blob: 2b2152018bfc2aa4bb3c06b6ab95f6280fbc74f4 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/tools/neteq_delay_analyzer.h"
#include <algorithm>
#include <fstream>
#include <ios>
#include <iterator>
#include <limits>
#include <utility>
#include "modules/include/module_common_types.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace test {
namespace {
// Helper function for NetEqDelayAnalyzer::CreateGraphs. Returns the
// interpolated value of a function at the point x. Vector x_vec contains the
// sample points, and y_vec contains the function values at these points. The
// return value is a linear interpolation between y_vec values.
double LinearInterpolate(double x,
const std::vector<int64_t>& x_vec,
const std::vector<int64_t>& y_vec) {
// Find first element which is larger than x.
auto it = std::upper_bound(x_vec.begin(), x_vec.end(), x);
if (it == x_vec.end()) {
--it;
}
const size_t upper_ix = it - x_vec.begin();
size_t lower_ix;
if (upper_ix == 0 || x_vec[upper_ix] <= x) {
lower_ix = upper_ix;
} else {
lower_ix = upper_ix - 1;
}
double y;
if (lower_ix == upper_ix) {
y = y_vec[lower_ix];
} else {
RTC_DCHECK_NE(x_vec[lower_ix], x_vec[upper_ix]);
y = (x - x_vec[lower_ix]) * (y_vec[upper_ix] - y_vec[lower_ix]) /
(x_vec[upper_ix] - x_vec[lower_ix]) +
y_vec[lower_ix];
}
return y;
}
} // namespace
void NetEqDelayAnalyzer::AfterInsertPacket(
const test::NetEqInput::PacketData& packet,
NetEq* neteq) {
data_.insert(
std::make_pair(packet.header.timestamp, TimingData(packet.time_ms)));
ssrcs_.insert(packet.header.ssrc);
payload_types_.insert(packet.header.payloadType);
}
void NetEqDelayAnalyzer::BeforeGetAudio(NetEq* neteq) {
last_sync_buffer_ms_ = neteq->SyncBufferSizeMs();
}
void NetEqDelayAnalyzer::AfterGetAudio(int64_t time_now_ms,
const AudioFrame& audio_frame,
bool /*muted*/,
NetEq* neteq) {
get_audio_time_ms_.push_back(time_now_ms);
// Check what timestamps were decoded in the last GetAudio call.
std::vector<uint32_t> dec_ts = neteq->LastDecodedTimestamps();
// Find those timestamps in data_, insert their decoding time and sync
// delay.
for (uint32_t ts : dec_ts) {
auto it = data_.find(ts);
if (it == data_.end()) {
// This is a packet that was split out from another packet. Skip it.
continue;
}
auto& it_timing = it->second;
RTC_CHECK(!it_timing.decode_get_audio_count)
<< "Decode time already written";
it_timing.decode_get_audio_count = get_audio_count_;
RTC_CHECK(!it_timing.sync_delay_ms) << "Decode time already written";
it_timing.sync_delay_ms = last_sync_buffer_ms_;
it_timing.target_delay_ms = neteq->TargetDelayMs();
it_timing.current_delay_ms = neteq->FilteredCurrentDelayMs();
}
last_sample_rate_hz_ = audio_frame.sample_rate_hz_;
++get_audio_count_;
}
void NetEqDelayAnalyzer::CreateGraphs(
std::vector<float>* send_time_s,
std::vector<float>* arrival_delay_ms,
std::vector<float>* corrected_arrival_delay_ms,
std::vector<absl::optional<float>>* playout_delay_ms,
std::vector<absl::optional<float>>* target_delay_ms) const {
if (get_audio_time_ms_.empty()) {
return;
}
// Create nominal_get_audio_time_ms, a vector starting at
// get_audio_time_ms_[0] and increasing by 10 for each element.
std::vector<int64_t> nominal_get_audio_time_ms(get_audio_time_ms_.size());
nominal_get_audio_time_ms[0] = get_audio_time_ms_[0];
std::transform(
nominal_get_audio_time_ms.begin(), nominal_get_audio_time_ms.end() - 1,
nominal_get_audio_time_ms.begin() + 1, [](int64_t& x) { return x + 10; });
RTC_DCHECK(
std::is_sorted(get_audio_time_ms_.begin(), get_audio_time_ms_.end()));
std::vector<double> rtp_timestamps_ms;
double offset = std::numeric_limits<double>::max();
TimestampUnwrapper unwrapper;
// This loop traverses data_ and populates rtp_timestamps_ms as well as
// calculates the base offset.
for (auto& d : data_) {
rtp_timestamps_ms.push_back(
unwrapper.Unwrap(d.first) /
rtc::CheckedDivExact(last_sample_rate_hz_, 1000));
offset =
std::min(offset, d.second.arrival_time_ms - rtp_timestamps_ms.back());
}
// Calculate send times in seconds for each packet. This is the (unwrapped)
// RTP timestamp in ms divided by 1000.
send_time_s->resize(rtp_timestamps_ms.size());
std::transform(rtp_timestamps_ms.begin(), rtp_timestamps_ms.end(),
send_time_s->begin(), [rtp_timestamps_ms](double x) {
return (x - rtp_timestamps_ms[0]) / 1000.f;
});
RTC_DCHECK_EQ(send_time_s->size(), rtp_timestamps_ms.size());
// This loop traverses the data again and populates the graph vectors. The
// reason to have two loops and traverse twice is that the offset cannot be
// known until the first traversal is done. Meanwhile, the final offset must
// be known already at the start of this second loop.
auto data_it = data_.cbegin();
for (size_t i = 0; i < send_time_s->size(); ++i, ++data_it) {
RTC_DCHECK(data_it != data_.end());
const double offset_send_time_ms = rtp_timestamps_ms[i] + offset;
const auto& timing = data_it->second;
corrected_arrival_delay_ms->push_back(
LinearInterpolate(timing.arrival_time_ms, get_audio_time_ms_,
nominal_get_audio_time_ms) -
offset_send_time_ms);
arrival_delay_ms->push_back(timing.arrival_time_ms - offset_send_time_ms);
if (timing.decode_get_audio_count) {
// This packet was decoded.
RTC_DCHECK(timing.sync_delay_ms);
const float playout_ms = *timing.decode_get_audio_count * 10 +
get_audio_time_ms_[0] + *timing.sync_delay_ms -
offset_send_time_ms;
playout_delay_ms->push_back(playout_ms);
RTC_DCHECK(timing.target_delay_ms);
RTC_DCHECK(timing.current_delay_ms);
const float target =
playout_ms - *timing.current_delay_ms + *timing.target_delay_ms;
target_delay_ms->push_back(target);
} else {
// This packet was never decoded. Mark target and playout delays as empty.
playout_delay_ms->push_back(absl::nullopt);
target_delay_ms->push_back(absl::nullopt);
}
}
RTC_DCHECK(data_it == data_.end());
RTC_DCHECK_EQ(send_time_s->size(), corrected_arrival_delay_ms->size());
RTC_DCHECK_EQ(send_time_s->size(), playout_delay_ms->size());
RTC_DCHECK_EQ(send_time_s->size(), target_delay_ms->size());
}
void NetEqDelayAnalyzer::CreateMatlabScript(
const std::string& script_name) const {
std::vector<float> send_time_s;
std::vector<float> arrival_delay_ms;
std::vector<float> corrected_arrival_delay_ms;
std::vector<absl::optional<float>> playout_delay_ms;
std::vector<absl::optional<float>> target_delay_ms;
CreateGraphs(&send_time_s, &arrival_delay_ms, &corrected_arrival_delay_ms,
&playout_delay_ms, &target_delay_ms);
// Create an output file stream to Matlab script file.
std::ofstream output(script_name);
// The iterator is used to batch-output comma-separated values from vectors.
std::ostream_iterator<float> output_iterator(output, ",");
output << "send_time_s = [ ";
std::copy(send_time_s.begin(), send_time_s.end(), output_iterator);
output << "];" << std::endl;
output << "arrival_delay_ms = [ ";
std::copy(arrival_delay_ms.begin(), arrival_delay_ms.end(), output_iterator);
output << "];" << std::endl;
output << "corrected_arrival_delay_ms = [ ";
std::copy(corrected_arrival_delay_ms.begin(),
corrected_arrival_delay_ms.end(), output_iterator);
output << "];" << std::endl;
output << "playout_delay_ms = [ ";
for (const auto& v : playout_delay_ms) {
if (!v) {
output << "nan, ";
} else {
output << *v << ", ";
}
}
output << "];" << std::endl;
output << "target_delay_ms = [ ";
for (const auto& v : target_delay_ms) {
if (!v) {
output << "nan, ";
} else {
output << *v << ", ";
}
}
output << "];" << std::endl;
output << "h=plot(send_time_s, arrival_delay_ms, "
<< "send_time_s, target_delay_ms, 'g.', "
<< "send_time_s, playout_delay_ms);" << std::endl;
output << "set(h(1),'color',0.75*[1 1 1]);" << std::endl;
output << "set(h(2),'markersize',6);" << std::endl;
output << "set(h(3),'linew',1.5);" << std::endl;
output << "ax1=axis;" << std::endl;
output << "axis tight" << std::endl;
output << "ax2=axis;" << std::endl;
output << "axis([ax2(1:3) ax1(4)])" << std::endl;
output << "xlabel('send time [s]');" << std::endl;
output << "ylabel('relative delay [ms]');" << std::endl;
if (!ssrcs_.empty()) {
auto ssrc_it = ssrcs_.cbegin();
output << "title('SSRC: 0x" << std::hex << static_cast<int64_t>(*ssrc_it++);
while (ssrc_it != ssrcs_.end()) {
output << ", 0x" << std::hex << static_cast<int64_t>(*ssrc_it++);
}
output << std::dec;
auto pt_it = payload_types_.cbegin();
output << "; Payload Types: " << *pt_it++;
while (pt_it != payload_types_.end()) {
output << ", " << *pt_it++;
}
output << "');" << std::endl;
}
}
void NetEqDelayAnalyzer::CreatePythonScript(
const std::string& script_name) const {
std::vector<float> send_time_s;
std::vector<float> arrival_delay_ms;
std::vector<float> corrected_arrival_delay_ms;
std::vector<absl::optional<float>> playout_delay_ms;
std::vector<absl::optional<float>> target_delay_ms;
CreateGraphs(&send_time_s, &arrival_delay_ms, &corrected_arrival_delay_ms,
&playout_delay_ms, &target_delay_ms);
// Create an output file stream to the python script file.
std::ofstream output(script_name);
// The iterator is used to batch-output comma-separated values from vectors.
std::ostream_iterator<float> output_iterator(output, ",");
// Necessary includes
output << "import numpy as np" << std::endl;
output << "import matplotlib.pyplot as plt" << std::endl;
output << "send_time_s = [";
std::copy(send_time_s.begin(), send_time_s.end(), output_iterator);
output << "]" << std::endl;
output << "arrival_delay_ms = [";
std::copy(arrival_delay_ms.begin(), arrival_delay_ms.end(), output_iterator);
output << "]" << std::endl;
output << "corrected_arrival_delay_ms = [";
std::copy(corrected_arrival_delay_ms.begin(),
corrected_arrival_delay_ms.end(), output_iterator);
output << "]" << std::endl;
output << "playout_delay_ms = [";
for (const auto& v : playout_delay_ms) {
if (!v) {
output << "float('nan'), ";
} else {
output << *v << ", ";
}
}
output << "]" << std::endl;
output << "target_delay_ms = [";
for (const auto& v : target_delay_ms) {
if (!v) {
output << "float('nan'), ";
} else {
output << *v << ", ";
}
}
output << "]" << std::endl;
output << "if __name__ == '__main__':" << std::endl;
output << " h=plt.plot(send_time_s, arrival_delay_ms, "
<< "send_time_s, target_delay_ms, 'g.', "
<< "send_time_s, playout_delay_ms)" << std::endl;
output << " plt.setp(h[0],'color',[.75, .75, .75])" << std::endl;
output << " plt.setp(h[1],'markersize',6)" << std::endl;
output << " plt.setp(h[2],'linewidth',1.5)" << std::endl;
output << " plt.axis('tight')" << std::endl;
output << " plt.xlabel('send time [s]')" << std::endl;
output << " plt.ylabel('relative delay [ms]')" << std::endl;
if (!ssrcs_.empty()) {
auto ssrc_it = ssrcs_.cbegin();
output << " plt.title('SSRC: 0x" << std::hex
<< static_cast<int64_t>(*ssrc_it++);
while (ssrc_it != ssrcs_.end()) {
output << ", 0x" << std::hex << static_cast<int64_t>(*ssrc_it++);
}
output << std::dec;
auto pt_it = payload_types_.cbegin();
output << "; Payload Types: " << *pt_it++;
while (pt_it != payload_types_.end()) {
output << ", " << *pt_it++;
}
output << "')" << std::endl;
}
output << " plt.show()" << std::endl;
}
} // namespace test
} // namespace webrtc