blob: 0bb04a99df03d7a193411ab829832e3092343e1a [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/codecs/test/videoprocessor.h"
#include <string.h>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "webrtc/api/video/i420_buffer.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/timeutils.h"
#include "webrtc/common_types.h"
#include "webrtc/modules/video_coding/include/video_codec_initializer.h"
#include "webrtc/modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include "webrtc/modules/video_coding/utility/default_video_bitrate_allocator.h"
#include "webrtc/system_wrappers/include/cpu_info.h"
namespace webrtc {
namespace test {
namespace {
// TODO(brandtr): Update this to use the real frame rate.
const int k90khzTimestampFrameDiff = 3000; // Assuming 30 fps.
// Use the frame number as the basis for timestamp to identify frames. Let the
// first timestamp be non-zero, to not make the IvfFileWriter believe that we
// want to use capture timestamps in the IVF files.
uint32_t FrameNumberToTimestamp(int frame_number) {
RTC_DCHECK_GE(frame_number, 0);
return (frame_number + 1) * k90khzTimestampFrameDiff;
}
int TimestampToFrameNumber(uint32_t timestamp) {
RTC_DCHECK_GT(timestamp, 0);
RTC_DCHECK_EQ(timestamp % k90khzTimestampFrameDiff, 0);
return (timestamp / k90khzTimestampFrameDiff) - 1;
}
std::unique_ptr<VideoBitrateAllocator> CreateBitrateAllocator(
const TestConfig& config) {
std::unique_ptr<TemporalLayersFactory> tl_factory;
if (config.codec_settings->codecType == VideoCodecType::kVideoCodecVP8) {
tl_factory.reset(new TemporalLayersFactory());
config.codec_settings->VP8()->tl_factory = tl_factory.get();
}
return std::unique_ptr<VideoBitrateAllocator>(
VideoCodecInitializer::CreateBitrateAllocator(*config.codec_settings,
std::move(tl_factory)));
}
void PrintCodecSettings(const VideoCodec* config) {
printf(" Start bitrate : %d kbps\n", config->startBitrate);
printf(" Width : %d\n", config->width);
printf(" Height : %d\n", config->height);
printf(" Codec type : %s\n",
CodecTypeToPayloadName(config->codecType).value_or("Unknown"));
if (config->codecType == kVideoCodecVP8) {
printf(" Denoising : %d\n", config->VP8().denoisingOn);
printf(" Error concealment: %d\n", config->VP8().errorConcealmentOn);
printf(" Frame dropping : %d\n", config->VP8().frameDroppingOn);
printf(" Resilience : %d\n", config->VP8().resilience);
} else if (config->codecType == kVideoCodecVP9) {
printf(" Denoising : %d\n", config->VP9().denoisingOn);
printf(" Frame dropping : %d\n", config->VP9().frameDroppingOn);
printf(" Resilience : %d\n", config->VP9().resilience);
}
}
int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec;
RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min());
RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max());
return static_cast<int>(diff_us);
}
} // namespace
const char* ExcludeFrameTypesToStr(ExcludeFrameTypes e) {
switch (e) {
case kExcludeOnlyFirstKeyFrame:
return "ExcludeOnlyFirstKeyFrame";
case kExcludeAllKeyFrames:
return "ExcludeAllKeyFrames";
default:
RTC_NOTREACHED();
return "Unknown";
}
}
TestConfig::TestConfig()
: name(""),
description(""),
test_number(0),
input_filename(""),
output_filename(""),
output_dir("out"),
networking_config(),
exclude_frame_types(kExcludeOnlyFirstKeyFrame),
frame_length_in_bytes(0),
use_single_core(false),
keyframe_interval(0),
codec_settings(nullptr),
verbose(true) {}
TestConfig::~TestConfig() {}
VideoProcessorImpl::VideoProcessorImpl(webrtc::VideoEncoder* encoder,
webrtc::VideoDecoder* decoder,
FrameReader* analysis_frame_reader,
FrameWriter* analysis_frame_writer,
PacketManipulator* packet_manipulator,
const TestConfig& config,
Stats* stats,
FrameWriter* source_frame_writer,
IvfFileWriter* encoded_frame_writer,
FrameWriter* decoded_frame_writer)
: encoder_(encoder),
decoder_(decoder),
bitrate_allocator_(CreateBitrateAllocator(config)),
encode_callback_(new VideoProcessorEncodeCompleteCallback(this)),
decode_callback_(new VideoProcessorDecodeCompleteCallback(this)),
packet_manipulator_(packet_manipulator),
config_(config),
analysis_frame_reader_(analysis_frame_reader),
analysis_frame_writer_(analysis_frame_writer),
num_frames_(analysis_frame_reader->NumberOfFrames()),
source_frame_writer_(source_frame_writer),
encoded_frame_writer_(encoded_frame_writer),
decoded_frame_writer_(decoded_frame_writer),
initialized_(false),
last_encoded_frame_num_(-1),
last_decoded_frame_num_(-1),
first_key_frame_has_been_excluded_(false),
last_decoded_frame_buffer_(0, analysis_frame_reader->FrameLength()),
stats_(stats),
num_dropped_frames_(0),
num_spatial_resizes_(0),
bit_rate_factor_(0.0) {
RTC_DCHECK(encoder);
RTC_DCHECK(decoder);
RTC_DCHECK(packet_manipulator);
RTC_DCHECK(analysis_frame_reader);
RTC_DCHECK(analysis_frame_writer);
RTC_DCHECK(stats);
frame_infos_.reserve(num_frames_);
}
bool VideoProcessorImpl::Init() {
RTC_DCHECK(!initialized_)
<< "This VideoProcessor has already been initialized.";
// Calculate a factor used for bit rate calculations.
bit_rate_factor_ = config_.codec_settings->maxFramerate * 0.001 * 8; // bits
// Setup required callbacks for the encoder/decoder.
RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(encode_callback_.get()),
WEBRTC_VIDEO_CODEC_OK)
<< "Failed to register encode complete callback";
RTC_CHECK_EQ(decoder_->RegisterDecodeCompleteCallback(decode_callback_.get()),
WEBRTC_VIDEO_CODEC_OK)
<< "Failed to register decode complete callback";
// Initialize the encoder and decoder.
uint32_t num_cores =
config_.use_single_core ? 1 : CpuInfo::DetectNumberOfCores();
RTC_CHECK_EQ(
encoder_->InitEncode(config_.codec_settings, num_cores,
config_.networking_config.max_payload_size_in_bytes),
WEBRTC_VIDEO_CODEC_OK)
<< "Failed to initialize VideoEncoder";
RTC_CHECK_EQ(decoder_->InitDecode(config_.codec_settings, num_cores),
WEBRTC_VIDEO_CODEC_OK)
<< "Failed to initialize VideoDecoder";
if (config_.verbose) {
printf("Video Processor:\n");
printf(" #CPU cores used : %d\n", num_cores);
printf(" Total # of frames: %d\n", num_frames_);
printf(" Codec settings:\n");
printf(" Encoder implementation name: %s\n",
encoder_->ImplementationName());
printf(" Decoder implementation name: %s\n",
decoder_->ImplementationName());
PrintCodecSettings(config_.codec_settings);
}
initialized_ = true;
return true;
}
VideoProcessorImpl::~VideoProcessorImpl() {
encoder_->RegisterEncodeCompleteCallback(nullptr);
decoder_->RegisterDecodeCompleteCallback(nullptr);
}
void VideoProcessorImpl::SetRates(int bit_rate, int frame_rate) {
int set_rates_result = encoder_->SetRateAllocation(
bitrate_allocator_->GetAllocation(bit_rate * 1000, frame_rate),
frame_rate);
RTC_DCHECK_GE(set_rates_result, 0)
<< "Failed to update encoder with new rate " << bit_rate;
num_dropped_frames_ = 0;
num_spatial_resizes_ = 0;
}
size_t VideoProcessorImpl::EncodedFrameSize(int frame_number) {
RTC_DCHECK_LT(frame_number, frame_infos_.size());
return frame_infos_[frame_number].encoded_frame_size;
}
FrameType VideoProcessorImpl::EncodedFrameType(int frame_number) {
RTC_DCHECK_LT(frame_number, frame_infos_.size());
return frame_infos_[frame_number].encoded_frame_type;
}
int VideoProcessorImpl::NumberDroppedFrames() {
return num_dropped_frames_;
}
int VideoProcessorImpl::NumberSpatialResizes() {
return num_spatial_resizes_;
}
bool VideoProcessorImpl::ProcessFrame(int frame_number) {
RTC_DCHECK_GE(frame_number, 0);
RTC_DCHECK_LE(frame_number, frame_infos_.size())
<< "Must process frames without gaps.";
RTC_DCHECK(initialized_) << "Attempting to use uninitialized VideoProcessor";
rtc::scoped_refptr<VideoFrameBuffer> buffer(
analysis_frame_reader_->ReadFrame());
if (!buffer) {
// Last frame has been reached.
return false;
}
if (source_frame_writer_) {
size_t length = CalcBufferSize(kI420, buffer->width(), buffer->height());
rtc::Buffer extracted_buffer(length);
int extracted_length =
ExtractBuffer(buffer, length, extracted_buffer.data());
RTC_DCHECK_EQ(extracted_length, source_frame_writer_->FrameLength());
RTC_CHECK(source_frame_writer_->WriteFrame(extracted_buffer.data()));
}
uint32_t timestamp = FrameNumberToTimestamp(frame_number);
VideoFrame source_frame(buffer, timestamp, 0, webrtc::kVideoRotation_0);
// Store frame information during the different stages of encode and decode.
frame_infos_.emplace_back();
FrameInfo* frame_info = &frame_infos_.back();
frame_info->timestamp = timestamp;
// Decide if we are going to force a keyframe.
std::vector<FrameType> frame_types(1, kVideoFrameDelta);
if (config_.keyframe_interval > 0 &&
frame_number % config_.keyframe_interval == 0) {
frame_types[0] = kVideoFrameKey;
}
// Create frame statistics object used for aggregation at end of test run.
FrameStatistic* frame_stat = &stats_->NewFrame(frame_number);
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
frame_info->encode_start_ns = rtc::TimeNanos();
frame_stat->encode_return_code =
encoder_->Encode(source_frame, nullptr, &frame_types);
if (frame_stat->encode_return_code != WEBRTC_VIDEO_CODEC_OK) {
fprintf(stderr, "Failed to encode frame %d, return code: %d\n",
frame_number, frame_stat->encode_return_code);
}
return true;
}
void VideoProcessorImpl::FrameEncoded(
webrtc::VideoCodecType codec,
const EncodedImage& encoded_image,
const webrtc::RTPFragmentationHeader* fragmentation) {
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
int64_t encode_stop_ns = rtc::TimeNanos();
if (encoded_frame_writer_) {
RTC_CHECK(encoded_frame_writer_->WriteFrame(encoded_image, codec));
}
// Timestamp is proportional to frame number, so this gives us number of
// dropped frames.
int frame_number = TimestampToFrameNumber(encoded_image._timeStamp);
bool last_frame_missing = false;
if (frame_number > 0) {
RTC_DCHECK_GE(last_encoded_frame_num_, 0);
int num_dropped_from_last_encode =
frame_number - last_encoded_frame_num_ - 1;
RTC_DCHECK_GE(num_dropped_from_last_encode, 0);
num_dropped_frames_ += num_dropped_from_last_encode;
if (num_dropped_from_last_encode > 0) {
// For dropped frames, we write out the last decoded frame to avoid
// getting out of sync for the computation of PSNR and SSIM.
for (int i = 0; i < num_dropped_from_last_encode; i++) {
RTC_DCHECK_EQ(last_decoded_frame_buffer_.size(),
analysis_frame_writer_->FrameLength());
RTC_CHECK(analysis_frame_writer_->WriteFrame(
last_decoded_frame_buffer_.data()));
if (decoded_frame_writer_) {
RTC_DCHECK_EQ(last_decoded_frame_buffer_.size(),
decoded_frame_writer_->FrameLength());
RTC_CHECK(decoded_frame_writer_->WriteFrame(
last_decoded_frame_buffer_.data()));
}
}
}
last_frame_missing =
(frame_infos_[last_encoded_frame_num_].manipulated_length == 0);
}
// Ensure strict monotonicity.
RTC_CHECK_GT(frame_number, last_encoded_frame_num_);
last_encoded_frame_num_ = frame_number;
// Frame is not dropped, so update frame information and statistics.
RTC_DCHECK_LT(frame_number, frame_infos_.size());
FrameInfo* frame_info = &frame_infos_[frame_number];
frame_info->encoded_frame_size = encoded_image._length;
frame_info->encoded_frame_type = encoded_image._frameType;
FrameStatistic* frame_stat = &stats_->stats_[frame_number];
frame_stat->encode_time_in_us =
GetElapsedTimeMicroseconds(frame_info->encode_start_ns, encode_stop_ns);
frame_stat->encoding_successful = true;
frame_stat->encoded_frame_length_in_bytes = encoded_image._length;
frame_stat->frame_number = frame_number;
frame_stat->frame_type = encoded_image._frameType;
frame_stat->qp = encoded_image.qp_;
frame_stat->bit_rate_in_kbps = encoded_image._length * bit_rate_factor_;
frame_stat->total_packets =
encoded_image._length / config_.networking_config.packet_size_in_bytes +
1;
// Simulate packet loss.
bool exclude_this_frame = false;
if (encoded_image._frameType == kVideoFrameKey) {
// Only keyframes can be excluded.
switch (config_.exclude_frame_types) {
case kExcludeOnlyFirstKeyFrame:
if (!first_key_frame_has_been_excluded_) {
first_key_frame_has_been_excluded_ = true;
exclude_this_frame = true;
}
break;
case kExcludeAllKeyFrames:
exclude_this_frame = true;
break;
default:
RTC_NOTREACHED();
}
}
// Make a raw copy of the |encoded_image| buffer.
size_t copied_buffer_size = encoded_image._length +
EncodedImage::GetBufferPaddingBytes(codec);
std::unique_ptr<uint8_t[]> copied_buffer(new uint8_t[copied_buffer_size]);
memcpy(copied_buffer.get(), encoded_image._buffer, encoded_image._length);
// The image to feed to the decoder.
EncodedImage copied_image;
memcpy(&copied_image, &encoded_image, sizeof(copied_image));
copied_image._size = copied_buffer_size;
copied_image._buffer = copied_buffer.get();
if (!exclude_this_frame) {
frame_stat->packets_dropped =
packet_manipulator_->ManipulatePackets(&copied_image);
}
frame_info->manipulated_length = copied_image._length;
// Keep track of if frames are lost due to packet loss so we can tell
// this to the encoder (this is handled by the RTP logic in the full stack).
// TODO(kjellander): Pass fragmentation header to the decoder when
// CL 172001 has been submitted and PacketManipulator supports this.
// For the highest measurement accuracy of the decode time, the start/stop
// time recordings should wrap the Decode call as tightly as possible.
frame_info->decode_start_ns = rtc::TimeNanos();
frame_stat->decode_return_code =
decoder_->Decode(copied_image, last_frame_missing, nullptr);
if (frame_stat->decode_return_code != WEBRTC_VIDEO_CODEC_OK) {
// Write the last successful frame the output file to avoid getting it out
// of sync with the source file for SSIM and PSNR comparisons.
RTC_DCHECK_EQ(last_decoded_frame_buffer_.size(),
analysis_frame_writer_->FrameLength());
RTC_CHECK(
analysis_frame_writer_->WriteFrame(last_decoded_frame_buffer_.data()));
if (decoded_frame_writer_) {
RTC_DCHECK_EQ(last_decoded_frame_buffer_.size(),
decoded_frame_writer_->FrameLength());
RTC_CHECK(
decoded_frame_writer_->WriteFrame(last_decoded_frame_buffer_.data()));
}
}
}
void VideoProcessorImpl::FrameDecoded(const VideoFrame& image) {
// For the highest measurement accuracy of the decode time, the start/stop
// time recordings should wrap the Decode call as tightly as possible.
int64_t decode_stop_ns = rtc::TimeNanos();
// Update frame information and statistics.
int frame_number = TimestampToFrameNumber(image.timestamp());
RTC_DCHECK_LT(frame_number, frame_infos_.size());
FrameInfo* frame_info = &frame_infos_[frame_number];
frame_info->decoded_width = image.width();
frame_info->decoded_height = image.height();
FrameStatistic* frame_stat = &stats_->stats_[frame_number];
frame_stat->decode_time_in_us =
GetElapsedTimeMicroseconds(frame_info->decode_start_ns, decode_stop_ns);
frame_stat->decoding_successful = true;
// Check if the codecs have resized the frame since previously decoded frame.
if (frame_number > 0) {
RTC_DCHECK_GE(last_decoded_frame_num_, 0);
const FrameInfo& last_decoded_frame_info =
frame_infos_[last_decoded_frame_num_];
if (static_cast<int>(image.width()) !=
last_decoded_frame_info.decoded_width ||
static_cast<int>(image.height()) !=
last_decoded_frame_info.decoded_height) {
++num_spatial_resizes_;
}
}
// Ensure strict monotonicity.
RTC_CHECK_GT(frame_number, last_decoded_frame_num_);
last_decoded_frame_num_ = frame_number;
// Check if codec size is different from the original size, and if so,
// scale back to original size. This is needed for the PSNR and SSIM
// calculations.
size_t extracted_length;
rtc::Buffer extracted_buffer;
if (image.width() != config_.codec_settings->width ||
image.height() != config_.codec_settings->height) {
rtc::scoped_refptr<I420Buffer> scaled_buffer(I420Buffer::Create(
config_.codec_settings->width, config_.codec_settings->height));
// Should be the same aspect ratio, no cropping needed.
if (image.video_frame_buffer()->native_handle()) {
scaled_buffer->ScaleFrom(
*image.video_frame_buffer()->NativeToI420Buffer());
} else {
scaled_buffer->ScaleFrom(*image.video_frame_buffer());
}
size_t length =
CalcBufferSize(kI420, scaled_buffer->width(), scaled_buffer->height());
extracted_buffer.SetSize(length);
extracted_length =
ExtractBuffer(scaled_buffer, length, extracted_buffer.data());
} else {
// No resize.
size_t length = CalcBufferSize(kI420, image.width(), image.height());
extracted_buffer.SetSize(length);
if (image.video_frame_buffer()->native_handle()) {
extracted_length =
ExtractBuffer(image.video_frame_buffer()->NativeToI420Buffer(),
length, extracted_buffer.data());
} else {
extracted_length = ExtractBuffer(image.video_frame_buffer(), length,
extracted_buffer.data());
}
}
RTC_DCHECK_EQ(extracted_length, analysis_frame_writer_->FrameLength());
RTC_CHECK(analysis_frame_writer_->WriteFrame(extracted_buffer.data()));
if (decoded_frame_writer_) {
RTC_DCHECK_EQ(extracted_length, decoded_frame_writer_->FrameLength());
RTC_CHECK(decoded_frame_writer_->WriteFrame(extracted_buffer.data()));
}
last_decoded_frame_buffer_ = std::move(extracted_buffer);
}
} // namespace test
} // namespace webrtc