blob: e423de5e6317b7003858111717c0e319868025cc [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include <vector>
#include "api/test/mock_video_encoder.h"
#include "api/video/i420_buffer.h"
#include "api/video_codecs/vp8_temporal_layers.h"
#include "modules/video_coding/codecs/vp8/include/vp8.h"
#include "modules/video_coding/include/mock/mock_vcm_callbacks.h"
#include "modules/video_coding/include/video_coding.h"
#include "modules/video_coding/utility/default_video_bitrate_allocator.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "modules/video_coding/video_coding_impl.h"
#include "system_wrappers/include/clock.h"
#include "test/frame_generator.h"
#include "test/gtest.h"
#include "test/testsupport/fileutils.h"
#include "test/video_codec_settings.h"
using ::testing::_;
using ::testing::AllOf;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::Field;
using ::testing::NiceMock;
using ::testing::Pointee;
using ::testing::Return;
using ::testing::FloatEq;
using std::vector;
using webrtc::test::FrameGenerator;
namespace webrtc {
namespace vcm {
namespace {
static const int kDefaultHeight = 720;
static const int kDefaultWidth = 1280;
static const int kMaxNumberOfTemporalLayers = 3;
static const int kNumberOfLayers = 3;
static const int kNumberOfStreams = 3;
static const int kUnusedPayloadType = 10;
struct Vp8StreamInfo {
float framerate_fps[kMaxNumberOfTemporalLayers];
int bitrate_kbps[kMaxNumberOfTemporalLayers];
};
MATCHER_P(MatchesVp8StreamInfo, expected, "") {
bool res = true;
for (int tl = 0; tl < kMaxNumberOfTemporalLayers; ++tl) {
if (fabs(expected.framerate_fps[tl] - arg.framerate_fps[tl]) > 0.5) {
*result_listener << " framerate_fps[" << tl
<< "] = " << arg.framerate_fps[tl] << " (expected "
<< expected.framerate_fps[tl] << ") ";
res = false;
}
if (abs(expected.bitrate_kbps[tl] - arg.bitrate_kbps[tl]) > 10) {
*result_listener << " bitrate_kbps[" << tl
<< "] = " << arg.bitrate_kbps[tl] << " (expected "
<< expected.bitrate_kbps[tl] << ") ";
res = false;
}
}
return res;
}
class EmptyFrameGenerator : public FrameGenerator {
public:
EmptyFrameGenerator(int width, int height) : width_(width), height_(height) {}
VideoFrame* NextFrame() override {
frame_.reset(new VideoFrame(I420Buffer::Create(width_, height_),
webrtc::kVideoRotation_0, 0));
return frame_.get();
}
private:
const int width_;
const int height_;
std::unique_ptr<VideoFrame> frame_;
};
class EncodedImageCallbackImpl : public EncodedImageCallback {
public:
explicit EncodedImageCallbackImpl(Clock* clock)
: clock_(clock), start_time_ms_(clock_->TimeInMilliseconds()) {}
virtual ~EncodedImageCallbackImpl() {}
Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) override {
assert(codec_specific_info);
frame_data_.push_back(
FrameData(encoded_image._length, *codec_specific_info));
return Result(Result::OK, encoded_image.Timestamp());
}
void Reset() {
frame_data_.clear();
start_time_ms_ = clock_->TimeInMilliseconds();
}
float FramerateFpsWithinTemporalLayer(int temporal_layer) {
return CountFramesWithinTemporalLayer(temporal_layer) *
(1000.0 / interval_ms());
}
float BitrateKbpsWithinTemporalLayer(int temporal_layer) {
return SumPayloadBytesWithinTemporalLayer(temporal_layer) * 8.0 /
interval_ms();
}
Vp8StreamInfo CalculateVp8StreamInfo() {
Vp8StreamInfo info;
for (int tl = 0; tl < 3; ++tl) {
info.framerate_fps[tl] = FramerateFpsWithinTemporalLayer(tl);
info.bitrate_kbps[tl] = BitrateKbpsWithinTemporalLayer(tl);
}
return info;
}
private:
struct FrameData {
FrameData() : payload_size(0) {}
FrameData(size_t payload_size, const CodecSpecificInfo& codec_specific_info)
: payload_size(payload_size),
codec_specific_info(codec_specific_info) {}
size_t payload_size;
CodecSpecificInfo codec_specific_info;
};
int64_t interval_ms() {
int64_t diff = (clock_->TimeInMilliseconds() - start_time_ms_);
EXPECT_GT(diff, 0);
return diff;
}
int CountFramesWithinTemporalLayer(int temporal_layer) {
int frames = 0;
for (size_t i = 0; i < frame_data_.size(); ++i) {
EXPECT_EQ(kVideoCodecVP8, frame_data_[i].codec_specific_info.codecType);
const uint8_t temporal_idx =
frame_data_[i].codec_specific_info.codecSpecific.VP8.temporalIdx;
if (temporal_idx <= temporal_layer || temporal_idx == kNoTemporalIdx)
frames++;
}
return frames;
}
size_t SumPayloadBytesWithinTemporalLayer(int temporal_layer) {
size_t payload_size = 0;
for (size_t i = 0; i < frame_data_.size(); ++i) {
EXPECT_EQ(kVideoCodecVP8, frame_data_[i].codec_specific_info.codecType);
const uint8_t temporal_idx =
frame_data_[i].codec_specific_info.codecSpecific.VP8.temporalIdx;
if (temporal_idx <= temporal_layer || temporal_idx == kNoTemporalIdx)
payload_size += frame_data_[i].payload_size;
}
return payload_size;
}
Clock* clock_;
int64_t start_time_ms_;
vector<FrameData> frame_data_;
};
class TestVideoSender : public ::testing::Test {
protected:
// Note: simulated clock starts at 1 seconds, since parts of webrtc use 0 as
// a special case (e.g. frame rate in media optimization).
TestVideoSender() : clock_(1000), encoded_frame_callback_(&clock_) {}
void SetUp() override {
sender_.reset(new VideoSender(&clock_, &encoded_frame_callback_));
}
void AddFrame() {
assert(generator_.get());
sender_->AddVideoFrame(*generator_->NextFrame(), NULL);
}
SimulatedClock clock_;
EncodedImageCallbackImpl encoded_frame_callback_;
// Used by subclassing tests, need to outlive sender_.
std::unique_ptr<VideoEncoder> encoder_;
std::unique_ptr<VideoSender> sender_;
std::unique_ptr<FrameGenerator> generator_;
};
class TestVideoSenderWithMockEncoder : public TestVideoSender {
public:
TestVideoSenderWithMockEncoder() {}
~TestVideoSenderWithMockEncoder() override {}
protected:
void SetUp() override {
TestVideoSender::SetUp();
sender_->RegisterExternalEncoder(&encoder_, false);
webrtc::test::CodecSettings(kVideoCodecVP8, &settings_);
settings_.numberOfSimulcastStreams = kNumberOfStreams;
ConfigureStream(kDefaultWidth / 4, kDefaultHeight / 4, 100,
&settings_.simulcastStream[0]);
ConfigureStream(kDefaultWidth / 2, kDefaultHeight / 2, 500,
&settings_.simulcastStream[1]);
ConfigureStream(kDefaultWidth, kDefaultHeight, 1200,
&settings_.simulcastStream[2]);
settings_.plType = kUnusedPayloadType; // Use the mocked encoder.
generator_.reset(
new EmptyFrameGenerator(settings_.width, settings_.height));
EXPECT_EQ(0, sender_->RegisterSendCodec(&settings_, 1, 1200));
rate_allocator_.reset(new DefaultVideoBitrateAllocator(settings_));
}
void TearDown() override { sender_.reset(); }
void ExpectIntraRequest(int stream) {
ExpectEncodeWithFrameTypes(stream, false);
}
void ExpectInitialKeyFrames() { ExpectEncodeWithFrameTypes(-1, true); }
void ExpectEncodeWithFrameTypes(int intra_request_stream, bool first_frame) {
if (intra_request_stream == -1) {
// No intra request expected, keyframes on first frame.
FrameType frame_type = first_frame ? kVideoFrameKey : kVideoFrameDelta;
EXPECT_CALL(
encoder_,
Encode(_, _,
Pointee(ElementsAre(frame_type, frame_type, frame_type))))
.Times(1)
.WillRepeatedly(Return(0));
return;
}
ASSERT_FALSE(first_frame);
ASSERT_GE(intra_request_stream, 0);
ASSERT_LT(intra_request_stream, kNumberOfStreams);
std::vector<FrameType> frame_types(kNumberOfStreams, kVideoFrameDelta);
frame_types[intra_request_stream] = kVideoFrameKey;
EXPECT_CALL(
encoder_,
Encode(_, _,
Pointee(ElementsAreArray(&frame_types[0], frame_types.size()))))
.Times(1)
.WillRepeatedly(Return(0));
}
static void ConfigureStream(int width,
int height,
int max_bitrate,
SimulcastStream* stream) {
assert(stream);
stream->width = width;
stream->height = height;
stream->maxBitrate = max_bitrate;
stream->numberOfTemporalLayers = kNumberOfLayers;
stream->qpMax = 45;
}
VideoCodec settings_;
NiceMock<MockVideoEncoder> encoder_;
std::unique_ptr<DefaultVideoBitrateAllocator> rate_allocator_;
};
TEST_F(TestVideoSenderWithMockEncoder, TestIntraRequests) {
// Initial request should be all keyframes.
ExpectInitialKeyFrames();
AddFrame();
EXPECT_EQ(0, sender_->IntraFrameRequest(0));
ExpectIntraRequest(0);
AddFrame();
ExpectIntraRequest(-1);
AddFrame();
EXPECT_EQ(0, sender_->IntraFrameRequest(1));
ExpectIntraRequest(1);
AddFrame();
ExpectIntraRequest(-1);
AddFrame();
EXPECT_EQ(0, sender_->IntraFrameRequest(2));
ExpectIntraRequest(2);
AddFrame();
ExpectIntraRequest(-1);
AddFrame();
EXPECT_EQ(-1, sender_->IntraFrameRequest(3));
ExpectIntraRequest(-1);
AddFrame();
}
TEST_F(TestVideoSenderWithMockEncoder, TestSetRate) {
// Let actual fps be half of max, so it can be distinguished from default.
const uint32_t kActualFrameRate = settings_.maxFramerate / 2;
const int64_t kFrameIntervalMs = 1000 / kActualFrameRate;
const uint32_t new_bitrate_kbps = settings_.startBitrate + 300;
// Initial frame rate is taken from config, as we have no data yet.
VideoBitrateAllocation new_rate_allocation = rate_allocator_->GetAllocation(
new_bitrate_kbps * 1000, settings_.maxFramerate);
EXPECT_CALL(encoder_,
SetRateAllocation(new_rate_allocation, settings_.maxFramerate))
.Times(1)
.WillOnce(Return(0));
sender_->SetChannelParameters(new_bitrate_kbps * 1000, 0, 200,
rate_allocator_.get(), nullptr);
AddFrame();
clock_.AdvanceTimeMilliseconds(kFrameIntervalMs);
// Expect no call to encoder_.SetRates if the new bitrate is zero.
EXPECT_CALL(encoder_, SetRateAllocation(_, _)).Times(0);
sender_->SetChannelParameters(0, 0, 200, rate_allocator_.get(), nullptr);
AddFrame();
}
TEST_F(TestVideoSenderWithMockEncoder, TestIntraRequestsInternalCapture) {
// De-register current external encoder.
sender_->RegisterExternalEncoder(nullptr, false);
// Register encoder with internal capture.
sender_->RegisterExternalEncoder(&encoder_, true);
EXPECT_EQ(0, sender_->RegisterSendCodec(&settings_, 1, 1200));
// Initial request should be all keyframes.
ExpectInitialKeyFrames();
AddFrame();
ExpectIntraRequest(0);
EXPECT_EQ(0, sender_->IntraFrameRequest(0));
ExpectIntraRequest(1);
EXPECT_EQ(0, sender_->IntraFrameRequest(1));
ExpectIntraRequest(2);
EXPECT_EQ(0, sender_->IntraFrameRequest(2));
// No requests expected since these indices are out of bounds.
EXPECT_EQ(-1, sender_->IntraFrameRequest(3));
}
TEST_F(TestVideoSenderWithMockEncoder, TestEncoderParametersForInternalSource) {
// De-register current external encoder.
sender_->RegisterExternalEncoder(nullptr, false);
// Register encoder with internal capture.
sender_->RegisterExternalEncoder(&encoder_, true);
EXPECT_EQ(0, sender_->RegisterSendCodec(&settings_, 1, 1200));
// Update encoder bitrate parameters. We expect that to immediately call
// SetRates on the encoder without waiting for AddFrame processing.
const uint32_t new_bitrate_kbps = settings_.startBitrate + 300;
VideoBitrateAllocation new_rate_allocation = rate_allocator_->GetAllocation(
new_bitrate_kbps * 1000, settings_.maxFramerate);
EXPECT_CALL(encoder_, SetRateAllocation(new_rate_allocation, _))
.Times(1)
.WillOnce(Return(0));
sender_->SetChannelParameters(new_bitrate_kbps * 1000, 0, 200,
rate_allocator_.get(), nullptr);
}
TEST_F(TestVideoSenderWithMockEncoder,
NoRedundantSetChannelParameterOrSetRatesCalls) {
const uint8_t kLossRate = 4;
const uint8_t kRtt = 200;
const int64_t kRateStatsWindowMs = 2000;
const uint32_t kInputFps = 20;
int64_t start_time = clock_.TimeInMilliseconds();
// Expect initial call to SetChannelParameters. Rates are initialized through
// InitEncode and expects no additional call before the framerate (or bitrate)
// updates.
sender_->SetChannelParameters(settings_.startBitrate * 1000, kLossRate, kRtt,
rate_allocator_.get(), nullptr);
while (clock_.TimeInMilliseconds() < start_time + kRateStatsWindowMs) {
AddFrame();
clock_.AdvanceTimeMilliseconds(1000 / kInputFps);
}
// Call to SetChannelParameters with changed bitrate should call encoder
// SetRates but not encoder SetChannelParameters (that are unchanged).
uint32_t new_bitrate_bps = 2 * settings_.startBitrate * 1000;
VideoBitrateAllocation new_rate_allocation =
rate_allocator_->GetAllocation(new_bitrate_bps, kInputFps);
EXPECT_CALL(encoder_, SetRateAllocation(new_rate_allocation, kInputFps))
.Times(1)
.WillOnce(Return(0));
sender_->SetChannelParameters(new_bitrate_bps, kLossRate, kRtt,
rate_allocator_.get(), nullptr);
AddFrame();
}
class TestVideoSenderWithVp8 : public TestVideoSender {
public:
TestVideoSenderWithVp8()
: codec_bitrate_kbps_(300), available_bitrate_kbps_(1000) {}
void SetUp() override {
TestVideoSender::SetUp();
const char* input_video = "foreman_cif";
const int width = 352;
const int height = 288;
generator_ = FrameGenerator::CreateFromYuvFile(
std::vector<std::string>(1, test::ResourcePath(input_video, "yuv")),
width, height, 1);
codec_ = MakeVp8VideoCodec(width, height, 3);
codec_.minBitrate = 10;
codec_.startBitrate = codec_bitrate_kbps_;
codec_.maxBitrate = codec_bitrate_kbps_;
rate_allocator_.reset(new SimulcastRateAllocator(codec_));
encoder_ = VP8Encoder::Create();
sender_->RegisterExternalEncoder(encoder_.get(), false);
EXPECT_EQ(0, sender_->RegisterSendCodec(&codec_, 1, 1200));
}
static VideoCodec MakeVp8VideoCodec(int width,
int height,
int temporal_layers) {
VideoCodec codec;
webrtc::test::CodecSettings(kVideoCodecVP8, &codec);
codec.width = width;
codec.height = height;
codec.VP8()->numberOfTemporalLayers = temporal_layers;
return codec;
}
void InsertFrames(float framerate, float seconds) {
for (int i = 0; i < seconds * framerate; ++i) {
clock_.AdvanceTimeMilliseconds(1000.0f / framerate);
AddFrame();
// SetChannelParameters needs to be called frequently to propagate
// framerate from the media optimization into the encoder.
// Note: SetChannelParameters fails if less than 2 frames are in the
// buffer since it will fail to calculate the framerate.
if (i != 0) {
EXPECT_EQ(VCM_OK, sender_->SetChannelParameters(
available_bitrate_kbps_ * 1000, 0, 200,
rate_allocator_.get(), nullptr));
}
}
}
Vp8StreamInfo SimulateWithFramerate(float framerate) {
const float short_simulation_interval = 5.0;
const float long_simulation_interval = 10.0;
// It appears that this 5 seconds simulation is needed to allow
// bitrate and framerate to stabilize.
InsertFrames(framerate, short_simulation_interval);
encoded_frame_callback_.Reset();
InsertFrames(framerate, long_simulation_interval);
return encoded_frame_callback_.CalculateVp8StreamInfo();
}
protected:
VideoCodec codec_;
int codec_bitrate_kbps_;
int available_bitrate_kbps_;
std::unique_ptr<SimulcastRateAllocator> rate_allocator_;
};
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
#define MAYBE_FixedTemporalLayersStrategy DISABLED_FixedTemporalLayersStrategy
#else
#define MAYBE_FixedTemporalLayersStrategy FixedTemporalLayersStrategy
#endif
TEST_F(TestVideoSenderWithVp8, MAYBE_FixedTemporalLayersStrategy) {
const int low_b =
codec_bitrate_kbps_ *
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(3, 0);
const int mid_b =
codec_bitrate_kbps_ *
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(3, 1);
const int high_b =
codec_bitrate_kbps_ *
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(3, 2);
{
Vp8StreamInfo expected = {{7.5, 15.0, 30.0}, {low_b, mid_b, high_b}};
EXPECT_THAT(SimulateWithFramerate(30.0), MatchesVp8StreamInfo(expected));
}
{
Vp8StreamInfo expected = {{3.75, 7.5, 15.0}, {low_b, mid_b, high_b}};
EXPECT_THAT(SimulateWithFramerate(15.0), MatchesVp8StreamInfo(expected));
}
}
} // namespace
} // namespace vcm
} // namespace webrtc