blob: 83c41e12543f9f8d14a48236e1849871a0904e2d [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/suppression_gain.h"
#include "webrtc/base/checks.h"
#include "webrtc/system_wrappers/include/cpu_features_wrapper.h"
#include "webrtc/test/gtest.h"
#include "webrtc/typedefs.h"
namespace webrtc {
namespace aec3 {
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output gains works.
TEST(SuppressionGain, NullOutputGains) {
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> R2;
std::array<float, kFftLengthBy2Plus1> N2;
E2.fill(0.f);
R2.fill(0.f);
N2.fill(0.f);
float high_bands_gain;
EXPECT_DEATH(SuppressionGain(DetectOptimization())
.GetGain(E2, R2, N2, false,
std::vector<std::vector<float>>(
3, std::vector<float>(kBlockSize, 0.f)),
1, false, &high_bands_gain, nullptr),
"");
}
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
// Verifies that the optimized methods are bitexact to their reference
// counterparts.
TEST(SuppressionGain, TestOptimizations) {
if (WebRtc_GetCPUInfo(kSSE2) != 0) {
std::array<float, kFftLengthBy2 - 1> G2_old;
std::array<float, kFftLengthBy2 - 1> M2_old;
std::array<float, kFftLengthBy2 - 1> G2_old_SSE2;
std::array<float, kFftLengthBy2 - 1> M2_old_SSE2;
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> R2;
std::array<float, kFftLengthBy2Plus1> N2;
std::array<float, kFftLengthBy2Plus1> g;
std::array<float, kFftLengthBy2Plus1> g_SSE2;
G2_old.fill(1.f);
M2_old.fill(.23f);
G2_old_SSE2.fill(1.f);
M2_old_SSE2.fill(.23f);
E2.fill(10.f);
R2.fill(0.1f);
N2.fill(100.f);
for (int k = 0; k < 10; ++k) {
ComputeGains(E2, R2, N2, 0.1f, &G2_old, &M2_old, &g);
ComputeGains_SSE2(E2, R2, N2, 0.1f, &G2_old_SSE2, &M2_old_SSE2, &g_SSE2);
for (size_t j = 0; j < G2_old.size(); ++j) {
EXPECT_NEAR(G2_old[j], G2_old_SSE2[j], 0.0000001f);
}
for (size_t j = 0; j < M2_old.size(); ++j) {
EXPECT_NEAR(M2_old[j], M2_old_SSE2[j], 0.0000001f);
}
for (size_t j = 0; j < g.size(); ++j) {
EXPECT_NEAR(g[j], g_SSE2[j], 0.0000001f);
}
}
E2.fill(100.f);
R2.fill(0.1f);
N2.fill(0.f);
for (int k = 0; k < 10; ++k) {
ComputeGains(E2, R2, N2, 0.1f, &G2_old, &M2_old, &g);
ComputeGains_SSE2(E2, R2, N2, 0.1f, &G2_old_SSE2, &M2_old_SSE2, &g_SSE2);
for (size_t j = 0; j < G2_old.size(); ++j) {
EXPECT_NEAR(G2_old[j], G2_old_SSE2[j], 0.0000001f);
}
for (size_t j = 0; j < M2_old.size(); ++j) {
EXPECT_NEAR(M2_old[j], M2_old_SSE2[j], 0.0000001f);
}
for (size_t j = 0; j < g.size(); ++j) {
EXPECT_NEAR(g[j], g_SSE2[j], 0.0000001f);
}
}
E2.fill(0.1f);
R2.fill(100.f);
N2.fill(0.f);
for (int k = 0; k < 10; ++k) {
ComputeGains(E2, R2, N2, 0.1f, &G2_old, &M2_old, &g);
ComputeGains_SSE2(E2, R2, N2, 0.1f, &G2_old_SSE2, &M2_old_SSE2, &g_SSE2);
for (size_t j = 0; j < G2_old.size(); ++j) {
EXPECT_NEAR(G2_old[j], G2_old_SSE2[j], 0.0000001f);
}
for (size_t j = 0; j < M2_old.size(); ++j) {
EXPECT_NEAR(M2_old[j], M2_old_SSE2[j], 0.0000001f);
}
for (size_t j = 0; j < g.size(); ++j) {
EXPECT_NEAR(g[j], g_SSE2[j], 0.0000001f);
}
}
}
}
#endif
// Does a sanity check that the gains are correctly computed.
TEST(SuppressionGain, BasicGainComputation) {
SuppressionGain suppression_gain(DetectOptimization());
float high_bands_gain;
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> R2;
std::array<float, kFftLengthBy2Plus1> N2;
std::array<float, kFftLengthBy2Plus1> g;
std::vector<std::vector<float>> x(1, std::vector<float>(kBlockSize, 0.f));
// Ensure that a strong noise is detected to mask any echoes.
E2.fill(10.f);
R2.fill(0.1f);
N2.fill(100.f);
for (int k = 0; k < 10; ++k) {
suppression_gain.GetGain(E2, R2, N2, false, x, 1, false, &high_bands_gain,
&g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.f, a, 0.001); });
// Ensure that a strong nearend is detected to mask any echoes.
E2.fill(100.f);
R2.fill(0.1f);
N2.fill(0.f);
for (int k = 0; k < 10; ++k) {
suppression_gain.GetGain(E2, R2, N2, false, x, 1, false, &high_bands_gain,
&g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.f, a, 0.001); });
// Ensure that a strong echo is suppressed.
E2.fill(0.1f);
R2.fill(100.f);
N2.fill(0.f);
for (int k = 0; k < 10; ++k) {
suppression_gain.GetGain(E2, R2, N2, false, x, 1, false, &high_bands_gain,
&g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(0.f, a, 0.001); });
// Verify the functionality for forcing a zero gain.
suppression_gain.GetGain(E2, R2, N2, false, x, 1, true, &high_bands_gain, &g);
std::for_each(g.begin(), g.end(), [](float a) { EXPECT_FLOAT_EQ(0.f, a); });
EXPECT_FLOAT_EQ(0.f, high_bands_gain);
}
} // namespace aec3
} // namespace webrtc