blob: ec569990224d2a9d7e951e3e06d24793e98c06e3 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/tools/event_log_visualizer/analyzer.h"
#include <algorithm>
#include <limits>
#include <map>
#include <sstream>
#include <string>
#include <utility>
#include "webrtc/audio_receive_stream.h"
#include "webrtc/audio_send_stream.h"
#include "webrtc/base/checks.h"
#include "webrtc/call.h"
#include "webrtc/common_types.h"
#include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h"
#include "webrtc/modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_utility.h"
#include "webrtc/video_receive_stream.h"
#include "webrtc/video_send_stream.h"
namespace {
std::string SsrcToString(uint32_t ssrc) {
std::stringstream ss;
ss << "SSRC " << ssrc;
return ss.str();
}
// Checks whether an SSRC is contained in the list of desired SSRCs.
// Note that an empty SSRC list matches every SSRC.
bool MatchingSsrc(uint32_t ssrc, const std::vector<uint32_t>& desired_ssrc) {
if (desired_ssrc.size() == 0)
return true;
return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) !=
desired_ssrc.end();
}
double AbsSendTimeToMicroseconds(int64_t abs_send_time) {
// The timestamp is a fixed point representation with 6 bits for seconds
// and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the
// time in seconds and then multiply by 1000000 to convert to microseconds.
static constexpr double kTimestampToMicroSec =
1000000.0 / static_cast<double>(1 << 18);
return abs_send_time * kTimestampToMicroSec;
}
// Computes the difference |later| - |earlier| where |later| and |earlier|
// are counters that wrap at |modulus|. The difference is chosen to have the
// least absolute value. For example if |modulus| is 8, then the difference will
// be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will
// be in [-4, 4].
int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) {
RTC_DCHECK_LE(1, modulus);
RTC_DCHECK_LT(later, modulus);
RTC_DCHECK_LT(earlier, modulus);
int64_t difference =
static_cast<int64_t>(later) - static_cast<int64_t>(earlier);
int64_t max_difference = modulus / 2;
int64_t min_difference = max_difference - modulus + 1;
if (difference > max_difference) {
difference -= modulus;
}
if (difference < min_difference) {
difference += modulus;
}
return difference;
}
const double kXMargin = 1.02;
const double kYMargin = 1.1;
const double kDefaultXMin = -1;
const double kDefaultYMin = -1;
} // namespace
namespace webrtc {
namespace plotting {
bool EventLogAnalyzer::StreamId::operator<(const StreamId& other) const {
if (ssrc_ < other.ssrc_) {
return true;
}
if (ssrc_ == other.ssrc_) {
if (media_type_ < other.media_type_) {
return true;
}
if (media_type_ == other.media_type_) {
if (direction_ < other.direction_) {
return true;
}
}
}
return false;
}
bool EventLogAnalyzer::StreamId::operator==(const StreamId& other) const {
return ssrc_ == other.ssrc_ && direction_ == other.direction_ &&
media_type_ == other.media_type_;
}
EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log)
: parsed_log_(log), window_duration_(250000), step_(10000) {
uint64_t first_timestamp = std::numeric_limits<uint64_t>::max();
uint64_t last_timestamp = std::numeric_limits<uint64_t>::min();
// Maps a stream identifier consisting of ssrc, direction and MediaType
// to the header extensions used by that stream,
std::map<StreamId, RtpHeaderExtensionMap> extension_maps;
PacketDirection direction;
MediaType media_type;
uint8_t header[IP_PACKET_SIZE];
size_t header_length;
size_t total_length;
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type != ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT &&
event_type != ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT &&
event_type != ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT &&
event_type != ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT) {
uint64_t timestamp = parsed_log_.GetTimestamp(i);
first_timestamp = std::min(first_timestamp, timestamp);
last_timestamp = std::max(last_timestamp, timestamp);
}
switch (parsed_log_.GetEventType(i)) {
case ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT: {
VideoReceiveStream::Config config(nullptr);
parsed_log_.GetVideoReceiveConfig(i, &config);
StreamId stream(config.rtp.remote_ssrc, kIncomingPacket,
MediaType::VIDEO);
extension_maps[stream].Erase();
for (size_t j = 0; j < config.rtp.extensions.size(); ++j) {
const std::string& extension = config.rtp.extensions[j].uri;
int id = config.rtp.extensions[j].id;
extension_maps[stream].Register(StringToRtpExtensionType(extension),
id);
}
break;
}
case ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT: {
VideoSendStream::Config config(nullptr);
parsed_log_.GetVideoSendConfig(i, &config);
for (auto ssrc : config.rtp.ssrcs) {
StreamId stream(ssrc, kOutgoingPacket, MediaType::VIDEO);
extension_maps[stream].Erase();
for (size_t j = 0; j < config.rtp.extensions.size(); ++j) {
const std::string& extension = config.rtp.extensions[j].uri;
int id = config.rtp.extensions[j].id;
extension_maps[stream].Register(StringToRtpExtensionType(extension),
id);
}
}
break;
}
case ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT: {
AudioReceiveStream::Config config;
// TODO(terelius): Parse the audio configs once we have them.
break;
}
case ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT: {
AudioSendStream::Config config(nullptr);
// TODO(terelius): Parse the audio configs once we have them.
break;
}
case ParsedRtcEventLog::RTP_EVENT: {
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
&header_length, &total_length);
// Parse header to get SSRC.
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
RTPHeader parsed_header;
rtp_parser.Parse(&parsed_header);
StreamId stream(parsed_header.ssrc, direction, media_type);
// Look up the extension_map and parse it again to get the extensions.
if (extension_maps.count(stream) == 1) {
RtpHeaderExtensionMap* extension_map = &extension_maps[stream];
rtp_parser.Parse(&parsed_header, extension_map);
}
uint64_t timestamp = parsed_log_.GetTimestamp(i);
rtp_packets_[stream].push_back(
LoggedRtpPacket(timestamp, parsed_header));
break;
}
case ParsedRtcEventLog::RTCP_EVENT: {
break;
}
case ParsedRtcEventLog::LOG_START: {
break;
}
case ParsedRtcEventLog::LOG_END: {
break;
}
case ParsedRtcEventLog::BWE_PACKET_LOSS_EVENT: {
break;
}
case ParsedRtcEventLog::BWE_PACKET_DELAY_EVENT: {
break;
}
case ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT: {
break;
}
case ParsedRtcEventLog::UNKNOWN_EVENT: {
break;
}
}
}
if (last_timestamp < first_timestamp) {
// No useful events in the log.
first_timestamp = last_timestamp = 0;
}
begin_time_ = first_timestamp;
end_time_ = last_timestamp;
}
void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction,
Plot* plot) {
std::map<uint32_t, TimeSeries> time_series;
PacketDirection direction;
MediaType media_type;
uint8_t header[IP_PACKET_SIZE];
size_t header_length, total_length;
float max_y = 0;
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
&header_length, &total_length);
if (direction == desired_direction) {
// Parse header to get SSRC.
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
RTPHeader parsed_header;
rtp_parser.Parse(&parsed_header);
// Filter on SSRC.
if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) {
uint64_t timestamp = parsed_log_.GetTimestamp(i);
float x = static_cast<float>(timestamp - begin_time_) / 1000000;
float y = total_length;
max_y = std::max(max_y, y);
time_series[parsed_header.ssrc].points.push_back(
TimeSeriesPoint(x, y));
}
}
}
}
// Set labels and put in graph.
for (auto& kv : time_series) {
kv.second.label = SsrcToString(kv.first);
kv.second.style = BAR_GRAPH;
plot->series.push_back(std::move(kv.second));
}
plot->xaxis_min = kDefaultXMin;
plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin;
plot->xaxis_label = "Time (s)";
plot->yaxis_min = kDefaultYMin;
plot->yaxis_max = max_y * kYMargin;
plot->yaxis_label = "Packet size (bytes)";
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
plot->title = "Incoming RTP packets";
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
plot->title = "Outgoing RTP packets";
}
}
// For each SSRC, plot the time between the consecutive playouts.
void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) {
std::map<uint32_t, TimeSeries> time_series;
std::map<uint32_t, uint64_t> last_playout;
uint32_t ssrc;
float max_y = 0;
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type == ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT) {
parsed_log_.GetAudioPlayout(i, &ssrc);
uint64_t timestamp = parsed_log_.GetTimestamp(i);
if (MatchingSsrc(ssrc, desired_ssrc_)) {
float x = static_cast<float>(timestamp - begin_time_) / 1000000;
float y = static_cast<float>(timestamp - last_playout[ssrc]) / 1000;
if (time_series[ssrc].points.size() == 0) {
// There were no previusly logged playout for this SSRC.
// Generate a point, but place it on the x-axis.
y = 0;
}
max_y = std::max(max_y, y);
time_series[ssrc].points.push_back(TimeSeriesPoint(x, y));
last_playout[ssrc] = timestamp;
}
}
}
// Set labels and put in graph.
for (auto& kv : time_series) {
kv.second.label = SsrcToString(kv.first);
kv.second.style = BAR_GRAPH;
plot->series.push_back(std::move(kv.second));
}
plot->xaxis_min = kDefaultXMin;
plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin;
plot->xaxis_label = "Time (s)";
plot->yaxis_min = kDefaultYMin;
plot->yaxis_max = max_y * kYMargin;
plot->yaxis_label = "Time since last playout (ms)";
plot->title = "Audio playout";
}
// For each SSRC, plot the time between the consecutive playouts.
void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) {
std::map<uint32_t, TimeSeries> time_series;
std::map<uint32_t, uint16_t> last_seqno;
PacketDirection direction;
MediaType media_type;
uint8_t header[IP_PACKET_SIZE];
size_t header_length, total_length;
int max_y = 1;
int min_y = 0;
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
&header_length, &total_length);
uint64_t timestamp = parsed_log_.GetTimestamp(i);
if (direction == PacketDirection::kIncomingPacket) {
// Parse header to get SSRC.
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
RTPHeader parsed_header;
rtp_parser.Parse(&parsed_header);
// Filter on SSRC.
if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) {
float x = static_cast<float>(timestamp - begin_time_) / 1000000;
int y = WrappingDifference(parsed_header.sequenceNumber,
last_seqno[parsed_header.ssrc], 1ul << 16);
if (time_series[parsed_header.ssrc].points.size() == 0) {
// There were no previusly logged playout for this SSRC.
// Generate a point, but place it on the x-axis.
y = 0;
}
max_y = std::max(max_y, y);
min_y = std::min(min_y, y);
time_series[parsed_header.ssrc].points.push_back(
TimeSeriesPoint(x, y));
last_seqno[parsed_header.ssrc] = parsed_header.sequenceNumber;
}
}
}
}
// Set labels and put in graph.
for (auto& kv : time_series) {
kv.second.label = SsrcToString(kv.first);
kv.second.style = BAR_GRAPH;
plot->series.push_back(std::move(kv.second));
}
plot->xaxis_min = kDefaultXMin;
plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin;
plot->xaxis_label = "Time (s)";
plot->yaxis_min = min_y - (kYMargin - 1) / 2 * (max_y - min_y);
plot->yaxis_max = max_y + (kYMargin - 1) / 2 * (max_y - min_y);
plot->yaxis_label = "Difference since last packet";
plot->title = "Sequence number";
}
void EventLogAnalyzer::CreateDelayChangeGraph(Plot* plot) {
double max_y = 10;
double min_y = 0;
for (auto& kv : rtp_packets_) {
StreamId stream_id = kv.first;
// Filter on direction and SSRC.
if (stream_id.GetDirection() != kIncomingPacket ||
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) {
continue;
}
TimeSeries time_series;
time_series.label = SsrcToString(stream_id.GetSsrc());
time_series.style = BAR_GRAPH;
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
int64_t last_abs_send_time = 0;
int64_t last_timestamp = 0;
for (const LoggedRtpPacket& packet : packet_stream) {
if (packet.header.extension.hasAbsoluteSendTime) {
int64_t send_time_diff =
WrappingDifference(packet.header.extension.absoluteSendTime,
last_abs_send_time, 1ul << 24);
int64_t recv_time_diff = packet.timestamp - last_timestamp;
last_abs_send_time = packet.header.extension.absoluteSendTime;
last_timestamp = packet.timestamp;
float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000;
double y =
static_cast<double>(recv_time_diff -
AbsSendTimeToMicroseconds(send_time_diff)) /
1000;
if (time_series.points.size() == 0) {
// There were no previously logged packets for this SSRC.
// Generate a point, but place it on the x-axis.
y = 0;
}
max_y = std::max(max_y, y);
min_y = std::min(min_y, y);
time_series.points.emplace_back(x, y);
}
}
// Add the data set to the plot.
plot->series.push_back(std::move(time_series));
}
plot->xaxis_min = kDefaultXMin;
plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin;
plot->xaxis_label = "Time (s)";
plot->yaxis_min = min_y - (kYMargin - 1) / 2 * (max_y - min_y);
plot->yaxis_max = max_y + (kYMargin - 1) / 2 * (max_y - min_y);
plot->yaxis_label = "Latency change (ms)";
plot->title = "Network latency change between consecutive packets";
}
void EventLogAnalyzer::CreateAccumulatedDelayChangeGraph(Plot* plot) {
double max_y = 10;
double min_y = 0;
for (auto& kv : rtp_packets_) {
StreamId stream_id = kv.first;
// Filter on direction and SSRC.
if (stream_id.GetDirection() != kIncomingPacket ||
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) {
continue;
}
TimeSeries time_series;
time_series.label = SsrcToString(stream_id.GetSsrc());
time_series.style = LINE_GRAPH;
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
int64_t last_abs_send_time = 0;
int64_t last_timestamp = 0;
double accumulated_delay_ms = 0;
for (const LoggedRtpPacket& packet : packet_stream) {
if (packet.header.extension.hasAbsoluteSendTime) {
int64_t send_time_diff =
WrappingDifference(packet.header.extension.absoluteSendTime,
last_abs_send_time, 1ul << 24);
int64_t recv_time_diff = packet.timestamp - last_timestamp;
last_abs_send_time = packet.header.extension.absoluteSendTime;
last_timestamp = packet.timestamp;
float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000;
accumulated_delay_ms +=
static_cast<double>(recv_time_diff -
AbsSendTimeToMicroseconds(send_time_diff)) /
1000;
if (time_series.points.size() == 0) {
// There were no previously logged packets for this SSRC.
// Generate a point, but place it on the x-axis.
accumulated_delay_ms = 0;
}
max_y = std::max(max_y, accumulated_delay_ms);
min_y = std::min(min_y, accumulated_delay_ms);
time_series.points.emplace_back(x, accumulated_delay_ms);
}
}
// Add the data set to the plot.
plot->series.push_back(std::move(time_series));
}
plot->xaxis_min = kDefaultXMin;
plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin;
plot->xaxis_label = "Time (s)";
plot->yaxis_min = min_y - (kYMargin - 1) / 2 * (max_y - min_y);
plot->yaxis_max = max_y + (kYMargin - 1) / 2 * (max_y - min_y);
plot->yaxis_label = "Latency change (ms)";
plot->title = "Accumulated network latency change";
}
// Plot the total bandwidth used by all RTP streams.
void EventLogAnalyzer::CreateTotalBitrateGraph(
PacketDirection desired_direction,
Plot* plot) {
struct TimestampSize {
TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {}
uint64_t timestamp;
size_t size;
};
std::vector<TimestampSize> packets;
PacketDirection direction;
size_t total_length;
// Extract timestamps and sizes for the relevant packets.
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
parsed_log_.GetRtpHeader(i, &direction, nullptr, nullptr, nullptr,
&total_length);
if (direction == desired_direction) {
uint64_t timestamp = parsed_log_.GetTimestamp(i);
packets.push_back(TimestampSize(timestamp, total_length));
}
}
}
size_t window_index_begin = 0;
size_t window_index_end = 0;
size_t bytes_in_window = 0;
float max_y = 0;
// Calculate a moving average of the bitrate and store in a TimeSeries.
plot->series.push_back(TimeSeries());
for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) {
while (window_index_end < packets.size() &&
packets[window_index_end].timestamp < time) {
bytes_in_window += packets[window_index_end].size;
window_index_end++;
}
while (window_index_begin < packets.size() &&
packets[window_index_begin].timestamp < time - window_duration_) {
RTC_DCHECK_LE(packets[window_index_begin].size, bytes_in_window);
bytes_in_window -= packets[window_index_begin].size;
window_index_begin++;
}
float window_duration_in_seconds =
static_cast<float>(window_duration_) / 1000000;
float x = static_cast<float>(time - begin_time_) / 1000000;
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
max_y = std::max(max_y, y);
plot->series.back().points.push_back(TimeSeriesPoint(x, y));
}
// Set labels.
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
plot->series.back().label = "Incoming bitrate";
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
plot->series.back().label = "Outgoing bitrate";
}
plot->series.back().style = LINE_GRAPH;
plot->xaxis_min = kDefaultXMin;
plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin;
plot->xaxis_label = "Time (s)";
plot->yaxis_min = kDefaultYMin;
plot->yaxis_max = max_y * kYMargin;
plot->yaxis_label = "Bitrate (kbps)";
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
plot->title = "Incoming RTP bitrate";
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
plot->title = "Outgoing RTP bitrate";
}
}
// For each SSRC, plot the bandwidth used by that stream.
void EventLogAnalyzer::CreateStreamBitrateGraph(
PacketDirection desired_direction,
Plot* plot) {
struct TimestampSize {
TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {}
uint64_t timestamp;
size_t size;
};
std::map<uint32_t, std::vector<TimestampSize>> packets;
PacketDirection direction;
MediaType media_type;
uint8_t header[IP_PACKET_SIZE];
size_t header_length, total_length;
// Extract timestamps and sizes for the relevant packets.
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
&header_length, &total_length);
if (direction == desired_direction) {
// Parse header to get SSRC.
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
RTPHeader parsed_header;
rtp_parser.Parse(&parsed_header);
// Filter on SSRC.
if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) {
uint64_t timestamp = parsed_log_.GetTimestamp(i);
packets[parsed_header.ssrc].push_back(
TimestampSize(timestamp, total_length));
}
}
}
}
float max_y = 0;
for (auto& kv : packets) {
size_t window_index_begin = 0;
size_t window_index_end = 0;
size_t bytes_in_window = 0;
// Calculate a moving average of the bitrate and store in a TimeSeries.
plot->series.push_back(TimeSeries());
for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) {
while (window_index_end < kv.second.size() &&
kv.second[window_index_end].timestamp < time) {
bytes_in_window += kv.second[window_index_end].size;
window_index_end++;
}
while (window_index_begin < kv.second.size() &&
kv.second[window_index_begin].timestamp <
time - window_duration_) {
RTC_DCHECK_LE(kv.second[window_index_begin].size, bytes_in_window);
bytes_in_window -= kv.second[window_index_begin].size;
window_index_begin++;
}
float window_duration_in_seconds =
static_cast<float>(window_duration_) / 1000000;
float x = static_cast<float>(time - begin_time_) / 1000000;
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
max_y = std::max(max_y, y);
plot->series.back().points.push_back(TimeSeriesPoint(x, y));
}
// Set labels.
plot->series.back().label = SsrcToString(kv.first);
plot->series.back().style = LINE_GRAPH;
}
plot->xaxis_min = kDefaultXMin;
plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin;
plot->xaxis_label = "Time (s)";
plot->yaxis_min = kDefaultYMin;
plot->yaxis_max = max_y * kYMargin;
plot->yaxis_label = "Bitrate (kbps)";
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
plot->title = "Incoming bitrate per stream";
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
plot->title = "Outgoing bitrate per stream";
}
}
} // namespace plotting
} // namespace webrtc