| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/agc/agc_manager_direct.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| |
| #include "common_audio/include/audio_util.h" |
| #include "modules/audio_processing/agc/gain_control.h" |
| #include "modules/audio_processing/agc/gain_map_internal.h" |
| #include "modules/audio_processing/include/audio_frame_view.h" |
| #include "rtc_base/atomic_ops.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_minmax.h" |
| #include "system_wrappers/include/field_trial.h" |
| #include "system_wrappers/include/metrics.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| // Amount of error we tolerate in the microphone level (presumably due to OS |
| // quantization) before we assume the user has manually adjusted the microphone. |
| constexpr int kLevelQuantizationSlack = 25; |
| |
| constexpr int kDefaultCompressionGain = 7; |
| constexpr int kMaxCompressionGain = 12; |
| constexpr int kMinCompressionGain = 2; |
| // Controls the rate of compression changes towards the target. |
| constexpr float kCompressionGainStep = 0.05f; |
| |
| constexpr int kMaxMicLevel = 255; |
| static_assert(kGainMapSize > kMaxMicLevel, "gain map too small"); |
| constexpr int kMinMicLevel = 12; |
| |
| // Prevent very large microphone level changes. |
| constexpr int kMaxResidualGainChange = 15; |
| |
| // Maximum additional gain allowed to compensate for microphone level |
| // restrictions from clipping events. |
| constexpr int kSurplusCompressionGain = 6; |
| |
| // History size for the clipping predictor evaluator (unit: number of 10 ms |
| // frames). |
| constexpr int kClippingPredictorEvaluatorHistorySize = 32; |
| |
| using ClippingPredictorConfig = AudioProcessing::Config::GainController1:: |
| AnalogGainController::ClippingPredictor; |
| |
| // Returns whether a fall-back solution to choose the maximum level should be |
| // chosen. |
| bool UseMaxAnalogChannelLevel() { |
| return field_trial::IsEnabled("WebRTC-UseMaxAnalogAgcChannelLevel"); |
| } |
| |
| // Returns kMinMicLevel if no field trial exists or if it has been disabled. |
| // Returns a value between 0 and 255 depending on the field-trial string. |
| // Example: 'WebRTC-Audio-AgcMinMicLevelExperiment/Enabled-80' => returns 80. |
| int GetMinMicLevel() { |
| RTC_LOG(LS_INFO) << "[agc] GetMinMicLevel"; |
| constexpr char kMinMicLevelFieldTrial[] = |
| "WebRTC-Audio-AgcMinMicLevelExperiment"; |
| if (!webrtc::field_trial::IsEnabled(kMinMicLevelFieldTrial)) { |
| RTC_LOG(LS_INFO) << "[agc] Using default min mic level: " << kMinMicLevel; |
| return kMinMicLevel; |
| } |
| const auto field_trial_string = |
| webrtc::field_trial::FindFullName(kMinMicLevelFieldTrial); |
| int min_mic_level = -1; |
| sscanf(field_trial_string.c_str(), "Enabled-%d", &min_mic_level); |
| if (min_mic_level >= 0 && min_mic_level <= 255) { |
| RTC_LOG(LS_INFO) << "[agc] Experimental min mic level: " << min_mic_level; |
| return min_mic_level; |
| } else { |
| RTC_LOG(LS_WARNING) << "[agc] Invalid parameter for " |
| << kMinMicLevelFieldTrial << ", ignored."; |
| return kMinMicLevel; |
| } |
| } |
| |
| int ClampLevel(int mic_level, int min_mic_level) { |
| return rtc::SafeClamp(mic_level, min_mic_level, kMaxMicLevel); |
| } |
| |
| int LevelFromGainError(int gain_error, int level, int min_mic_level) { |
| RTC_DCHECK_GE(level, 0); |
| RTC_DCHECK_LE(level, kMaxMicLevel); |
| if (gain_error == 0) { |
| return level; |
| } |
| |
| int new_level = level; |
| if (gain_error > 0) { |
| while (kGainMap[new_level] - kGainMap[level] < gain_error && |
| new_level < kMaxMicLevel) { |
| ++new_level; |
| } |
| } else { |
| while (kGainMap[new_level] - kGainMap[level] > gain_error && |
| new_level > min_mic_level) { |
| --new_level; |
| } |
| } |
| return new_level; |
| } |
| |
| // Returns the proportion of samples in the buffer which are at full-scale |
| // (and presumably clipped). |
| float ComputeClippedRatio(const float* const* audio, |
| size_t num_channels, |
| size_t samples_per_channel) { |
| RTC_DCHECK_GT(samples_per_channel, 0); |
| int num_clipped = 0; |
| for (size_t ch = 0; ch < num_channels; ++ch) { |
| int num_clipped_in_ch = 0; |
| for (size_t i = 0; i < samples_per_channel; ++i) { |
| RTC_DCHECK(audio[ch]); |
| if (audio[ch][i] >= 32767.f || audio[ch][i] <= -32768.f) { |
| ++num_clipped_in_ch; |
| } |
| } |
| num_clipped = std::max(num_clipped, num_clipped_in_ch); |
| } |
| return static_cast<float>(num_clipped) / (samples_per_channel); |
| } |
| |
| void LogClippingPredictorMetrics(const ClippingPredictorEvaluator& evaluator) { |
| RTC_LOG(LS_INFO) << "Clipping predictor metrics: TP " |
| << evaluator.true_positives() << " TN " |
| << evaluator.true_negatives() << " FP " |
| << evaluator.false_positives() << " FN " |
| << evaluator.false_negatives(); |
| const float precision_denominator = |
| evaluator.true_positives() + evaluator.false_positives(); |
| const float recall_denominator = |
| evaluator.true_positives() + evaluator.false_negatives(); |
| if (precision_denominator > 0 && recall_denominator > 0) { |
| const float precision = evaluator.true_positives() / precision_denominator; |
| const float recall = evaluator.true_positives() / recall_denominator; |
| RTC_LOG(LS_INFO) << "Clipping predictor metrics: P " << precision << " R " |
| << recall; |
| const float f1_score_denominator = precision + recall; |
| if (f1_score_denominator > 0.0f) { |
| const float f1_score = 2 * precision * recall / f1_score_denominator; |
| RTC_LOG(LS_INFO) << "Clipping predictor metrics: F1 " << f1_score; |
| RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.ClippingPredictor.F1Score", |
| std::round(f1_score * 100.0f), /*min=*/0, |
| /*max=*/100, |
| /*bucket_count=*/50); |
| } |
| } |
| } |
| |
| void LogClippingMetrics(int clipping_rate) { |
| RTC_LOG(LS_INFO) << "Input clipping rate: " << clipping_rate << "%"; |
| RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.InputClippingRate", |
| clipping_rate, /*min=*/0, /*max=*/100, |
| /*bucket_count=*/50); |
| } |
| |
| } // namespace |
| |
| MonoAgc::MonoAgc(ApmDataDumper* data_dumper, |
| int startup_min_level, |
| int clipped_level_min, |
| bool disable_digital_adaptive, |
| int min_mic_level) |
| : min_mic_level_(min_mic_level), |
| disable_digital_adaptive_(disable_digital_adaptive), |
| agc_(std::make_unique<Agc>()), |
| max_level_(kMaxMicLevel), |
| max_compression_gain_(kMaxCompressionGain), |
| target_compression_(kDefaultCompressionGain), |
| compression_(target_compression_), |
| compression_accumulator_(compression_), |
| startup_min_level_(ClampLevel(startup_min_level, min_mic_level_)), |
| clipped_level_min_(clipped_level_min) {} |
| |
| MonoAgc::~MonoAgc() = default; |
| |
| void MonoAgc::Initialize() { |
| max_level_ = kMaxMicLevel; |
| max_compression_gain_ = kMaxCompressionGain; |
| target_compression_ = disable_digital_adaptive_ ? 0 : kDefaultCompressionGain; |
| compression_ = disable_digital_adaptive_ ? 0 : target_compression_; |
| compression_accumulator_ = compression_; |
| capture_output_used_ = true; |
| check_volume_on_next_process_ = true; |
| } |
| |
| void MonoAgc::Process(const int16_t* audio, |
| size_t samples_per_channel, |
| int sample_rate_hz) { |
| new_compression_to_set_ = absl::nullopt; |
| |
| if (check_volume_on_next_process_) { |
| check_volume_on_next_process_ = false; |
| // We have to wait until the first process call to check the volume, |
| // because Chromium doesn't guarantee it to be valid any earlier. |
| CheckVolumeAndReset(); |
| } |
| |
| agc_->Process(audio, samples_per_channel, sample_rate_hz); |
| |
| UpdateGain(); |
| if (!disable_digital_adaptive_) { |
| UpdateCompressor(); |
| } |
| } |
| |
| void MonoAgc::HandleClipping(int clipped_level_step) { |
| // Always decrease the maximum level, even if the current level is below |
| // threshold. |
| SetMaxLevel(std::max(clipped_level_min_, max_level_ - clipped_level_step)); |
| if (log_to_histograms_) { |
| RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.AgcClippingAdjustmentAllowed", |
| level_ - clipped_level_step >= clipped_level_min_); |
| } |
| if (level_ > clipped_level_min_) { |
| // Don't try to adjust the level if we're already below the limit. As |
| // a consequence, if the user has brought the level above the limit, we |
| // will still not react until the postproc updates the level. |
| SetLevel(std::max(clipped_level_min_, level_ - clipped_level_step)); |
| // Reset the AGCs for all channels since the level has changed. |
| agc_->Reset(); |
| } |
| } |
| |
| void MonoAgc::SetLevel(int new_level) { |
| int voe_level = stream_analog_level_; |
| if (voe_level == 0) { |
| RTC_DLOG(LS_INFO) |
| << "[agc] VolumeCallbacks returned level=0, taking no action."; |
| return; |
| } |
| if (voe_level < 0 || voe_level > kMaxMicLevel) { |
| RTC_LOG(LS_ERROR) << "VolumeCallbacks returned an invalid level=" |
| << voe_level; |
| return; |
| } |
| |
| if (voe_level > level_ + kLevelQuantizationSlack || |
| voe_level < level_ - kLevelQuantizationSlack) { |
| RTC_DLOG(LS_INFO) << "[agc] Mic volume was manually adjusted. Updating " |
| "stored level from " |
| << level_ << " to " << voe_level; |
| level_ = voe_level; |
| // Always allow the user to increase the volume. |
| if (level_ > max_level_) { |
| SetMaxLevel(level_); |
| } |
| // Take no action in this case, since we can't be sure when the volume |
| // was manually adjusted. The compressor will still provide some of the |
| // desired gain change. |
| agc_->Reset(); |
| |
| return; |
| } |
| |
| new_level = std::min(new_level, max_level_); |
| if (new_level == level_) { |
| return; |
| } |
| |
| stream_analog_level_ = new_level; |
| RTC_DLOG(LS_INFO) << "[agc] voe_level=" << voe_level << ", level_=" << level_ |
| << ", new_level=" << new_level; |
| level_ = new_level; |
| } |
| |
| void MonoAgc::SetMaxLevel(int level) { |
| RTC_DCHECK_GE(level, clipped_level_min_); |
| max_level_ = level; |
| // Scale the |kSurplusCompressionGain| linearly across the restricted |
| // level range. |
| max_compression_gain_ = |
| kMaxCompressionGain + std::floor((1.f * kMaxMicLevel - max_level_) / |
| (kMaxMicLevel - clipped_level_min_) * |
| kSurplusCompressionGain + |
| 0.5f); |
| RTC_DLOG(LS_INFO) << "[agc] max_level_=" << max_level_ |
| << ", max_compression_gain_=" << max_compression_gain_; |
| } |
| |
| void MonoAgc::HandleCaptureOutputUsedChange(bool capture_output_used) { |
| if (capture_output_used_ == capture_output_used) { |
| return; |
| } |
| capture_output_used_ = capture_output_used; |
| |
| if (capture_output_used) { |
| // When we start using the output, we should reset things to be safe. |
| check_volume_on_next_process_ = true; |
| } |
| } |
| |
| int MonoAgc::CheckVolumeAndReset() { |
| int level = stream_analog_level_; |
| // Reasons for taking action at startup: |
| // 1) A person starting a call is expected to be heard. |
| // 2) Independent of interpretation of |level| == 0 we should raise it so the |
| // AGC can do its job properly. |
| if (level == 0 && !startup_) { |
| RTC_DLOG(LS_INFO) |
| << "[agc] VolumeCallbacks returned level=0, taking no action."; |
| return 0; |
| } |
| if (level < 0 || level > kMaxMicLevel) { |
| RTC_LOG(LS_ERROR) << "[agc] VolumeCallbacks returned an invalid level=" |
| << level; |
| return -1; |
| } |
| RTC_DLOG(LS_INFO) << "[agc] Initial GetMicVolume()=" << level; |
| |
| int minLevel = startup_ ? startup_min_level_ : min_mic_level_; |
| if (level < minLevel) { |
| level = minLevel; |
| RTC_DLOG(LS_INFO) << "[agc] Initial volume too low, raising to " << level; |
| stream_analog_level_ = level; |
| } |
| agc_->Reset(); |
| level_ = level; |
| startup_ = false; |
| return 0; |
| } |
| |
| // Requests the RMS error from AGC and distributes the required gain change |
| // between the digital compression stage and volume slider. We use the |
| // compressor first, providing a slack region around the current slider |
| // position to reduce movement. |
| // |
| // If the slider needs to be moved, we check first if the user has adjusted |
| // it, in which case we take no action and cache the updated level. |
| void MonoAgc::UpdateGain() { |
| int rms_error = 0; |
| if (!agc_->GetRmsErrorDb(&rms_error)) { |
| // No error update ready. |
| return; |
| } |
| // The compressor will always add at least kMinCompressionGain. In effect, |
| // this adjusts our target gain upward by the same amount and rms_error |
| // needs to reflect that. |
| rms_error += kMinCompressionGain; |
| |
| // Handle as much error as possible with the compressor first. |
| int raw_compression = |
| rtc::SafeClamp(rms_error, kMinCompressionGain, max_compression_gain_); |
| |
| // Deemphasize the compression gain error. Move halfway between the current |
| // target and the newly received target. This serves to soften perceptible |
| // intra-talkspurt adjustments, at the cost of some adaptation speed. |
| if ((raw_compression == max_compression_gain_ && |
| target_compression_ == max_compression_gain_ - 1) || |
| (raw_compression == kMinCompressionGain && |
| target_compression_ == kMinCompressionGain + 1)) { |
| // Special case to allow the target to reach the endpoints of the |
| // compression range. The deemphasis would otherwise halt it at 1 dB shy. |
| target_compression_ = raw_compression; |
| } else { |
| target_compression_ = |
| (raw_compression - target_compression_) / 2 + target_compression_; |
| } |
| |
| // Residual error will be handled by adjusting the volume slider. Use the |
| // raw rather than deemphasized compression here as we would otherwise |
| // shrink the amount of slack the compressor provides. |
| const int residual_gain = |
| rtc::SafeClamp(rms_error - raw_compression, -kMaxResidualGainChange, |
| kMaxResidualGainChange); |
| RTC_DLOG(LS_INFO) << "[agc] rms_error=" << rms_error |
| << ", target_compression=" << target_compression_ |
| << ", residual_gain=" << residual_gain; |
| if (residual_gain == 0) |
| return; |
| |
| int old_level = level_; |
| SetLevel(LevelFromGainError(residual_gain, level_, min_mic_level_)); |
| if (old_level != level_) { |
| // level_ was updated by SetLevel; log the new value. |
| RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.AgcSetLevel", level_, 1, |
| kMaxMicLevel, 50); |
| // Reset the AGC since the level has changed. |
| agc_->Reset(); |
| } |
| } |
| |
| void MonoAgc::UpdateCompressor() { |
| calls_since_last_gain_log_++; |
| if (calls_since_last_gain_log_ == 100) { |
| calls_since_last_gain_log_ = 0; |
| RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.DigitalGainApplied", |
| compression_, 0, kMaxCompressionGain, |
| kMaxCompressionGain + 1); |
| } |
| if (compression_ == target_compression_) { |
| return; |
| } |
| |
| // Adapt the compression gain slowly towards the target, in order to avoid |
| // highly perceptible changes. |
| if (target_compression_ > compression_) { |
| compression_accumulator_ += kCompressionGainStep; |
| } else { |
| compression_accumulator_ -= kCompressionGainStep; |
| } |
| |
| // The compressor accepts integer gains in dB. Adjust the gain when |
| // we've come within half a stepsize of the nearest integer. (We don't |
| // check for equality due to potential floating point imprecision). |
| int new_compression = compression_; |
| int nearest_neighbor = std::floor(compression_accumulator_ + 0.5); |
| if (std::fabs(compression_accumulator_ - nearest_neighbor) < |
| kCompressionGainStep / 2) { |
| new_compression = nearest_neighbor; |
| } |
| |
| // Set the new compression gain. |
| if (new_compression != compression_) { |
| RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.DigitalGainUpdated", |
| new_compression, 0, kMaxCompressionGain, |
| kMaxCompressionGain + 1); |
| compression_ = new_compression; |
| compression_accumulator_ = new_compression; |
| new_compression_to_set_ = compression_; |
| } |
| } |
| |
| int AgcManagerDirect::instance_counter_ = 0; |
| |
| AgcManagerDirect::AgcManagerDirect( |
| Agc* agc, |
| int startup_min_level, |
| int clipped_level_min, |
| int sample_rate_hz, |
| int clipped_level_step, |
| float clipped_ratio_threshold, |
| int clipped_wait_frames, |
| const ClippingPredictorConfig& clipping_config) |
| : AgcManagerDirect(/*num_capture_channels*/ 1, |
| startup_min_level, |
| clipped_level_min, |
| /*disable_digital_adaptive*/ false, |
| sample_rate_hz, |
| clipped_level_step, |
| clipped_ratio_threshold, |
| clipped_wait_frames, |
| clipping_config) { |
| RTC_DCHECK(channel_agcs_[0]); |
| RTC_DCHECK(agc); |
| channel_agcs_[0]->set_agc(agc); |
| } |
| |
| AgcManagerDirect::AgcManagerDirect( |
| int num_capture_channels, |
| int startup_min_level, |
| int clipped_level_min, |
| bool disable_digital_adaptive, |
| int sample_rate_hz, |
| int clipped_level_step, |
| float clipped_ratio_threshold, |
| int clipped_wait_frames, |
| const ClippingPredictorConfig& clipping_config) |
| : data_dumper_( |
| new ApmDataDumper(rtc::AtomicOps::Increment(&instance_counter_))), |
| use_min_channel_level_(!UseMaxAnalogChannelLevel()), |
| sample_rate_hz_(sample_rate_hz), |
| num_capture_channels_(num_capture_channels), |
| disable_digital_adaptive_(disable_digital_adaptive), |
| frames_since_clipped_(clipped_wait_frames), |
| capture_output_used_(true), |
| clipped_level_step_(clipped_level_step), |
| clipped_ratio_threshold_(clipped_ratio_threshold), |
| clipped_wait_frames_(clipped_wait_frames), |
| channel_agcs_(num_capture_channels), |
| new_compressions_to_set_(num_capture_channels), |
| clipping_predictor_( |
| CreateClippingPredictor(num_capture_channels, clipping_config)), |
| use_clipping_predictor_step_(!!clipping_predictor_ && |
| clipping_config.use_predicted_step), |
| clipping_predictor_evaluator_(kClippingPredictorEvaluatorHistorySize), |
| clipping_predictor_log_counter_(0), |
| clipping_rate_log_(0.0f), |
| clipping_rate_log_counter_(0) { |
| const int min_mic_level = GetMinMicLevel(); |
| for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) { |
| ApmDataDumper* data_dumper_ch = ch == 0 ? data_dumper_.get() : nullptr; |
| |
| channel_agcs_[ch] = std::make_unique<MonoAgc>( |
| data_dumper_ch, startup_min_level, clipped_level_min, |
| disable_digital_adaptive_, min_mic_level); |
| } |
| RTC_DCHECK(!channel_agcs_.empty()); |
| RTC_DCHECK_GT(clipped_level_step, 0); |
| RTC_DCHECK_LE(clipped_level_step, 255); |
| RTC_DCHECK_GT(clipped_ratio_threshold, 0.f); |
| RTC_DCHECK_LT(clipped_ratio_threshold, 1.f); |
| RTC_DCHECK_GT(clipped_wait_frames, 0); |
| channel_agcs_[0]->ActivateLogging(); |
| } |
| |
| AgcManagerDirect::~AgcManagerDirect() {} |
| |
| void AgcManagerDirect::Initialize() { |
| RTC_DLOG(LS_INFO) << "AgcManagerDirect::Initialize"; |
| data_dumper_->InitiateNewSetOfRecordings(); |
| for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) { |
| channel_agcs_[ch]->Initialize(); |
| } |
| capture_output_used_ = true; |
| |
| AggregateChannelLevels(); |
| clipping_predictor_evaluator_.Reset(); |
| clipping_predictor_log_counter_ = 0; |
| clipping_rate_log_ = 0.0f; |
| clipping_rate_log_counter_ = 0; |
| } |
| |
| void AgcManagerDirect::SetupDigitalGainControl( |
| GainControl* gain_control) const { |
| RTC_DCHECK(gain_control); |
| if (gain_control->set_mode(GainControl::kFixedDigital) != 0) { |
| RTC_LOG(LS_ERROR) << "set_mode(GainControl::kFixedDigital) failed."; |
| } |
| const int target_level_dbfs = disable_digital_adaptive_ ? 0 : 2; |
| if (gain_control->set_target_level_dbfs(target_level_dbfs) != 0) { |
| RTC_LOG(LS_ERROR) << "set_target_level_dbfs() failed."; |
| } |
| const int compression_gain_db = |
| disable_digital_adaptive_ ? 0 : kDefaultCompressionGain; |
| if (gain_control->set_compression_gain_db(compression_gain_db) != 0) { |
| RTC_LOG(LS_ERROR) << "set_compression_gain_db() failed."; |
| } |
| const bool enable_limiter = !disable_digital_adaptive_; |
| if (gain_control->enable_limiter(enable_limiter) != 0) { |
| RTC_LOG(LS_ERROR) << "enable_limiter() failed."; |
| } |
| } |
| |
| void AgcManagerDirect::AnalyzePreProcess(const AudioBuffer* audio) { |
| RTC_DCHECK(audio); |
| AnalyzePreProcess(audio->channels_const(), audio->num_frames()); |
| } |
| |
| void AgcManagerDirect::AnalyzePreProcess(const float* const* audio, |
| size_t samples_per_channel) { |
| RTC_DCHECK(audio); |
| AggregateChannelLevels(); |
| if (!capture_output_used_) { |
| return; |
| } |
| |
| if (!!clipping_predictor_) { |
| AudioFrameView<const float> frame = AudioFrameView<const float>( |
| audio, num_capture_channels_, static_cast<int>(samples_per_channel)); |
| clipping_predictor_->Analyze(frame); |
| } |
| |
| // Check for clipped samples, as the AGC has difficulty detecting pitch |
| // under clipping distortion. We do this in the preprocessing phase in order |
| // to catch clipped echo as well. |
| // |
| // If we find a sufficiently clipped frame, drop the current microphone level |
| // and enforce a new maximum level, dropped the same amount from the current |
| // maximum. This harsh treatment is an effort to avoid repeated clipped echo |
| // events. As compensation for this restriction, the maximum compression |
| // gain is increased, through SetMaxLevel(). |
| float clipped_ratio = |
| ComputeClippedRatio(audio, num_capture_channels_, samples_per_channel); |
| clipping_rate_log_ = std::max(clipped_ratio, clipping_rate_log_); |
| clipping_rate_log_counter_++; |
| constexpr int kNumFramesIn30Seconds = 3000; |
| if (clipping_rate_log_counter_ == kNumFramesIn30Seconds) { |
| LogClippingMetrics(std::round(100.0f * clipping_rate_log_)); |
| clipping_rate_log_ = 0.0f; |
| clipping_rate_log_counter_ = 0; |
| } |
| |
| if (frames_since_clipped_ < clipped_wait_frames_) { |
| ++frames_since_clipped_; |
| return; |
| } |
| |
| const bool clipping_detected = clipped_ratio > clipped_ratio_threshold_; |
| bool clipping_predicted = false; |
| int predicted_step = 0; |
| if (!!clipping_predictor_) { |
| for (int channel = 0; channel < num_capture_channels_; ++channel) { |
| const auto step = clipping_predictor_->EstimateClippedLevelStep( |
| channel, stream_analog_level_, clipped_level_step_, |
| channel_agcs_[channel]->min_mic_level(), kMaxMicLevel); |
| if (use_clipping_predictor_step_ && step.has_value()) { |
| predicted_step = std::max(predicted_step, step.value()); |
| clipping_predicted = true; |
| } |
| } |
| // Clipping prediction evaluation. |
| absl::optional<int> prediction_interval = |
| clipping_predictor_evaluator_.Observe(clipping_detected, |
| clipping_predicted); |
| if (prediction_interval.has_value()) { |
| RTC_HISTOGRAM_COUNTS_LINEAR( |
| "WebRTC.Audio.Agc.ClippingPredictor.PredictionInterval", |
| prediction_interval.value(), /*min=*/0, |
| /*max=*/49, /*bucket_count=*/50); |
| } |
| clipping_predictor_log_counter_++; |
| if (clipping_predictor_log_counter_ == kNumFramesIn30Seconds) { |
| LogClippingPredictorMetrics(clipping_predictor_evaluator_); |
| clipping_predictor_log_counter_ = 0; |
| } |
| } |
| if (clipping_detected || clipping_predicted) { |
| int step = clipped_level_step_; |
| if (clipping_detected) { |
| RTC_DLOG(LS_INFO) << "[agc] Clipping detected. clipped_ratio=" |
| << clipped_ratio; |
| } |
| if (clipping_predicted) { |
| step = std::max(predicted_step, clipped_level_step_); |
| RTC_DLOG(LS_INFO) << "[agc] Clipping predicted. step=" << step; |
| } |
| for (auto& state_ch : channel_agcs_) { |
| state_ch->HandleClipping(step); |
| } |
| frames_since_clipped_ = 0; |
| if (!!clipping_predictor_) { |
| clipping_predictor_->Reset(); |
| clipping_predictor_evaluator_.Reset(); |
| } |
| } |
| AggregateChannelLevels(); |
| } |
| |
| void AgcManagerDirect::Process(const AudioBuffer* audio) { |
| AggregateChannelLevels(); |
| |
| if (!capture_output_used_) { |
| return; |
| } |
| |
| for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) { |
| int16_t* audio_use = nullptr; |
| std::array<int16_t, AudioBuffer::kMaxSampleRate / 100> audio_data; |
| int num_frames_per_band; |
| if (audio) { |
| FloatS16ToS16(audio->split_bands_const_f(ch)[0], |
| audio->num_frames_per_band(), audio_data.data()); |
| audio_use = audio_data.data(); |
| num_frames_per_band = audio->num_frames_per_band(); |
| } else { |
| // Only used for testing. |
| // TODO(peah): Change unittests to only allow on non-null audio input. |
| num_frames_per_band = 320; |
| } |
| channel_agcs_[ch]->Process(audio_use, num_frames_per_band, sample_rate_hz_); |
| new_compressions_to_set_[ch] = channel_agcs_[ch]->new_compression(); |
| } |
| |
| AggregateChannelLevels(); |
| } |
| |
| absl::optional<int> AgcManagerDirect::GetDigitalComressionGain() { |
| return new_compressions_to_set_[channel_controlling_gain_]; |
| } |
| |
| void AgcManagerDirect::HandleCaptureOutputUsedChange(bool capture_output_used) { |
| for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) { |
| channel_agcs_[ch]->HandleCaptureOutputUsedChange(capture_output_used); |
| } |
| capture_output_used_ = capture_output_used; |
| } |
| |
| float AgcManagerDirect::voice_probability() const { |
| float max_prob = 0.f; |
| for (const auto& state_ch : channel_agcs_) { |
| max_prob = std::max(max_prob, state_ch->voice_probability()); |
| } |
| |
| return max_prob; |
| } |
| |
| void AgcManagerDirect::set_stream_analog_level(int level) { |
| for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) { |
| channel_agcs_[ch]->set_stream_analog_level(level); |
| } |
| |
| AggregateChannelLevels(); |
| } |
| |
| void AgcManagerDirect::AggregateChannelLevels() { |
| stream_analog_level_ = channel_agcs_[0]->stream_analog_level(); |
| channel_controlling_gain_ = 0; |
| if (use_min_channel_level_) { |
| for (size_t ch = 1; ch < channel_agcs_.size(); ++ch) { |
| int level = channel_agcs_[ch]->stream_analog_level(); |
| if (level < stream_analog_level_) { |
| stream_analog_level_ = level; |
| channel_controlling_gain_ = static_cast<int>(ch); |
| } |
| } |
| } else { |
| for (size_t ch = 1; ch < channel_agcs_.size(); ++ch) { |
| int level = channel_agcs_[ch]->stream_analog_level(); |
| if (level > stream_analog_level_) { |
| stream_analog_level_ = level; |
| channel_controlling_gain_ = static_cast<int>(ch); |
| } |
| } |
| } |
| } |
| |
| } // namespace webrtc |