| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| #include "webrtc/modules/video_coding/include/video_coding.h" |
| #include "webrtc/modules/video_coding/internal_defines.h" |
| #include "webrtc/modules/video_coding/timing.h" |
| #include "webrtc/modules/video_coding/test/test_util.h" |
| #include "webrtc/system_wrappers/include/clock.h" |
| #include "webrtc/system_wrappers/include/trace.h" |
| #include "webrtc/test/testsupport/fileutils.h" |
| |
| namespace webrtc { |
| |
| TEST(ReceiverTiming, Tests) { |
| SimulatedClock clock(0); |
| VCMTiming timing(&clock); |
| uint32_t waitTime = 0; |
| uint32_t jitterDelayMs = 0; |
| uint32_t requiredDecodeTimeMs = 0; |
| uint32_t timeStamp = 0; |
| |
| timing.Reset(); |
| |
| timing.UpdateCurrentDelay(timeStamp); |
| |
| timing.Reset(); |
| |
| timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds()); |
| jitterDelayMs = 20; |
| timing.SetJitterDelay(jitterDelayMs); |
| timing.UpdateCurrentDelay(timeStamp); |
| timing.set_render_delay(0); |
| waitTime = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| // First update initializes the render time. Since we have no decode delay |
| // we get waitTime = renderTime - now - renderDelay = jitter. |
| EXPECT_EQ(jitterDelayMs, waitTime); |
| |
| jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10; |
| timeStamp += 90000; |
| clock.AdvanceTimeMilliseconds(1000); |
| timing.SetJitterDelay(jitterDelayMs); |
| timing.UpdateCurrentDelay(timeStamp); |
| waitTime = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| // Since we gradually increase the delay we only get 100 ms every second. |
| EXPECT_EQ(jitterDelayMs - 10, waitTime); |
| |
| timeStamp += 90000; |
| clock.AdvanceTimeMilliseconds(1000); |
| timing.UpdateCurrentDelay(timeStamp); |
| waitTime = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| EXPECT_EQ(waitTime, jitterDelayMs); |
| |
| // 300 incoming frames without jitter, verify that this gives the exact wait |
| // time. |
| for (int i = 0; i < 300; i++) { |
| clock.AdvanceTimeMilliseconds(1000 / 25); |
| timeStamp += 90000 / 25; |
| timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds()); |
| } |
| timing.UpdateCurrentDelay(timeStamp); |
| waitTime = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| EXPECT_EQ(waitTime, jitterDelayMs); |
| |
| // Add decode time estimates. |
| for (int i = 0; i < 10; i++) { |
| int64_t startTimeMs = clock.TimeInMilliseconds(); |
| clock.AdvanceTimeMilliseconds(10); |
| timing.StopDecodeTimer( |
| timeStamp, clock.TimeInMilliseconds() - startTimeMs, |
| clock.TimeInMilliseconds(), |
| timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds())); |
| timeStamp += 90000 / 25; |
| clock.AdvanceTimeMilliseconds(1000 / 25 - 10); |
| timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds()); |
| } |
| requiredDecodeTimeMs = 10; |
| timing.SetJitterDelay(jitterDelayMs); |
| clock.AdvanceTimeMilliseconds(1000); |
| timeStamp += 90000; |
| timing.UpdateCurrentDelay(timeStamp); |
| waitTime = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| EXPECT_EQ(waitTime, jitterDelayMs); |
| |
| int minTotalDelayMs = 200; |
| timing.set_min_playout_delay(minTotalDelayMs); |
| clock.AdvanceTimeMilliseconds(5000); |
| timeStamp += 5 * 90000; |
| timing.UpdateCurrentDelay(timeStamp); |
| const int kRenderDelayMs = 10; |
| timing.set_render_delay(kRenderDelayMs); |
| waitTime = timing.MaxWaitingTime( |
| timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), |
| clock.TimeInMilliseconds()); |
| // We should at least have minTotalDelayMs - decodeTime (10) - renderTime |
| // (10) to wait. |
| EXPECT_EQ(waitTime, minTotalDelayMs - requiredDecodeTimeMs - kRenderDelayMs); |
| // The total video delay should be equal to the min total delay. |
| EXPECT_EQ(minTotalDelayMs, timing.TargetVideoDelay()); |
| |
| // Reset playout delay. |
| timing.set_min_playout_delay(0); |
| clock.AdvanceTimeMilliseconds(5000); |
| timeStamp += 5 * 90000; |
| timing.UpdateCurrentDelay(timeStamp); |
| } |
| |
| TEST(ReceiverTiming, WrapAround) { |
| const int kFramerate = 25; |
| SimulatedClock clock(0); |
| VCMTiming timing(&clock); |
| // Provoke a wrap-around. The forth frame will have wrapped at 25 fps. |
| uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFramerate; |
| for (int i = 0; i < 4; ++i) { |
| timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); |
| clock.AdvanceTimeMilliseconds(1000 / kFramerate); |
| timestamp += 90000 / kFramerate; |
| int64_t render_time = |
| timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds()); |
| EXPECT_EQ(3 * 1000 / kFramerate, render_time); |
| render_time = timing.RenderTimeMs(89u, // One second later in 90 kHz. |
| clock.TimeInMilliseconds()); |
| EXPECT_EQ(3 * 1000 / kFramerate + 1, render_time); |
| } |
| } |
| |
| } // namespace webrtc |