EQ(0, audio_device()->SetStereoRecording(false));
StartPlayout();
StartRecording();
event()->Wait(
std::max(kTestTimeOutInMilliseconds, 1000 * kFullDuplexTimeInSec));
StopRecording();
StopPlayout();
// This thresholds is set rather high to accommodate differences in hardware
// in several devices. The main idea is to capture cases where a very large
// latency is built up.
EXPECT_LE(audio_stream.average_size(), 5u);
PRINT("\n");
}
} // namespace webrtc