| /* | 
 |  *  Copyright 2020 The WebRTC Project Authors. All rights reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "rtc_base/boringssl_certificate.h" | 
 |  | 
 | #include <openssl/asn1.h> | 
 | #include <openssl/base.h> | 
 | #include <openssl/bytestring.h> | 
 | #include <openssl/digest.h> | 
 | #include <openssl/evp.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/pool.h> | 
 | #include <openssl/rand.h> | 
 |  | 
 | #include <cstdint> | 
 | #include <cstring> | 
 | #include <ctime> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <utility> | 
 |  | 
 | #include "absl/strings/string_view.h" | 
 | #include "rtc_base/buffer.h" | 
 | #include "rtc_base/checks.h" | 
 | #include "rtc_base/crypto_random.h" | 
 | #include "rtc_base/logging.h" | 
 | #include "rtc_base/message_digest.h" | 
 | #include "rtc_base/openssl_digest.h" | 
 | #include "rtc_base/openssl_key_pair.h" | 
 | #include "rtc_base/openssl_utility.h" | 
 | #include "rtc_base/ssl_certificate.h" | 
 | #include "rtc_base/ssl_identity.h" | 
 |  | 
 | namespace webrtc { | 
 | namespace { | 
 |  | 
 | // List of OIDs of signature algorithms accepted by WebRTC. | 
 | // Taken from openssl/nid.h. | 
 | const uint8_t kMD5WithRSA[] = {0x2b, 0x0e, 0x03, 0x02, 0x03}; | 
 | const uint8_t kMD5WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                          0x0d, 0x01, 0x01, 0x04}; | 
 | const uint8_t kECDSAWithSHA1[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x01}; | 
 | const uint8_t kDSAWithSHA1[] = {0x2a, 0x86, 0x48, 0xce, 0x38, 0x04, 0x03}; | 
 | const uint8_t kDSAWithSHA1_2[] = {0x2b, 0x0e, 0x03, 0x02, 0x1b}; | 
 | const uint8_t kSHA1WithRSA[] = {0x2b, 0x0e, 0x03, 0x02, 0x1d}; | 
 | const uint8_t kSHA1WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                           0x0d, 0x01, 0x01, 0x05}; | 
 | const uint8_t kECDSAWithSHA224[] = {0x2a, 0x86, 0x48, 0xce, | 
 |                                     0x3d, 0x04, 0x03, 0x01}; | 
 | const uint8_t kSHA224WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                             0x0d, 0x01, 0x01, 0x0e}; | 
 | const uint8_t kDSAWithSHA224[] = {0x60, 0x86, 0x48, 0x01, 0x65, | 
 |                                   0x03, 0x04, 0x03, 0x01}; | 
 | const uint8_t kECDSAWithSHA256[] = {0x2a, 0x86, 0x48, 0xce, | 
 |                                     0x3d, 0x04, 0x03, 0x02}; | 
 | const uint8_t kSHA256WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                             0x0d, 0x01, 0x01, 0x0b}; | 
 | const uint8_t kDSAWithSHA256[] = {0x60, 0x86, 0x48, 0x01, 0x65, | 
 |                                   0x03, 0x04, 0x03, 0x02}; | 
 | const uint8_t kECDSAWithSHA384[] = {0x2a, 0x86, 0x48, 0xce, | 
 |                                     0x3d, 0x04, 0x03, 0x03}; | 
 | const uint8_t kSHA384WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                             0x0d, 0x01, 0x01, 0x0c}; | 
 | const uint8_t kECDSAWithSHA512[] = {0x2a, 0x86, 0x48, 0xce, | 
 |                                     0x3d, 0x04, 0x03, 0x04}; | 
 | const uint8_t kSHA512WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                             0x0d, 0x01, 0x01, 0x0d}; | 
 |  | 
 | #if !defined(NDEBUG) | 
 | // Print a certificate to the log, for debugging. | 
 | void PrintCert(BoringSSLCertificate* cert) { | 
 |   // Since we're using CRYPTO_BUFFER, we can't use X509_print_ex, so we'll just | 
 |   // print the PEM string. | 
 |   RTC_DLOG(LS_VERBOSE) << "PEM representation of certificate:\n" | 
 |                        << cert->ToPEMString(); | 
 | } | 
 | #endif | 
 |  | 
 | bool AddSHA256SignatureAlgorithm(CBB* cbb, KeyType key_type) { | 
 |   // An AlgorithmIdentifier is described in RFC 5280, 4.1.1.2. | 
 |   CBB sequence, oid, params; | 
 |   if (!CBB_add_asn1(cbb, &sequence, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&sequence, &oid, CBS_ASN1_OBJECT)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   switch (key_type) { | 
 |     case KT_RSA: | 
 |       if (!CBB_add_bytes(&oid, kSHA256WithRSAEncryption, | 
 |                          sizeof(kSHA256WithRSAEncryption)) || | 
 |           !CBB_add_asn1(&sequence, ¶ms, CBS_ASN1_NULL)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     case KT_ECDSA: | 
 |       if (!CBB_add_bytes(&oid, kECDSAWithSHA256, sizeof(kECDSAWithSHA256))) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     default: | 
 |       RTC_DCHECK_NOTREACHED(); | 
 |       return false; | 
 |   } | 
 |   if (!CBB_flush(cbb)) { | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | // Adds an X.509 Common Name to `cbb`. | 
 | bool AddCommonName(CBB* cbb, absl::string_view common_name) { | 
 |   // See RFC 4519. | 
 |   static const uint8_t kCommonName[] = {0x55, 0x04, 0x03}; | 
 |  | 
 |   if (common_name.empty()) { | 
 |     RTC_LOG(LS_ERROR) << "Common name cannot be empty."; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // See RFC 5280, section 4.1.2.4. | 
 |   CBB rdns; | 
 |   if (!CBB_add_asn1(cbb, &rdns, CBS_ASN1_SEQUENCE)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   CBB rdn, attr, type, value; | 
 |   if (!CBB_add_asn1(&rdns, &rdn, CBS_ASN1_SET) || | 
 |       !CBB_add_asn1(&rdn, &attr, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&attr, &type, CBS_ASN1_OBJECT) || | 
 |       !CBB_add_bytes(&type, kCommonName, sizeof(kCommonName)) || | 
 |       !CBB_add_asn1(&attr, &value, CBS_ASN1_UTF8STRING) || | 
 |       !CBB_add_bytes(&value, | 
 |                      reinterpret_cast<const uint8_t*>(common_name.data()), | 
 |                      common_name.size()) || | 
 |       !CBB_flush(cbb)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool AddTime(CBB* cbb, time_t time) { | 
 |   bssl::UniquePtr<ASN1_TIME> asn1_time(ASN1_TIME_new()); | 
 |   if (!asn1_time) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (!ASN1_TIME_set(asn1_time.get(), time)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   unsigned tag; | 
 |   switch (asn1_time->type) { | 
 |     case V_ASN1_UTCTIME: | 
 |       tag = CBS_ASN1_UTCTIME; | 
 |       break; | 
 |     case V_ASN1_GENERALIZEDTIME: | 
 |       tag = CBS_ASN1_GENERALIZEDTIME; | 
 |       break; | 
 |     default: | 
 |       return false; | 
 |   } | 
 |  | 
 |   CBB child; | 
 |   if (!CBB_add_asn1(cbb, &child, tag) || | 
 |       !CBB_add_bytes(&child, asn1_time->data, asn1_time->length) || | 
 |       !CBB_flush(cbb)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Generate a self-signed certificate, with the public key from the | 
 | // given key pair. Caller is responsible for freeing the returned object. | 
 | bssl::UniquePtr<CRYPTO_BUFFER> MakeCertificate( | 
 |     EVP_PKEY* pkey, | 
 |     const SSLIdentityParams& params) { | 
 |   RTC_LOG(LS_INFO) << "Making certificate for " << params.common_name; | 
 |  | 
 |   // See RFC 5280, section 4.1. First, construct the TBSCertificate. | 
 |   bssl::ScopedCBB cbb; | 
 |   CBB tbs_cert, version, validity; | 
 |   uint8_t* tbs_cert_bytes; | 
 |   size_t tbs_cert_len; | 
 |   uint64_t serial_number; | 
 |   if (!CBB_init(cbb.get(), 64) || | 
 |       !CBB_add_asn1(cbb.get(), &tbs_cert, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&tbs_cert, &version, | 
 |                     CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || | 
 |       !CBB_add_asn1_uint64(&version, 2) || | 
 |       !RAND_bytes(reinterpret_cast<uint8_t*>(&serial_number), | 
 |                   sizeof(serial_number)) || | 
 |       !CBB_add_asn1_uint64(&tbs_cert, serial_number) || | 
 |       !AddSHA256SignatureAlgorithm(&tbs_cert, params.key_params.type()) || | 
 |       !AddCommonName(&tbs_cert, params.common_name) ||  // issuer | 
 |       !CBB_add_asn1(&tbs_cert, &validity, CBS_ASN1_SEQUENCE) || | 
 |       !AddTime(&validity, params.not_before) || | 
 |       !AddTime(&validity, params.not_after) || | 
 |       !AddCommonName(&tbs_cert, params.common_name) ||  // subject | 
 |       !EVP_marshal_public_key(&tbs_cert, pkey) ||       // subjectPublicKeyInfo | 
 |       !CBB_finish(cbb.get(), &tbs_cert_bytes, &tbs_cert_len)) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<uint8_t> delete_tbs_cert_bytes(tbs_cert_bytes); | 
 |  | 
 |   // Sign the TBSCertificate and write the entire certificate. | 
 |   CBB cert, signature; | 
 |   bssl::ScopedEVP_MD_CTX ctx; | 
 |   uint8_t* sig_out; | 
 |   size_t sig_len; | 
 |   uint8_t* cert_bytes; | 
 |   size_t cert_len; | 
 |   if (!CBB_init(cbb.get(), tbs_cert_len) || | 
 |       !CBB_add_asn1(cbb.get(), &cert, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_bytes(&cert, tbs_cert_bytes, tbs_cert_len) || | 
 |       !AddSHA256SignatureAlgorithm(&cert, params.key_params.type()) || | 
 |       !CBB_add_asn1(&cert, &signature, CBS_ASN1_BITSTRING) || | 
 |       !CBB_add_u8(&signature, 0 /* no unused bits */) || | 
 |       !EVP_DigestSignInit(ctx.get(), nullptr, EVP_sha256(), nullptr, pkey) || | 
 |       // Compute the maximum signature length. | 
 |       !EVP_DigestSign(ctx.get(), nullptr, &sig_len, tbs_cert_bytes, | 
 |                       tbs_cert_len) || | 
 |       !CBB_reserve(&signature, &sig_out, sig_len) || | 
 |       // Actually sign the TBSCertificate. | 
 |       !EVP_DigestSign(ctx.get(), sig_out, &sig_len, tbs_cert_bytes, | 
 |                       tbs_cert_len) || | 
 |       !CBB_did_write(&signature, sig_len) || | 
 |       !CBB_finish(cbb.get(), &cert_bytes, &cert_len)) { | 
 |     return nullptr; | 
 |   } | 
 |   bssl::UniquePtr<uint8_t> delete_cert_bytes(cert_bytes); | 
 |  | 
 |   RTC_LOG(LS_INFO) << "Returning certificate"; | 
 |   return bssl::UniquePtr<CRYPTO_BUFFER>( | 
 |       CRYPTO_BUFFER_new(cert_bytes, cert_len, openssl::GetBufferPool())); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | BoringSSLCertificate::BoringSSLCertificate( | 
 |     bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer) | 
 |     : cert_buffer_(std::move(cert_buffer)) { | 
 |   RTC_DCHECK(cert_buffer_ != nullptr); | 
 | } | 
 |  | 
 | std::unique_ptr<BoringSSLCertificate> BoringSSLCertificate::Generate( | 
 |     OpenSSLKeyPair* key_pair, | 
 |     const SSLIdentityParams& params) { | 
 |   SSLIdentityParams actual_params(params); | 
 |   if (actual_params.common_name.empty()) { | 
 |     // Use a random string, arbitrarily 8 chars long. | 
 |     actual_params.common_name = CreateRandomString(8); | 
 |   } | 
 |   bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer = | 
 |       MakeCertificate(key_pair->pkey(), actual_params); | 
 |   if (!cert_buffer) { | 
 |     openssl::LogSSLErrors("Generating certificate"); | 
 |     return nullptr; | 
 |   } | 
 |   auto ret = std::make_unique<BoringSSLCertificate>(std::move(cert_buffer)); | 
 | #if !defined(NDEBUG) | 
 |   PrintCert(ret.get()); | 
 | #endif | 
 |   return ret; | 
 | } | 
 |  | 
 | std::unique_ptr<BoringSSLCertificate> BoringSSLCertificate::FromPEMString( | 
 |     absl::string_view pem_string) { | 
 |   std::string der; | 
 |   if (!SSLIdentity::PemToDer(kPemTypeCertificate, pem_string, &der)) { | 
 |     return nullptr; | 
 |   } | 
 |   bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer( | 
 |       CRYPTO_BUFFER_new(reinterpret_cast<const uint8_t*>(der.c_str()), | 
 |                         der.length(), openssl::GetBufferPool())); | 
 |   if (!cert_buffer) { | 
 |     return nullptr; | 
 |   } | 
 |   return std::make_unique<BoringSSLCertificate>(std::move(cert_buffer)); | 
 | } | 
 |  | 
 | #define OID_MATCHES(oid, oid_other)      \ | 
 |   (CBS_len(&oid) == sizeof(oid_other) && \ | 
 |    0 == memcmp(CBS_data(&oid), oid_other, sizeof(oid_other))) | 
 |  | 
 | bool BoringSSLCertificate::GetSignatureDigestAlgorithm( | 
 |     std::string* algorithm) const { | 
 |   CBS oid; | 
 |   if (!openssl::ParseCertificate(cert_buffer_.get(), &oid, nullptr)) { | 
 |     RTC_LOG(LS_ERROR) << "Failed to parse certificate."; | 
 |     return false; | 
 |   } | 
 |   if (OID_MATCHES(oid, kMD5WithRSA) || | 
 |       OID_MATCHES(oid, kMD5WithRSAEncryption)) { | 
 |     *algorithm = DIGEST_MD5; | 
 |     return true; | 
 |   } | 
 |   if (OID_MATCHES(oid, kECDSAWithSHA1) || OID_MATCHES(oid, kDSAWithSHA1) || | 
 |       OID_MATCHES(oid, kDSAWithSHA1_2) || OID_MATCHES(oid, kSHA1WithRSA) || | 
 |       OID_MATCHES(oid, kSHA1WithRSAEncryption)) { | 
 |     *algorithm = DIGEST_SHA_1; | 
 |     return true; | 
 |   } | 
 |   if (OID_MATCHES(oid, kECDSAWithSHA224) || | 
 |       OID_MATCHES(oid, kSHA224WithRSAEncryption) || | 
 |       OID_MATCHES(oid, kDSAWithSHA224)) { | 
 |     *algorithm = DIGEST_SHA_224; | 
 |     return true; | 
 |   } | 
 |   if (OID_MATCHES(oid, kECDSAWithSHA256) || | 
 |       OID_MATCHES(oid, kSHA256WithRSAEncryption) || | 
 |       OID_MATCHES(oid, kDSAWithSHA256)) { | 
 |     *algorithm = DIGEST_SHA_256; | 
 |     return true; | 
 |   } | 
 |   if (OID_MATCHES(oid, kECDSAWithSHA384) || | 
 |       OID_MATCHES(oid, kSHA384WithRSAEncryption)) { | 
 |     *algorithm = DIGEST_SHA_384; | 
 |     return true; | 
 |   } | 
 |   if (OID_MATCHES(oid, kECDSAWithSHA512) || | 
 |       OID_MATCHES(oid, kSHA512WithRSAEncryption)) { | 
 |     *algorithm = DIGEST_SHA_512; | 
 |     return true; | 
 |   } | 
 |   // Unknown algorithm.  There are several unhandled options that are less | 
 |   // common and more complex. | 
 |   RTC_LOG(LS_ERROR) << "Unknown signature algorithm."; | 
 |   algorithm->clear(); | 
 |   return false; | 
 | } | 
 |  | 
 | bool BoringSSLCertificate::ComputeDigest(absl::string_view algorithm, | 
 |                                          Buffer& digest) const { | 
 |   RTC_DCHECK_GT(digest.capacity(), 0); | 
 |  | 
 |   const EVP_MD* md = nullptr; | 
 |   unsigned int n = 0; | 
 |   if (!OpenSSLDigest::GetDigestEVP(algorithm, &md)) { | 
 |     return false; | 
 |   } | 
 |   if (digest.capacity() < static_cast<size_t>(EVP_MD_size(md))) { | 
 |     return false; | 
 |   } | 
 |   if (!EVP_Digest(CRYPTO_BUFFER_data(cert_buffer_.get()), | 
 |                   CRYPTO_BUFFER_len(cert_buffer_.get()), digest.data(), &n, md, | 
 |                   nullptr)) { | 
 |     return false; | 
 |   } | 
 |   digest.SetSize(n); | 
 |   return true; | 
 | } | 
 |  | 
 | BoringSSLCertificate::~BoringSSLCertificate() {} | 
 |  | 
 | std::unique_ptr<SSLCertificate> BoringSSLCertificate::Clone() const { | 
 |   return std::make_unique<BoringSSLCertificate>( | 
 |       bssl::UpRef(cert_buffer_.get())); | 
 | } | 
 |  | 
 | std::string BoringSSLCertificate::ToPEMString() const { | 
 |   return SSLIdentity::DerToPem(kPemTypeCertificate, | 
 |                                CRYPTO_BUFFER_data(cert_buffer_.get()), | 
 |                                CRYPTO_BUFFER_len(cert_buffer_.get())); | 
 | } | 
 |  | 
 | void BoringSSLCertificate::ToDER(Buffer* der_buffer) const { | 
 |   der_buffer->SetData(CRYPTO_BUFFER_data(cert_buffer_.get()), | 
 |                       CRYPTO_BUFFER_len(cert_buffer_.get())); | 
 | } | 
 |  | 
 | bool BoringSSLCertificate::operator==(const BoringSSLCertificate& other) const { | 
 |   return CRYPTO_BUFFER_len(cert_buffer_.get()) == | 
 |              CRYPTO_BUFFER_len(other.cert_buffer_.get()) && | 
 |          0 == memcmp(CRYPTO_BUFFER_data(cert_buffer_.get()), | 
 |                      CRYPTO_BUFFER_data(other.cert_buffer_.get()), | 
 |                      CRYPTO_BUFFER_len(cert_buffer_.get())); | 
 | } | 
 |  | 
 | bool BoringSSLCertificate::operator!=(const BoringSSLCertificate& other) const { | 
 |   return !(*this == other); | 
 | } | 
 |  | 
 | int64_t BoringSSLCertificate::CertificateExpirationTime() const { | 
 |   int64_t ret; | 
 |   if (!openssl::ParseCertificate(cert_buffer_.get(), nullptr, &ret)) { | 
 |     RTC_LOG(LS_ERROR) << "Failed to parse certificate."; | 
 |     return -1; | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | }  // namespace webrtc |