| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/video_coding/receiver.h" |
| |
| #include <assert.h> |
| |
| #include <cstdlib> |
| #include <utility> |
| #include <vector> |
| |
| #include "modules/video_coding/encoded_frame.h" |
| #include "modules/video_coding/internal_defines.h" |
| #include "modules/video_coding/media_opt_util.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "rtc_base/trace_event.h" |
| #include "system_wrappers/include/clock.h" |
| |
| namespace webrtc { |
| |
| enum { kMaxReceiverDelayMs = 10000 }; |
| |
| VCMReceiver::VCMReceiver(VCMTiming* timing, Clock* clock) |
| : VCMReceiver::VCMReceiver(timing, |
| clock, |
| absl::WrapUnique(EventWrapper::Create()), |
| absl::WrapUnique(EventWrapper::Create()), |
| nullptr, // NackSender |
| nullptr) // KeyframeRequestSender |
| {} |
| |
| VCMReceiver::VCMReceiver(VCMTiming* timing, |
| Clock* clock, |
| NackSender* nack_sender, |
| KeyFrameRequestSender* keyframe_request_sender) |
| : VCMReceiver(timing, |
| clock, |
| absl::WrapUnique(EventWrapper::Create()), |
| absl::WrapUnique(EventWrapper::Create()), |
| nack_sender, |
| keyframe_request_sender) {} |
| |
| VCMReceiver::VCMReceiver(VCMTiming* timing, |
| Clock* clock, |
| std::unique_ptr<EventWrapper> receiver_event, |
| std::unique_ptr<EventWrapper> jitter_buffer_event) |
| : VCMReceiver::VCMReceiver(timing, |
| clock, |
| std::move(receiver_event), |
| std::move(jitter_buffer_event), |
| nullptr, // NackSender |
| nullptr) // KeyframeRequestSender |
| {} |
| |
| VCMReceiver::VCMReceiver(VCMTiming* timing, |
| Clock* clock, |
| std::unique_ptr<EventWrapper> receiver_event, |
| std::unique_ptr<EventWrapper> jitter_buffer_event, |
| NackSender* nack_sender, |
| KeyFrameRequestSender* keyframe_request_sender) |
| : clock_(clock), |
| jitter_buffer_(clock_, |
| std::move(jitter_buffer_event), |
| nack_sender, |
| keyframe_request_sender), |
| timing_(timing), |
| render_wait_event_(std::move(receiver_event)), |
| max_video_delay_ms_(kMaxVideoDelayMs) { |
| Reset(); |
| } |
| |
| VCMReceiver::~VCMReceiver() { |
| render_wait_event_->Set(); |
| } |
| |
| void VCMReceiver::Reset() { |
| rtc::CritScope cs(&crit_sect_); |
| if (!jitter_buffer_.Running()) { |
| jitter_buffer_.Start(); |
| } else { |
| jitter_buffer_.Flush(); |
| } |
| } |
| |
| void VCMReceiver::UpdateRtt(int64_t rtt) { |
| jitter_buffer_.UpdateRtt(rtt); |
| } |
| |
| int32_t VCMReceiver::InsertPacket(const VCMPacket& packet) { |
| // Insert the packet into the jitter buffer. The packet can either be empty or |
| // contain media at this point. |
| bool retransmitted = false; |
| const VCMFrameBufferEnum ret = |
| jitter_buffer_.InsertPacket(packet, &retransmitted); |
| if (ret == kOldPacket) { |
| return VCM_OK; |
| } else if (ret == kFlushIndicator) { |
| return VCM_FLUSH_INDICATOR; |
| } else if (ret < 0) { |
| return VCM_JITTER_BUFFER_ERROR; |
| } |
| if (ret == kCompleteSession && !retransmitted) { |
| // We don't want to include timestamps which have suffered from |
| // retransmission here, since we compensate with extra retransmission |
| // delay within the jitter estimate. |
| timing_->IncomingTimestamp(packet.timestamp, clock_->TimeInMilliseconds()); |
| } |
| return VCM_OK; |
| } |
| |
| void VCMReceiver::TriggerDecoderShutdown() { |
| jitter_buffer_.Stop(); |
| render_wait_event_->Set(); |
| } |
| |
| VCMEncodedFrame* VCMReceiver::FrameForDecoding(uint16_t max_wait_time_ms, |
| bool prefer_late_decoding) { |
| const int64_t start_time_ms = clock_->TimeInMilliseconds(); |
| uint32_t frame_timestamp = 0; |
| int min_playout_delay_ms = -1; |
| int max_playout_delay_ms = -1; |
| int64_t render_time_ms = 0; |
| // Exhaust wait time to get a complete frame for decoding. |
| VCMEncodedFrame* found_frame = |
| jitter_buffer_.NextCompleteFrame(max_wait_time_ms); |
| |
| if (found_frame) { |
| frame_timestamp = found_frame->Timestamp(); |
| min_playout_delay_ms = found_frame->EncodedImage().playout_delay_.min_ms; |
| max_playout_delay_ms = found_frame->EncodedImage().playout_delay_.max_ms; |
| } else { |
| if (!jitter_buffer_.NextMaybeIncompleteTimestamp(&frame_timestamp)) |
| return nullptr; |
| } |
| |
| if (min_playout_delay_ms >= 0) |
| timing_->set_min_playout_delay(min_playout_delay_ms); |
| |
| if (max_playout_delay_ms >= 0) |
| timing_->set_max_playout_delay(max_playout_delay_ms); |
| |
| // We have a frame - Set timing and render timestamp. |
| timing_->SetJitterDelay(jitter_buffer_.EstimatedJitterMs()); |
| const int64_t now_ms = clock_->TimeInMilliseconds(); |
| timing_->UpdateCurrentDelay(frame_timestamp); |
| render_time_ms = timing_->RenderTimeMs(frame_timestamp, now_ms); |
| // Check render timing. |
| bool timing_error = false; |
| // Assume that render timing errors are due to changes in the video stream. |
| if (render_time_ms < 0) { |
| timing_error = true; |
| } else if (std::abs(render_time_ms - now_ms) > max_video_delay_ms_) { |
| int frame_delay = static_cast<int>(std::abs(render_time_ms - now_ms)); |
| RTC_LOG(LS_WARNING) |
| << "A frame about to be decoded is out of the configured " |
| << "delay bounds (" << frame_delay << " > " << max_video_delay_ms_ |
| << "). Resetting the video jitter buffer."; |
| timing_error = true; |
| } else if (static_cast<int>(timing_->TargetVideoDelay()) > |
| max_video_delay_ms_) { |
| RTC_LOG(LS_WARNING) << "The video target delay has grown larger than " |
| << max_video_delay_ms_ |
| << " ms. Resetting jitter buffer."; |
| timing_error = true; |
| } |
| |
| if (timing_error) { |
| // Timing error => reset timing and flush the jitter buffer. |
| jitter_buffer_.Flush(); |
| timing_->Reset(); |
| return NULL; |
| } |
| |
| if (prefer_late_decoding) { |
| // Decode frame as close as possible to the render timestamp. |
| const int32_t available_wait_time = |
| max_wait_time_ms - |
| static_cast<int32_t>(clock_->TimeInMilliseconds() - start_time_ms); |
| uint16_t new_max_wait_time = |
| static_cast<uint16_t>(VCM_MAX(available_wait_time, 0)); |
| uint32_t wait_time_ms = rtc::saturated_cast<uint32_t>( |
| timing_->MaxWaitingTime(render_time_ms, clock_->TimeInMilliseconds())); |
| if (new_max_wait_time < wait_time_ms) { |
| // We're not allowed to wait until the frame is supposed to be rendered, |
| // waiting as long as we're allowed to avoid busy looping, and then return |
| // NULL. Next call to this function might return the frame. |
| render_wait_event_->Wait(new_max_wait_time); |
| return NULL; |
| } |
| // Wait until it's time to render. |
| render_wait_event_->Wait(wait_time_ms); |
| } |
| |
| // Extract the frame from the jitter buffer and set the render time. |
| VCMEncodedFrame* frame = jitter_buffer_.ExtractAndSetDecode(frame_timestamp); |
| if (frame == NULL) { |
| return NULL; |
| } |
| frame->SetRenderTime(render_time_ms); |
| TRACE_EVENT_ASYNC_STEP1("webrtc", "Video", frame->Timestamp(), "SetRenderTS", |
| "render_time", frame->RenderTimeMs()); |
| if (!frame->Complete()) { |
| // Update stats for incomplete frames. |
| bool retransmitted = false; |
| const int64_t last_packet_time_ms = |
| jitter_buffer_.LastPacketTime(frame, &retransmitted); |
| if (last_packet_time_ms >= 0 && !retransmitted) { |
| // We don't want to include timestamps which have suffered from |
| // retransmission here, since we compensate with extra retransmission |
| // delay within the jitter estimate. |
| timing_->IncomingTimestamp(frame_timestamp, last_packet_time_ms); |
| } |
| } |
| return frame; |
| } |
| |
| void VCMReceiver::ReleaseFrame(VCMEncodedFrame* frame) { |
| jitter_buffer_.ReleaseFrame(frame); |
| } |
| |
| void VCMReceiver::ReceiveStatistics(uint32_t* bitrate, uint32_t* framerate) { |
| assert(bitrate); |
| assert(framerate); |
| jitter_buffer_.IncomingRateStatistics(framerate, bitrate); |
| } |
| |
| void VCMReceiver::SetNackMode(VCMNackMode nackMode, |
| int64_t low_rtt_nack_threshold_ms, |
| int64_t high_rtt_nack_threshold_ms) { |
| rtc::CritScope cs(&crit_sect_); |
| // Default to always having NACK enabled in hybrid mode. |
| jitter_buffer_.SetNackMode(nackMode, low_rtt_nack_threshold_ms, |
| high_rtt_nack_threshold_ms); |
| } |
| |
| void VCMReceiver::SetNackSettings(size_t max_nack_list_size, |
| int max_packet_age_to_nack, |
| int max_incomplete_time_ms) { |
| jitter_buffer_.SetNackSettings(max_nack_list_size, max_packet_age_to_nack, |
| max_incomplete_time_ms); |
| } |
| |
| VCMNackMode VCMReceiver::NackMode() const { |
| rtc::CritScope cs(&crit_sect_); |
| return jitter_buffer_.nack_mode(); |
| } |
| |
| std::vector<uint16_t> VCMReceiver::NackList(bool* request_key_frame) { |
| return jitter_buffer_.GetNackList(request_key_frame); |
| } |
| |
| void VCMReceiver::SetDecodeErrorMode(VCMDecodeErrorMode decode_error_mode) { |
| jitter_buffer_.SetDecodeErrorMode(decode_error_mode); |
| } |
| |
| VCMDecodeErrorMode VCMReceiver::DecodeErrorMode() const { |
| return jitter_buffer_.decode_error_mode(); |
| } |
| |
| void VCMReceiver::RegisterStatsCallback( |
| VCMReceiveStatisticsCallback* callback) { |
| jitter_buffer_.RegisterStatsCallback(callback); |
| } |
| |
| } // namespace webrtc |