|  | /* | 
|  | *  Copyright 2011 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "rtc_base/message_digest.h" | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #include <cstdint> | 
|  | #include <memory> | 
|  | #include <string> | 
|  |  | 
|  | #include "absl/strings/string_view.h" | 
|  | #include "rtc_base/openssl_digest.h" | 
|  | #include "rtc_base/string_encode.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | // From RFC 4572. | 
|  | const char DIGEST_MD5[] = "md5"; | 
|  | const char DIGEST_SHA_1[] = "sha-1"; | 
|  | const char DIGEST_SHA_224[] = "sha-224"; | 
|  | const char DIGEST_SHA_256[] = "sha-256"; | 
|  | const char DIGEST_SHA_384[] = "sha-384"; | 
|  | const char DIGEST_SHA_512[] = "sha-512"; | 
|  |  | 
|  | static const size_t kBlockSize = 64;  // valid for SHA-256 and down | 
|  |  | 
|  | MessageDigest* MessageDigestFactory::Create(absl::string_view alg) { | 
|  | MessageDigest* digest = new OpenSSLDigest(alg); | 
|  | if (digest->Size() == 0) {  // invalid algorithm | 
|  | delete digest; | 
|  | digest = nullptr; | 
|  | } | 
|  | return digest; | 
|  | } | 
|  |  | 
|  | bool IsFips180DigestAlgorithm(absl::string_view alg) { | 
|  | // These are the FIPS 180 algorithms.  According to RFC 4572 Section 5, | 
|  | // "Self-signed certificates (for which legacy certificates are not a | 
|  | // consideration) MUST use one of the FIPS 180 algorithms (SHA-1, | 
|  | // SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm, | 
|  | // and thus also MUST use it to calculate certificate fingerprints." | 
|  | return alg == DIGEST_SHA_1 || alg == DIGEST_SHA_224 || | 
|  | alg == DIGEST_SHA_256 || alg == DIGEST_SHA_384 || | 
|  | alg == DIGEST_SHA_512; | 
|  | } | 
|  |  | 
|  | size_t ComputeDigest(MessageDigest* digest, | 
|  | const void* input, | 
|  | size_t in_len, | 
|  | void* output, | 
|  | size_t out_len) { | 
|  | digest->Update(input, in_len); | 
|  | return digest->Finish(output, out_len); | 
|  | } | 
|  |  | 
|  | size_t ComputeDigest(absl::string_view alg, | 
|  | const void* input, | 
|  | size_t in_len, | 
|  | void* output, | 
|  | size_t out_len) { | 
|  | std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | 
|  | return (digest) ? ComputeDigest(digest.get(), input, in_len, output, out_len) | 
|  | : 0; | 
|  | } | 
|  |  | 
|  | std::string ComputeDigest(MessageDigest* digest, absl::string_view input) { | 
|  | std::unique_ptr<char[]> output(new char[digest->Size()]); | 
|  | ComputeDigest(digest, input.data(), input.size(), output.get(), | 
|  | digest->Size()); | 
|  | return hex_encode(absl::string_view(output.get(), digest->Size())); | 
|  | } | 
|  |  | 
|  | bool ComputeDigest(absl::string_view alg, | 
|  | absl::string_view input, | 
|  | std::string* output) { | 
|  | std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | 
|  | if (!digest) { | 
|  | return false; | 
|  | } | 
|  | *output = ComputeDigest(digest.get(), input); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::string ComputeDigest(absl::string_view alg, absl::string_view input) { | 
|  | std::string output; | 
|  | ComputeDigest(alg, input, &output); | 
|  | return output; | 
|  | } | 
|  |  | 
|  | // Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text)) | 
|  | size_t ComputeHmac(MessageDigest* digest, | 
|  | const void* key, | 
|  | size_t key_len, | 
|  | const void* input, | 
|  | size_t in_len, | 
|  | void* output, | 
|  | size_t out_len) { | 
|  | // We only handle algorithms with a 64-byte blocksize. | 
|  | // TODO: Add BlockSize() method to MessageDigest. | 
|  | size_t block_len = kBlockSize; | 
|  | if (digest->Size() > 32) { | 
|  | return 0; | 
|  | } | 
|  | // Copy the key to a block-sized buffer to simplify padding. | 
|  | // If the key is longer than a block, hash it and use the result instead. | 
|  | std::unique_ptr<uint8_t[]> new_key(new uint8_t[block_len]); | 
|  | if (key_len > block_len) { | 
|  | ComputeDigest(digest, key, key_len, new_key.get(), block_len); | 
|  | memset(new_key.get() + digest->Size(), 0, block_len - digest->Size()); | 
|  | } else { | 
|  | memcpy(new_key.get(), key, key_len); | 
|  | memset(new_key.get() + key_len, 0, block_len - key_len); | 
|  | } | 
|  | // Set up the padding from the key, salting appropriately for each padding. | 
|  | std::unique_ptr<uint8_t[]> o_pad(new uint8_t[block_len]); | 
|  | std::unique_ptr<uint8_t[]> i_pad(new uint8_t[block_len]); | 
|  | for (size_t i = 0; i < block_len; ++i) { | 
|  | o_pad[i] = 0x5c ^ new_key[i]; | 
|  | i_pad[i] = 0x36 ^ new_key[i]; | 
|  | } | 
|  | // Inner hash; hash the inner padding, and then the input buffer. | 
|  | std::unique_ptr<uint8_t[]> inner(new uint8_t[digest->Size()]); | 
|  | digest->Update(i_pad.get(), block_len); | 
|  | digest->Update(input, in_len); | 
|  | digest->Finish(inner.get(), digest->Size()); | 
|  | // Outer hash; hash the outer padding, and then the result of the inner hash. | 
|  | digest->Update(o_pad.get(), block_len); | 
|  | digest->Update(inner.get(), digest->Size()); | 
|  | return digest->Finish(output, out_len); | 
|  | } | 
|  |  | 
|  | size_t ComputeHmac(absl::string_view alg, | 
|  | const void* key, | 
|  | size_t key_len, | 
|  | const void* input, | 
|  | size_t in_len, | 
|  | void* output, | 
|  | size_t out_len) { | 
|  | std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | 
|  | if (!digest) { | 
|  | return 0; | 
|  | } | 
|  | return ComputeHmac(digest.get(), key, key_len, input, in_len, output, | 
|  | out_len); | 
|  | } | 
|  |  | 
|  | std::string ComputeHmac(MessageDigest* digest, | 
|  | absl::string_view key, | 
|  | absl::string_view input) { | 
|  | std::unique_ptr<char[]> output(new char[digest->Size()]); | 
|  | ComputeHmac(digest, key.data(), key.size(), input.data(), input.size(), | 
|  | output.get(), digest->Size()); | 
|  | return hex_encode(absl::string_view(output.get(), digest->Size())); | 
|  | } | 
|  |  | 
|  | bool ComputeHmac(absl::string_view alg, | 
|  | absl::string_view key, | 
|  | absl::string_view input, | 
|  | std::string* output) { | 
|  | std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | 
|  | if (!digest) { | 
|  | return false; | 
|  | } | 
|  | *output = ComputeHmac(digest.get(), key, input); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::string ComputeHmac(absl::string_view alg, | 
|  | absl::string_view key, | 
|  | absl::string_view input) { | 
|  | std::string output; | 
|  | ComputeHmac(alg, key, input, &output); | 
|  | return output; | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |