|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "modules/audio_processing/utility/delay_estimator.h" | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstdint> | 
|  |  | 
|  | #include "rtc_base/checks.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Number of right shifts for scaling is linearly depending on number of bits in | 
|  | // the far-end binary spectrum. | 
|  | const int kShiftsAtZero = 13;  // Right shifts at zero binary spectrum. | 
|  | const int kShiftsLinearSlope = 3; | 
|  |  | 
|  | const int32_t kProbabilityOffset = 1024;      // 2 in Q9. | 
|  | const int32_t kProbabilityLowerLimit = 8704;  // 17 in Q9. | 
|  | const int32_t kProbabilityMinSpread = 2816;   // 5.5 in Q9. | 
|  |  | 
|  | // Robust validation settings | 
|  | const float kHistogramMax = 3000.f; | 
|  | const float kLastHistogramMax = 250.f; | 
|  | const float kMinHistogramThreshold = 1.5f; | 
|  | const int kMinRequiredHits = 10; | 
|  | const int kMaxHitsWhenPossiblyNonCausal = 10; | 
|  | const int kMaxHitsWhenPossiblyCausal = 1000; | 
|  | const float kQ14Scaling = 1.f / (1 << 14);  // Scaling by 2^14 to get Q0. | 
|  | const float kFractionSlope = 0.05f; | 
|  | const float kMinFractionWhenPossiblyCausal = 0.5f; | 
|  | const float kMinFractionWhenPossiblyNonCausal = 0.25f; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // Counts and returns number of bits of a 32-bit word. | 
|  | static int BitCount(uint32_t u32) { | 
|  | uint32_t tmp = | 
|  | u32 - ((u32 >> 1) & 033333333333) - ((u32 >> 2) & 011111111111); | 
|  | tmp = ((tmp + (tmp >> 3)) & 030707070707); | 
|  | tmp = (tmp + (tmp >> 6)); | 
|  | tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077; | 
|  |  | 
|  | return ((int)tmp); | 
|  | } | 
|  |  | 
|  | // Compares the `binary_vector` with all rows of the `binary_matrix` and counts | 
|  | // per row the number of times they have the same value. | 
|  | // | 
|  | // Inputs: | 
|  | //      - binary_vector     : binary "vector" stored in a long | 
|  | //      - binary_matrix     : binary "matrix" stored as a vector of long | 
|  | //      - matrix_size       : size of binary "matrix" | 
|  | // | 
|  | // Output: | 
|  | //      - bit_counts        : "Vector" stored as a long, containing for each | 
|  | //                            row the number of times the matrix row and the | 
|  | //                            input vector have the same value | 
|  | // | 
|  | static void BitCountComparison(uint32_t binary_vector, | 
|  | const uint32_t* binary_matrix, | 
|  | int matrix_size, | 
|  | int32_t* bit_counts) { | 
|  | int n = 0; | 
|  |  | 
|  | // Compare `binary_vector` with all rows of the `binary_matrix` | 
|  | for (; n < matrix_size; n++) { | 
|  | bit_counts[n] = (int32_t)BitCount(binary_vector ^ binary_matrix[n]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Collects necessary statistics for the HistogramBasedValidation().  This | 
|  | // function has to be called prior to calling HistogramBasedValidation().  The | 
|  | // statistics updated and used by the HistogramBasedValidation() are: | 
|  | //  1. the number of `candidate_hits`, which states for how long we have had the | 
|  | //     same `candidate_delay` | 
|  | //  2. the `histogram` of candidate delays over time.  This histogram is | 
|  | //     weighted with respect to a reliability measure and time-varying to cope | 
|  | //     with possible delay shifts. | 
|  | // For further description see commented code. | 
|  | // | 
|  | // Inputs: | 
|  | //  - candidate_delay   : The delay to validate. | 
|  | //  - valley_depth_q14  : The cost function has a valley/minimum at the | 
|  | //                        `candidate_delay` location.  `valley_depth_q14` is the | 
|  | //                        cost function difference between the minimum and | 
|  | //                        maximum locations.  The value is in the Q14 domain. | 
|  | //  - valley_level_q14  : Is the cost function value at the minimum, in Q14. | 
|  | static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self, | 
|  | int candidate_delay, | 
|  | int32_t valley_depth_q14, | 
|  | int32_t valley_level_q14) { | 
|  | const float valley_depth = valley_depth_q14 * kQ14Scaling; | 
|  | float decrease_in_last_set = valley_depth; | 
|  | const int max_hits_for_slow_change = (candidate_delay < self->last_delay) | 
|  | ? kMaxHitsWhenPossiblyNonCausal | 
|  | : kMaxHitsWhenPossiblyCausal; | 
|  | int i = 0; | 
|  |  | 
|  | RTC_DCHECK_EQ(self->history_size, self->farend->history_size); | 
|  | // Reset `candidate_hits` if we have a new candidate. | 
|  | if (candidate_delay != self->last_candidate_delay) { | 
|  | self->candidate_hits = 0; | 
|  | self->last_candidate_delay = candidate_delay; | 
|  | } | 
|  | self->candidate_hits++; | 
|  |  | 
|  | // The `histogram` is updated differently across the bins. | 
|  | // 1. The `candidate_delay` histogram bin is increased with the | 
|  | //    `valley_depth`, which is a simple measure of how reliable the | 
|  | //    `candidate_delay` is.  The histogram is not increased above | 
|  | //    `kHistogramMax`. | 
|  | self->histogram[candidate_delay] += valley_depth; | 
|  | if (self->histogram[candidate_delay] > kHistogramMax) { | 
|  | self->histogram[candidate_delay] = kHistogramMax; | 
|  | } | 
|  | // 2. The histogram bins in the neighborhood of `candidate_delay` are | 
|  | //    unaffected.  The neighborhood is defined as x + {-2, -1, 0, 1}. | 
|  | // 3. The histogram bins in the neighborhood of `last_delay` are decreased | 
|  | //    with `decrease_in_last_set`.  This value equals the difference between | 
|  | //    the cost function values at the locations `candidate_delay` and | 
|  | //    `last_delay` until we reach `max_hits_for_slow_change` consecutive hits | 
|  | //    at the `candidate_delay`.  If we exceed this amount of hits the | 
|  | //    `candidate_delay` is a "potential" candidate and we start decreasing | 
|  | //    these histogram bins more rapidly with `valley_depth`. | 
|  | if (self->candidate_hits < max_hits_for_slow_change) { | 
|  | decrease_in_last_set = | 
|  | (self->mean_bit_counts[self->compare_delay] - valley_level_q14) * | 
|  | kQ14Scaling; | 
|  | } | 
|  | // 4. All other bins are decreased with `valley_depth`. | 
|  | // TODO(bjornv): Investigate how to make this loop more efficient.  Split up | 
|  | // the loop?  Remove parts that doesn't add too much. | 
|  | for (i = 0; i < self->history_size; ++i) { | 
|  | int is_in_last_set = (i >= self->last_delay - 2) && | 
|  | (i <= self->last_delay + 1) && (i != candidate_delay); | 
|  | int is_in_candidate_set = | 
|  | (i >= candidate_delay - 2) && (i <= candidate_delay + 1); | 
|  | self->histogram[i] -= | 
|  | decrease_in_last_set * is_in_last_set + | 
|  | valley_depth * (!is_in_last_set && !is_in_candidate_set); | 
|  | // 5. No histogram bin can go below 0. | 
|  | if (self->histogram[i] < 0) { | 
|  | self->histogram[i] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Validates the `candidate_delay`, estimated in WebRtc_ProcessBinarySpectrum(), | 
|  | // based on a mix of counting concurring hits with a modified histogram | 
|  | // of recent delay estimates.  In brief a candidate is valid (returns 1) if it | 
|  | // is the most likely according to the histogram.  There are a couple of | 
|  | // exceptions that are worth mentioning: | 
|  | //  1. If the `candidate_delay` < `last_delay` it can be that we are in a | 
|  | //     non-causal state, breaking a possible echo control algorithm.  Hence, we | 
|  | //     open up for a quicker change by allowing the change even if the | 
|  | //     `candidate_delay` is not the most likely one according to the histogram. | 
|  | //  2. There's a minimum number of hits (kMinRequiredHits) and the histogram | 
|  | //     value has to reached a minimum (kMinHistogramThreshold) to be valid. | 
|  | //  3. The action is also depending on the filter length used for echo control. | 
|  | //     If the delay difference is larger than what the filter can capture, we | 
|  | //     also move quicker towards a change. | 
|  | // For further description see commented code. | 
|  | // | 
|  | // Input: | 
|  | //  - candidate_delay     : The delay to validate. | 
|  | // | 
|  | // Return value: | 
|  | //  - is_histogram_valid  : 1 - The `candidate_delay` is valid. | 
|  | //                          0 - Otherwise. | 
|  | static int HistogramBasedValidation(const BinaryDelayEstimator* self, | 
|  | int candidate_delay) { | 
|  | float fraction = 1.f; | 
|  | float histogram_threshold = self->histogram[self->compare_delay]; | 
|  | const int delay_difference = candidate_delay - self->last_delay; | 
|  | int is_histogram_valid = 0; | 
|  |  | 
|  | // The histogram based validation of `candidate_delay` is done by comparing | 
|  | // the `histogram` at bin `candidate_delay` with a `histogram_threshold`. | 
|  | // This `histogram_threshold` equals a `fraction` of the `histogram` at bin | 
|  | // `last_delay`.  The `fraction` is a piecewise linear function of the | 
|  | // `delay_difference` between the `candidate_delay` and the `last_delay` | 
|  | // allowing for a quicker move if | 
|  | //  i) a potential echo control filter can not handle these large differences. | 
|  | // ii) keeping `last_delay` instead of updating to `candidate_delay` could | 
|  | //     force an echo control into a non-causal state. | 
|  | // We further require the histogram to have reached a minimum value of | 
|  | // `kMinHistogramThreshold`.  In addition, we also require the number of | 
|  | // `candidate_hits` to be more than `kMinRequiredHits` to remove spurious | 
|  | // values. | 
|  |  | 
|  | // Calculate a comparison histogram value (`histogram_threshold`) that is | 
|  | // depending on the distance between the `candidate_delay` and `last_delay`. | 
|  | // TODO(bjornv): How much can we gain by turning the fraction calculation | 
|  | // into tables? | 
|  | if (delay_difference > self->allowed_offset) { | 
|  | fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset); | 
|  | fraction = (fraction > kMinFractionWhenPossiblyCausal | 
|  | ? fraction | 
|  | : kMinFractionWhenPossiblyCausal); | 
|  | } else if (delay_difference < 0) { | 
|  | fraction = | 
|  | kMinFractionWhenPossiblyNonCausal - kFractionSlope * delay_difference; | 
|  | fraction = (fraction > 1.f ? 1.f : fraction); | 
|  | } | 
|  | histogram_threshold *= fraction; | 
|  | histogram_threshold = | 
|  | (histogram_threshold > kMinHistogramThreshold ? histogram_threshold | 
|  | : kMinHistogramThreshold); | 
|  |  | 
|  | is_histogram_valid = | 
|  | (self->histogram[candidate_delay] >= histogram_threshold) && | 
|  | (self->candidate_hits > kMinRequiredHits); | 
|  |  | 
|  | return is_histogram_valid; | 
|  | } | 
|  |  | 
|  | // Performs a robust validation of the `candidate_delay` estimated in | 
|  | // WebRtc_ProcessBinarySpectrum().  The algorithm takes the | 
|  | // `is_instantaneous_valid` and the `is_histogram_valid` and combines them | 
|  | // into a robust validation.  The HistogramBasedValidation() has to be called | 
|  | // prior to this call. | 
|  | // For further description on how the combination is done, see commented code. | 
|  | // | 
|  | // Inputs: | 
|  | //  - candidate_delay         : The delay to validate. | 
|  | //  - is_instantaneous_valid  : The instantaneous validation performed in | 
|  | //                              WebRtc_ProcessBinarySpectrum(). | 
|  | //  - is_histogram_valid      : The histogram based validation. | 
|  | // | 
|  | // Return value: | 
|  | //  - is_robust               : 1 - The candidate_delay is valid according to a | 
|  | //                                  combination of the two inputs. | 
|  | //                            : 0 - Otherwise. | 
|  | static int RobustValidation(const BinaryDelayEstimator* self, | 
|  | int candidate_delay, | 
|  | int is_instantaneous_valid, | 
|  | int is_histogram_valid) { | 
|  | int is_robust = 0; | 
|  |  | 
|  | // The final robust validation is based on the two algorithms; 1) the | 
|  | // `is_instantaneous_valid` and 2) the histogram based with result stored in | 
|  | // `is_histogram_valid`. | 
|  | //   i) Before we actually have a valid estimate (`last_delay` == -2), we say | 
|  | //      a candidate is valid if either algorithm states so | 
|  | //      (`is_instantaneous_valid` OR `is_histogram_valid`). | 
|  | is_robust = | 
|  | (self->last_delay < 0) && (is_instantaneous_valid || is_histogram_valid); | 
|  | //  ii) Otherwise, we need both algorithms to be certain | 
|  | //      (`is_instantaneous_valid` AND `is_histogram_valid`) | 
|  | is_robust |= is_instantaneous_valid && is_histogram_valid; | 
|  | // iii) With one exception, i.e., the histogram based algorithm can overrule | 
|  | //      the instantaneous one if `is_histogram_valid` = 1 and the histogram | 
|  | //      is significantly strong. | 
|  | is_robust |= is_histogram_valid && | 
|  | (self->histogram[candidate_delay] > self->last_delay_histogram); | 
|  |  | 
|  | return is_robust; | 
|  | } | 
|  |  | 
|  | void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { | 
|  | if (self == nullptr) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | free(self->binary_far_history); | 
|  | self->binary_far_history = nullptr; | 
|  |  | 
|  | free(self->far_bit_counts); | 
|  | self->far_bit_counts = nullptr; | 
|  |  | 
|  | free(self); | 
|  | } | 
|  |  | 
|  | BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend( | 
|  | int history_size) { | 
|  | BinaryDelayEstimatorFarend* self = nullptr; | 
|  |  | 
|  | if (history_size > 1) { | 
|  | // Sanity conditions fulfilled. | 
|  | self = static_cast<BinaryDelayEstimatorFarend*>( | 
|  | malloc(sizeof(BinaryDelayEstimatorFarend))); | 
|  | } | 
|  | if (self == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | self->history_size = 0; | 
|  | self->binary_far_history = nullptr; | 
|  | self->far_bit_counts = nullptr; | 
|  | if (WebRtc_AllocateFarendBufferMemory(self, history_size) == 0) { | 
|  | WebRtc_FreeBinaryDelayEstimatorFarend(self); | 
|  | self = nullptr; | 
|  | } | 
|  | return self; | 
|  | } | 
|  |  | 
|  | int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self, | 
|  | int history_size) { | 
|  | RTC_DCHECK(self); | 
|  | // (Re-)Allocate memory for history buffers. | 
|  | self->binary_far_history = static_cast<uint32_t*>( | 
|  | realloc(self->binary_far_history, | 
|  | history_size * sizeof(*self->binary_far_history))); | 
|  | self->far_bit_counts = static_cast<int*>(realloc( | 
|  | self->far_bit_counts, history_size * sizeof(*self->far_bit_counts))); | 
|  | if ((self->binary_far_history == nullptr) || | 
|  | (self->far_bit_counts == nullptr)) { | 
|  | history_size = 0; | 
|  | } | 
|  | // Fill with zeros if we have expanded the buffers. | 
|  | if (history_size > self->history_size) { | 
|  | int size_diff = history_size - self->history_size; | 
|  | memset(&self->binary_far_history[self->history_size], 0, | 
|  | sizeof(*self->binary_far_history) * size_diff); | 
|  | memset(&self->far_bit_counts[self->history_size], 0, | 
|  | sizeof(*self->far_bit_counts) * size_diff); | 
|  | } | 
|  | self->history_size = history_size; | 
|  |  | 
|  | return self->history_size; | 
|  | } | 
|  |  | 
|  | void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { | 
|  | RTC_DCHECK(self); | 
|  | memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size); | 
|  | memset(self->far_bit_counts, 0, sizeof(int) * self->history_size); | 
|  | } | 
|  |  | 
|  | void WebRtc_SoftResetBinaryDelayEstimatorFarend( | 
|  | BinaryDelayEstimatorFarend* self, | 
|  | int delay_shift) { | 
|  | int abs_shift = abs(delay_shift); | 
|  | int shift_size = 0; | 
|  | int dest_index = 0; | 
|  | int src_index = 0; | 
|  | int padding_index = 0; | 
|  |  | 
|  | RTC_DCHECK(self); | 
|  | shift_size = self->history_size - abs_shift; | 
|  | RTC_DCHECK_GT(shift_size, 0); | 
|  | if (delay_shift == 0) { | 
|  | return; | 
|  | } else if (delay_shift > 0) { | 
|  | dest_index = abs_shift; | 
|  | } else if (delay_shift < 0) { | 
|  | src_index = abs_shift; | 
|  | padding_index = shift_size; | 
|  | } | 
|  |  | 
|  | // Shift and zero pad buffers. | 
|  | memmove(&self->binary_far_history[dest_index], | 
|  | &self->binary_far_history[src_index], | 
|  | sizeof(*self->binary_far_history) * shift_size); | 
|  | memset(&self->binary_far_history[padding_index], 0, | 
|  | sizeof(*self->binary_far_history) * abs_shift); | 
|  | memmove(&self->far_bit_counts[dest_index], &self->far_bit_counts[src_index], | 
|  | sizeof(*self->far_bit_counts) * shift_size); | 
|  | memset(&self->far_bit_counts[padding_index], 0, | 
|  | sizeof(*self->far_bit_counts) * abs_shift); | 
|  | } | 
|  |  | 
|  | void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle, | 
|  | uint32_t binary_far_spectrum) { | 
|  | RTC_DCHECK(handle); | 
|  | // Shift binary spectrum history and insert current `binary_far_spectrum`. | 
|  | memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]), | 
|  | (handle->history_size - 1) * sizeof(uint32_t)); | 
|  | handle->binary_far_history[0] = binary_far_spectrum; | 
|  |  | 
|  | // Shift history of far-end binary spectrum bit counts and insert bit count | 
|  | // of current `binary_far_spectrum`. | 
|  | memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]), | 
|  | (handle->history_size - 1) * sizeof(int)); | 
|  | handle->far_bit_counts[0] = BitCount(binary_far_spectrum); | 
|  | } | 
|  |  | 
|  | void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) { | 
|  | if (self == nullptr) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | free(self->mean_bit_counts); | 
|  | self->mean_bit_counts = nullptr; | 
|  |  | 
|  | free(self->bit_counts); | 
|  | self->bit_counts = nullptr; | 
|  |  | 
|  | free(self->binary_near_history); | 
|  | self->binary_near_history = nullptr; | 
|  |  | 
|  | free(self->histogram); | 
|  | self->histogram = nullptr; | 
|  |  | 
|  | // BinaryDelayEstimator does not have ownership of `farend`, hence we do not | 
|  | // free the memory here. That should be handled separately by the user. | 
|  | self->farend = nullptr; | 
|  |  | 
|  | free(self); | 
|  | } | 
|  |  | 
|  | BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator( | 
|  | BinaryDelayEstimatorFarend* farend, | 
|  | int max_lookahead) { | 
|  | BinaryDelayEstimator* self = nullptr; | 
|  |  | 
|  | if ((farend != nullptr) && (max_lookahead >= 0)) { | 
|  | // Sanity conditions fulfilled. | 
|  | self = static_cast<BinaryDelayEstimator*>( | 
|  | malloc(sizeof(BinaryDelayEstimator))); | 
|  | } | 
|  | if (self == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | self->farend = farend; | 
|  | self->near_history_size = max_lookahead + 1; | 
|  | self->history_size = 0; | 
|  | self->robust_validation_enabled = 0;  // Disabled by default. | 
|  | self->allowed_offset = 0; | 
|  |  | 
|  | self->lookahead = max_lookahead; | 
|  |  | 
|  | // Allocate memory for spectrum and history buffers. | 
|  | self->mean_bit_counts = nullptr; | 
|  | self->bit_counts = nullptr; | 
|  | self->histogram = nullptr; | 
|  | self->binary_near_history = static_cast<uint32_t*>( | 
|  | malloc((max_lookahead + 1) * sizeof(*self->binary_near_history))); | 
|  | if (self->binary_near_history == nullptr || | 
|  | WebRtc_AllocateHistoryBufferMemory(self, farend->history_size) == 0) { | 
|  | WebRtc_FreeBinaryDelayEstimator(self); | 
|  | self = nullptr; | 
|  | } | 
|  |  | 
|  | return self; | 
|  | } | 
|  |  | 
|  | int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self, | 
|  | int history_size) { | 
|  | BinaryDelayEstimatorFarend* far = self->farend; | 
|  | // (Re-)Allocate memory for spectrum and history buffers. | 
|  | if (history_size != far->history_size) { | 
|  | // Only update far-end buffers if we need. | 
|  | history_size = WebRtc_AllocateFarendBufferMemory(far, history_size); | 
|  | } | 
|  | // The extra array element in `mean_bit_counts` and `histogram` is a dummy | 
|  | // element only used while `last_delay` == -2, i.e., before we have a valid | 
|  | // estimate. | 
|  | self->mean_bit_counts = static_cast<int32_t*>( | 
|  | realloc(self->mean_bit_counts, | 
|  | (history_size + 1) * sizeof(*self->mean_bit_counts))); | 
|  | self->bit_counts = static_cast<int32_t*>( | 
|  | realloc(self->bit_counts, history_size * sizeof(*self->bit_counts))); | 
|  | self->histogram = static_cast<float*>( | 
|  | realloc(self->histogram, (history_size + 1) * sizeof(*self->histogram))); | 
|  |  | 
|  | if ((self->mean_bit_counts == nullptr) || (self->bit_counts == nullptr) || | 
|  | (self->histogram == nullptr)) { | 
|  | history_size = 0; | 
|  | } | 
|  | // Fill with zeros if we have expanded the buffers. | 
|  | if (history_size > self->history_size) { | 
|  | int size_diff = history_size - self->history_size; | 
|  | memset(&self->mean_bit_counts[self->history_size], 0, | 
|  | sizeof(*self->mean_bit_counts) * size_diff); | 
|  | memset(&self->bit_counts[self->history_size], 0, | 
|  | sizeof(*self->bit_counts) * size_diff); | 
|  | memset(&self->histogram[self->history_size], 0, | 
|  | sizeof(*self->histogram) * size_diff); | 
|  | } | 
|  | self->history_size = history_size; | 
|  |  | 
|  | return self->history_size; | 
|  | } | 
|  |  | 
|  | void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) { | 
|  | int i = 0; | 
|  | RTC_DCHECK(self); | 
|  |  | 
|  | memset(self->bit_counts, 0, sizeof(int32_t) * self->history_size); | 
|  | memset(self->binary_near_history, 0, | 
|  | sizeof(uint32_t) * self->near_history_size); | 
|  | for (i = 0; i <= self->history_size; ++i) { | 
|  | self->mean_bit_counts[i] = (20 << 9);  // 20 in Q9. | 
|  | self->histogram[i] = 0.f; | 
|  | } | 
|  | self->minimum_probability = kMaxBitCountsQ9;          // 32 in Q9. | 
|  | self->last_delay_probability = (int)kMaxBitCountsQ9;  // 32 in Q9. | 
|  |  | 
|  | // Default return value if we're unable to estimate. -1 is used for errors. | 
|  | self->last_delay = -2; | 
|  |  | 
|  | self->last_candidate_delay = -2; | 
|  | self->compare_delay = self->history_size; | 
|  | self->candidate_hits = 0; | 
|  | self->last_delay_histogram = 0.f; | 
|  | } | 
|  |  | 
|  | int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self, | 
|  | int delay_shift) { | 
|  | int lookahead = 0; | 
|  | RTC_DCHECK(self); | 
|  | lookahead = self->lookahead; | 
|  | self->lookahead -= delay_shift; | 
|  | if (self->lookahead < 0) { | 
|  | self->lookahead = 0; | 
|  | } | 
|  | if (self->lookahead > self->near_history_size - 1) { | 
|  | self->lookahead = self->near_history_size - 1; | 
|  | } | 
|  | return lookahead - self->lookahead; | 
|  | } | 
|  |  | 
|  | int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self, | 
|  | uint32_t binary_near_spectrum) { | 
|  | int i = 0; | 
|  | int candidate_delay = -1; | 
|  | int valid_candidate = 0; | 
|  |  | 
|  | int32_t value_best_candidate = kMaxBitCountsQ9; | 
|  | int32_t value_worst_candidate = 0; | 
|  | int32_t valley_depth = 0; | 
|  |  | 
|  | RTC_DCHECK(self); | 
|  | if (self->farend->history_size != self->history_size) { | 
|  | // Non matching history sizes. | 
|  | return -1; | 
|  | } | 
|  | if (self->near_history_size > 1) { | 
|  | // If we apply lookahead, shift near-end binary spectrum history. Insert | 
|  | // current `binary_near_spectrum` and pull out the delayed one. | 
|  | memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]), | 
|  | (self->near_history_size - 1) * sizeof(uint32_t)); | 
|  | self->binary_near_history[0] = binary_near_spectrum; | 
|  | binary_near_spectrum = self->binary_near_history[self->lookahead]; | 
|  | } | 
|  |  | 
|  | // Compare with delayed spectra and store the `bit_counts` for each delay. | 
|  | BitCountComparison(binary_near_spectrum, self->farend->binary_far_history, | 
|  | self->history_size, self->bit_counts); | 
|  |  | 
|  | // Update `mean_bit_counts`, which is the smoothed version of `bit_counts`. | 
|  | for (i = 0; i < self->history_size; i++) { | 
|  | // `bit_counts` is constrained to [0, 32], meaning we can smooth with a | 
|  | // factor up to 2^26. We use Q9. | 
|  | int32_t bit_count = (self->bit_counts[i] << 9);  // Q9. | 
|  |  | 
|  | // Update `mean_bit_counts` only when far-end signal has something to | 
|  | // contribute. If `far_bit_counts` is zero the far-end signal is weak and | 
|  | // we likely have a poor echo condition, hence don't update. | 
|  | if (self->farend->far_bit_counts[i] > 0) { | 
|  | // Make number of right shifts piecewise linear w.r.t. `far_bit_counts`. | 
|  | int shifts = kShiftsAtZero; | 
|  | shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4; | 
|  | WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find `candidate_delay`, `value_best_candidate` and `value_worst_candidate` | 
|  | // of `mean_bit_counts`. | 
|  | for (i = 0; i < self->history_size; i++) { | 
|  | if (self->mean_bit_counts[i] < value_best_candidate) { | 
|  | value_best_candidate = self->mean_bit_counts[i]; | 
|  | candidate_delay = i; | 
|  | } | 
|  | if (self->mean_bit_counts[i] > value_worst_candidate) { | 
|  | value_worst_candidate = self->mean_bit_counts[i]; | 
|  | } | 
|  | } | 
|  | valley_depth = value_worst_candidate - value_best_candidate; | 
|  |  | 
|  | // The `value_best_candidate` is a good indicator on the probability of | 
|  | // `candidate_delay` being an accurate delay (a small `value_best_candidate` | 
|  | // means a good binary match). In the following sections we make a decision | 
|  | // whether to update `last_delay` or not. | 
|  | // 1) If the difference bit counts between the best and the worst delay | 
|  | //    candidates is too small we consider the situation to be unreliable and | 
|  | //    don't update `last_delay`. | 
|  | // 2) If the situation is reliable we update `last_delay` if the value of the | 
|  | //    best candidate delay has a value less than | 
|  | //     i) an adaptive threshold `minimum_probability`, or | 
|  | //    ii) this corresponding value `last_delay_probability`, but updated at | 
|  | //        this time instant. | 
|  |  | 
|  | // Update `minimum_probability`. | 
|  | if ((self->minimum_probability > kProbabilityLowerLimit) && | 
|  | (valley_depth > kProbabilityMinSpread)) { | 
|  | // The "hard" threshold can't be lower than 17 (in Q9). | 
|  | // The valley in the curve also has to be distinct, i.e., the | 
|  | // difference between `value_worst_candidate` and `value_best_candidate` has | 
|  | // to be large enough. | 
|  | int32_t threshold = value_best_candidate + kProbabilityOffset; | 
|  | if (threshold < kProbabilityLowerLimit) { | 
|  | threshold = kProbabilityLowerLimit; | 
|  | } | 
|  | if (self->minimum_probability > threshold) { | 
|  | self->minimum_probability = threshold; | 
|  | } | 
|  | } | 
|  | // Update `last_delay_probability`. | 
|  | // We use a Markov type model, i.e., a slowly increasing level over time. | 
|  | self->last_delay_probability++; | 
|  | // Validate `candidate_delay`.  We have a reliable instantaneous delay | 
|  | // estimate if | 
|  | //  1) The valley is distinct enough (`valley_depth` > `kProbabilityOffset`) | 
|  | // and | 
|  | //  2) The depth of the valley is deep enough | 
|  | //      (`value_best_candidate` < `minimum_probability`) | 
|  | //     and deeper than the best estimate so far | 
|  | //      (`value_best_candidate` < `last_delay_probability`) | 
|  | valid_candidate = ((valley_depth > kProbabilityOffset) && | 
|  | ((value_best_candidate < self->minimum_probability) || | 
|  | (value_best_candidate < self->last_delay_probability))); | 
|  |  | 
|  | // Check for nonstationary farend signal. | 
|  | const bool non_stationary_farend = | 
|  | std::any_of(self->farend->far_bit_counts, | 
|  | self->farend->far_bit_counts + self->history_size, | 
|  | [](int a) { return a > 0; }); | 
|  |  | 
|  | if (non_stationary_farend) { | 
|  | // Only update the validation statistics when the farend is nonstationary | 
|  | // as the underlying estimates are otherwise frozen. | 
|  | UpdateRobustValidationStatistics(self, candidate_delay, valley_depth, | 
|  | value_best_candidate); | 
|  | } | 
|  |  | 
|  | if (self->robust_validation_enabled) { | 
|  | int is_histogram_valid = HistogramBasedValidation(self, candidate_delay); | 
|  | valid_candidate = RobustValidation(self, candidate_delay, valid_candidate, | 
|  | is_histogram_valid); | 
|  | } | 
|  |  | 
|  | // Only update the delay estimate when the farend is nonstationary and when | 
|  | // a valid delay candidate is available. | 
|  | if (non_stationary_farend && valid_candidate) { | 
|  | if (candidate_delay != self->last_delay) { | 
|  | self->last_delay_histogram = | 
|  | (self->histogram[candidate_delay] > kLastHistogramMax | 
|  | ? kLastHistogramMax | 
|  | : self->histogram[candidate_delay]); | 
|  | // Adjust the histogram if we made a change to `last_delay`, though it was | 
|  | // not the most likely one according to the histogram. | 
|  | if (self->histogram[candidate_delay] < | 
|  | self->histogram[self->compare_delay]) { | 
|  | self->histogram[self->compare_delay] = self->histogram[candidate_delay]; | 
|  | } | 
|  | } | 
|  | self->last_delay = candidate_delay; | 
|  | if (value_best_candidate < self->last_delay_probability) { | 
|  | self->last_delay_probability = value_best_candidate; | 
|  | } | 
|  | self->compare_delay = self->last_delay; | 
|  | } | 
|  |  | 
|  | return self->last_delay; | 
|  | } | 
|  |  | 
|  | int WebRtc_binary_last_delay(BinaryDelayEstimator* self) { | 
|  | RTC_DCHECK(self); | 
|  | return self->last_delay; | 
|  | } | 
|  |  | 
|  | float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) { | 
|  | float quality = 0; | 
|  | RTC_DCHECK(self); | 
|  |  | 
|  | if (self->robust_validation_enabled) { | 
|  | // Simply a linear function of the histogram height at delay estimate. | 
|  | quality = self->histogram[self->compare_delay] / kHistogramMax; | 
|  | } else { | 
|  | // Note that `last_delay_probability` states how deep the minimum of the | 
|  | // cost function is, so it is rather an error probability. | 
|  | quality = (float)(kMaxBitCountsQ9 - self->last_delay_probability) / | 
|  | kMaxBitCountsQ9; | 
|  | if (quality < 0) { | 
|  | quality = 0; | 
|  | } | 
|  | } | 
|  | return quality; | 
|  | } | 
|  |  | 
|  | void WebRtc_MeanEstimatorFix(int32_t new_value, | 
|  | int factor, | 
|  | int32_t* mean_value) { | 
|  | int32_t diff = new_value - *mean_value; | 
|  |  | 
|  | // mean_new = mean_value + ((new_value - mean_value) >> factor); | 
|  | if (diff < 0) { | 
|  | diff = -((-diff) >> factor); | 
|  | } else { | 
|  | diff = (diff >> factor); | 
|  | } | 
|  | *mean_value += diff; | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |