| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/p2p/base/port.h" |
| |
| #include <algorithm> |
| #include <vector> |
| |
| #include "webrtc/p2p/base/common.h" |
| #include "webrtc/p2p/base/portallocator.h" |
| #include "webrtc/base/base64.h" |
| #include "webrtc/base/crc32.h" |
| #include "webrtc/base/helpers.h" |
| #include "webrtc/base/logging.h" |
| #include "webrtc/base/messagedigest.h" |
| #include "webrtc/base/scoped_ptr.h" |
| #include "webrtc/base/stringencode.h" |
| #include "webrtc/base/stringutils.h" |
| |
| namespace { |
| |
| // The following is the enum RTCStatsIceCandidateType from |
| // http://w3c.github.io/webrtc-stats/#rtcstatsicecandidatetype-enum such that |
| // our stats report for ice candidate type could conform to that. |
| const char STATSREPORT_LOCAL_PORT_TYPE[] = "host"; |
| const char STATSREPORT_STUN_PORT_TYPE[] = "serverreflexive"; |
| const char STATSREPORT_PRFLX_PORT_TYPE[] = "peerreflexive"; |
| const char STATSREPORT_RELAY_PORT_TYPE[] = "relayed"; |
| |
| // Determines whether we have seen at least the given maximum number of |
| // pings fail to have a response. |
| inline bool TooManyFailures( |
| const std::vector<uint32>& pings_since_last_response, |
| uint32 maximum_failures, |
| uint32 rtt_estimate, |
| uint32 now) { |
| |
| // If we haven't sent that many pings, then we can't have failed that many. |
| if (pings_since_last_response.size() < maximum_failures) |
| return false; |
| |
| // Check if the window in which we would expect a response to the ping has |
| // already elapsed. |
| return pings_since_last_response[maximum_failures - 1] + rtt_estimate < now; |
| } |
| |
| // Determines whether we have gone too long without seeing any response. |
| inline bool TooLongWithoutResponse( |
| const std::vector<uint32>& pings_since_last_response, |
| uint32 maximum_time, |
| uint32 now) { |
| |
| if (pings_since_last_response.size() == 0) |
| return false; |
| |
| return pings_since_last_response[0] + maximum_time < now; |
| } |
| |
| // GICE(ICEPROTO_GOOGLE) requires different username for RTP and RTCP. |
| // This function generates a different username by +1 on the last character of |
| // the given username (|rtp_ufrag|). |
| std::string GetRtcpUfragFromRtpUfrag(const std::string& rtp_ufrag) { |
| ASSERT(!rtp_ufrag.empty()); |
| if (rtp_ufrag.empty()) { |
| return rtp_ufrag; |
| } |
| // Change the last character to the one next to it in the base64 table. |
| char new_last_char; |
| if (!rtc::Base64::GetNextBase64Char(rtp_ufrag[rtp_ufrag.size() - 1], |
| &new_last_char)) { |
| // Should not be here. |
| ASSERT(false); |
| } |
| std::string rtcp_ufrag = rtp_ufrag; |
| rtcp_ufrag[rtcp_ufrag.size() - 1] = new_last_char; |
| ASSERT(rtcp_ufrag != rtp_ufrag); |
| return rtcp_ufrag; |
| } |
| |
| // We will restrict RTT estimates (when used for determining state) to be |
| // within a reasonable range. |
| const uint32 MINIMUM_RTT = 100; // 0.1 seconds |
| const uint32 MAXIMUM_RTT = 3000; // 3 seconds |
| |
| // When we don't have any RTT data, we have to pick something reasonable. We |
| // use a large value just in case the connection is really slow. |
| const uint32 DEFAULT_RTT = MAXIMUM_RTT; |
| |
| // Computes our estimate of the RTT given the current estimate. |
| inline uint32 ConservativeRTTEstimate(uint32 rtt) { |
| return rtc::_max(MINIMUM_RTT, rtc::_min(MAXIMUM_RTT, 2 * rtt)); |
| } |
| |
| // Weighting of the old rtt value to new data. |
| const int RTT_RATIO = 3; // 3 : 1 |
| |
| // The delay before we begin checking if this port is useless. |
| const int kPortTimeoutDelay = 30 * 1000; // 30 seconds |
| |
| // Used by the Connection. |
| const uint32 MSG_DELETE = 1; |
| } |
| |
| namespace cricket { |
| |
| // TODO(ronghuawu): Use "host", "srflx", "prflx" and "relay". But this requires |
| // the signaling part be updated correspondingly as well. |
| const char LOCAL_PORT_TYPE[] = "local"; |
| const char STUN_PORT_TYPE[] = "stun"; |
| const char PRFLX_PORT_TYPE[] = "prflx"; |
| const char RELAY_PORT_TYPE[] = "relay"; |
| |
| const char UDP_PROTOCOL_NAME[] = "udp"; |
| const char TCP_PROTOCOL_NAME[] = "tcp"; |
| const char SSLTCP_PROTOCOL_NAME[] = "ssltcp"; |
| |
| static const char* const PROTO_NAMES[] = { UDP_PROTOCOL_NAME, |
| TCP_PROTOCOL_NAME, |
| SSLTCP_PROTOCOL_NAME }; |
| |
| const char* ProtoToString(ProtocolType proto) { |
| return PROTO_NAMES[proto]; |
| } |
| |
| bool StringToProto(const char* value, ProtocolType* proto) { |
| for (size_t i = 0; i <= PROTO_LAST; ++i) { |
| if (_stricmp(PROTO_NAMES[i], value) == 0) { |
| *proto = static_cast<ProtocolType>(i); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| const char* IceCandidateTypeToStatsType(const std::string& candidate_type) { |
| if (candidate_type == LOCAL_PORT_TYPE) { |
| return STATSREPORT_LOCAL_PORT_TYPE; |
| } |
| if (candidate_type == STUN_PORT_TYPE) { |
| return STATSREPORT_STUN_PORT_TYPE; |
| } |
| if (candidate_type == PRFLX_PORT_TYPE) { |
| return STATSREPORT_PRFLX_PORT_TYPE; |
| } |
| if (candidate_type == RELAY_PORT_TYPE) { |
| return STATSREPORT_RELAY_PORT_TYPE; |
| } |
| ASSERT(false); |
| return "unknown"; |
| } |
| |
| // RFC 6544, TCP candidate encoding rules. |
| const int DISCARD_PORT = 9; |
| const char TCPTYPE_ACTIVE_STR[] = "active"; |
| const char TCPTYPE_PASSIVE_STR[] = "passive"; |
| const char TCPTYPE_SIMOPEN_STR[] = "so"; |
| |
| // Foundation: An arbitrary string that is the same for two candidates |
| // that have the same type, base IP address, protocol (UDP, TCP, |
| // etc.), and STUN or TURN server. If any of these are different, |
| // then the foundation will be different. Two candidate pairs with |
| // the same foundation pairs are likely to have similar network |
| // characteristics. Foundations are used in the frozen algorithm. |
| static std::string ComputeFoundation( |
| const std::string& type, |
| const std::string& protocol, |
| const rtc::SocketAddress& base_address) { |
| std::ostringstream ost; |
| ost << type << base_address.ipaddr().ToString() << protocol; |
| return rtc::ToString<uint32>(rtc::ComputeCrc32(ost.str())); |
| } |
| |
| Port::Port(rtc::Thread* thread, |
| rtc::PacketSocketFactory* factory, |
| rtc::Network* network, |
| const rtc::IPAddress& ip, |
| const std::string& username_fragment, |
| const std::string& password) |
| : thread_(thread), |
| factory_(factory), |
| send_retransmit_count_attribute_(false), |
| network_(network), |
| ip_(ip), |
| min_port_(0), |
| max_port_(0), |
| component_(ICE_CANDIDATE_COMPONENT_DEFAULT), |
| generation_(0), |
| ice_username_fragment_(username_fragment), |
| password_(password), |
| timeout_delay_(kPortTimeoutDelay), |
| enable_port_packets_(false), |
| ice_protocol_(ICEPROTO_HYBRID), |
| ice_role_(ICEROLE_UNKNOWN), |
| tiebreaker_(0), |
| shared_socket_(true), |
| candidate_filter_(CF_ALL) { |
| Construct(); |
| } |
| |
| Port::Port(rtc::Thread* thread, |
| const std::string& type, |
| rtc::PacketSocketFactory* factory, |
| rtc::Network* network, |
| const rtc::IPAddress& ip, |
| uint16 min_port, |
| uint16 max_port, |
| const std::string& username_fragment, |
| const std::string& password) |
| : thread_(thread), |
| factory_(factory), |
| type_(type), |
| send_retransmit_count_attribute_(false), |
| network_(network), |
| ip_(ip), |
| min_port_(min_port), |
| max_port_(max_port), |
| component_(ICE_CANDIDATE_COMPONENT_DEFAULT), |
| generation_(0), |
| ice_username_fragment_(username_fragment), |
| password_(password), |
| timeout_delay_(kPortTimeoutDelay), |
| enable_port_packets_(false), |
| ice_protocol_(ICEPROTO_HYBRID), |
| ice_role_(ICEROLE_UNKNOWN), |
| tiebreaker_(0), |
| shared_socket_(false), |
| candidate_filter_(CF_ALL) { |
| ASSERT(factory_ != NULL); |
| Construct(); |
| } |
| |
| void Port::Construct() { |
| // If the username_fragment and password are empty, we should just create one. |
| if (ice_username_fragment_.empty()) { |
| ASSERT(password_.empty()); |
| ice_username_fragment_ = rtc::CreateRandomString(ICE_UFRAG_LENGTH); |
| password_ = rtc::CreateRandomString(ICE_PWD_LENGTH); |
| } |
| LOG_J(LS_INFO, this) << "Port created"; |
| } |
| |
| Port::~Port() { |
| // Delete all of the remaining connections. We copy the list up front |
| // because each deletion will cause it to be modified. |
| |
| std::vector<Connection*> list; |
| |
| AddressMap::iterator iter = connections_.begin(); |
| while (iter != connections_.end()) { |
| list.push_back(iter->second); |
| ++iter; |
| } |
| |
| for (uint32 i = 0; i < list.size(); i++) |
| delete list[i]; |
| } |
| |
| Connection* Port::GetConnection(const rtc::SocketAddress& remote_addr) { |
| AddressMap::const_iterator iter = connections_.find(remote_addr); |
| if (iter != connections_.end()) |
| return iter->second; |
| else |
| return NULL; |
| } |
| |
| void Port::AddAddress(const rtc::SocketAddress& address, |
| const rtc::SocketAddress& base_address, |
| const rtc::SocketAddress& related_address, |
| const std::string& protocol, |
| const std::string& tcptype, |
| const std::string& type, |
| uint32 type_preference, |
| uint32 relay_preference, |
| bool final) { |
| if (protocol == TCP_PROTOCOL_NAME && type == LOCAL_PORT_TYPE) { |
| ASSERT(!tcptype.empty()); |
| } |
| |
| Candidate c; |
| c.set_id(rtc::CreateRandomString(8)); |
| c.set_component(component_); |
| c.set_type(type); |
| c.set_protocol(protocol); |
| c.set_tcptype(tcptype); |
| c.set_address(address); |
| c.set_priority(c.GetPriority(type_preference, network_->preference(), |
| relay_preference)); |
| c.set_username(username_fragment()); |
| c.set_password(password_); |
| c.set_network_name(network_->name()); |
| c.set_network_type(network_->type()); |
| c.set_generation(generation_); |
| c.set_related_address(related_address); |
| c.set_foundation(ComputeFoundation(type, protocol, base_address)); |
| candidates_.push_back(c); |
| SignalCandidateReady(this, c); |
| |
| if (final) { |
| SignalPortComplete(this); |
| } |
| } |
| |
| void Port::AddConnection(Connection* conn) { |
| connections_[conn->remote_candidate().address()] = conn; |
| conn->SignalDestroyed.connect(this, &Port::OnConnectionDestroyed); |
| SignalConnectionCreated(this, conn); |
| } |
| |
| void Port::OnReadPacket( |
| const char* data, size_t size, const rtc::SocketAddress& addr, |
| ProtocolType proto) { |
| // If the user has enabled port packets, just hand this over. |
| if (enable_port_packets_) { |
| SignalReadPacket(this, data, size, addr); |
| return; |
| } |
| |
| // If this is an authenticated STUN request, then signal unknown address and |
| // send back a proper binding response. |
| rtc::scoped_ptr<IceMessage> msg; |
| std::string remote_username; |
| if (!GetStunMessage(data, size, addr, msg.accept(), &remote_username)) { |
| LOG_J(LS_ERROR, this) << "Received non-STUN packet from unknown address (" |
| << addr.ToSensitiveString() << ")"; |
| } else if (!msg) { |
| // STUN message handled already |
| } else if (msg->type() == STUN_BINDING_REQUEST) { |
| // Check for role conflicts. |
| if (IsStandardIce() && |
| !MaybeIceRoleConflict(addr, msg.get(), remote_username)) { |
| LOG(LS_INFO) << "Received conflicting role from the peer."; |
| return; |
| } |
| |
| SignalUnknownAddress(this, addr, proto, msg.get(), remote_username, false); |
| } else { |
| // NOTE(tschmelcher): STUN_BINDING_RESPONSE is benign. It occurs if we |
| // pruned a connection for this port while it had STUN requests in flight, |
| // because we then get back responses for them, which this code correctly |
| // does not handle. |
| if (msg->type() != STUN_BINDING_RESPONSE) { |
| LOG_J(LS_ERROR, this) << "Received unexpected STUN message type (" |
| << msg->type() << ") from unknown address (" |
| << addr.ToSensitiveString() << ")"; |
| } |
| } |
| } |
| |
| void Port::OnReadyToSend() { |
| AddressMap::iterator iter = connections_.begin(); |
| for (; iter != connections_.end(); ++iter) { |
| iter->second->OnReadyToSend(); |
| } |
| } |
| |
| size_t Port::AddPrflxCandidate(const Candidate& local) { |
| candidates_.push_back(local); |
| return (candidates_.size() - 1); |
| } |
| |
| bool Port::IsStandardIce() const { |
| return (ice_protocol_ == ICEPROTO_RFC5245); |
| } |
| |
| bool Port::IsGoogleIce() const { |
| return (ice_protocol_ == ICEPROTO_GOOGLE); |
| } |
| |
| bool Port::IsHybridIce() const { |
| return (ice_protocol_ == ICEPROTO_HYBRID); |
| } |
| |
| bool Port::GetStunMessage(const char* data, size_t size, |
| const rtc::SocketAddress& addr, |
| IceMessage** out_msg, std::string* out_username) { |
| // NOTE: This could clearly be optimized to avoid allocating any memory. |
| // However, at the data rates we'll be looking at on the client side, |
| // this probably isn't worth worrying about. |
| ASSERT(out_msg != NULL); |
| ASSERT(out_username != NULL); |
| *out_msg = NULL; |
| out_username->clear(); |
| |
| // Don't bother parsing the packet if we can tell it's not STUN. |
| // In ICE mode, all STUN packets will have a valid fingerprint. |
| if (IsStandardIce() && !StunMessage::ValidateFingerprint(data, size)) { |
| return false; |
| } |
| |
| // Parse the request message. If the packet is not a complete and correct |
| // STUN message, then ignore it. |
| rtc::scoped_ptr<IceMessage> stun_msg(new IceMessage()); |
| rtc::ByteBuffer buf(data, size); |
| if (!stun_msg->Read(&buf) || (buf.Length() > 0)) { |
| return false; |
| } |
| |
| if (stun_msg->type() == STUN_BINDING_REQUEST) { |
| // Check for the presence of USERNAME and MESSAGE-INTEGRITY (if ICE) first. |
| // If not present, fail with a 400 Bad Request. |
| if (!stun_msg->GetByteString(STUN_ATTR_USERNAME) || |
| (IsStandardIce() && |
| !stun_msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY))) { |
| LOG_J(LS_ERROR, this) << "Received STUN request without username/M-I " |
| << "from " << addr.ToSensitiveString(); |
| SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_BAD_REQUEST, |
| STUN_ERROR_REASON_BAD_REQUEST); |
| return true; |
| } |
| |
| // If the username is bad or unknown, fail with a 401 Unauthorized. |
| std::string local_ufrag; |
| std::string remote_ufrag; |
| IceProtocolType remote_protocol_type; |
| if (!ParseStunUsername(stun_msg.get(), &local_ufrag, &remote_ufrag, |
| &remote_protocol_type) || |
| local_ufrag != username_fragment()) { |
| LOG_J(LS_ERROR, this) << "Received STUN request with bad local username " |
| << local_ufrag << " from " |
| << addr.ToSensitiveString(); |
| SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED, |
| STUN_ERROR_REASON_UNAUTHORIZED); |
| return true; |
| } |
| |
| // Port is initialized to GOOGLE-ICE protocol type. If pings from remote |
| // are received before the signal message, protocol type may be different. |
| // Based on the STUN username, we can determine what's the remote protocol. |
| // This also enables us to send the response back using the same protocol |
| // as the request. |
| if (IsHybridIce()) { |
| SetIceProtocolType(remote_protocol_type); |
| } |
| |
| // If ICE, and the MESSAGE-INTEGRITY is bad, fail with a 401 Unauthorized |
| if (IsStandardIce() && |
| !stun_msg->ValidateMessageIntegrity(data, size, password_)) { |
| LOG_J(LS_ERROR, this) << "Received STUN request with bad M-I " |
| << "from " << addr.ToSensitiveString(); |
| SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED, |
| STUN_ERROR_REASON_UNAUTHORIZED); |
| return true; |
| } |
| out_username->assign(remote_ufrag); |
| } else if ((stun_msg->type() == STUN_BINDING_RESPONSE) || |
| (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE)) { |
| if (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE) { |
| if (const StunErrorCodeAttribute* error_code = stun_msg->GetErrorCode()) { |
| LOG_J(LS_ERROR, this) << "Received STUN binding error:" |
| << " class=" << error_code->eclass() |
| << " number=" << error_code->number() |
| << " reason='" << error_code->reason() << "'" |
| << " from " << addr.ToSensitiveString(); |
| // Return message to allow error-specific processing |
| } else { |
| LOG_J(LS_ERROR, this) << "Received STUN binding error without a error " |
| << "code from " << addr.ToSensitiveString(); |
| return true; |
| } |
| } |
| // NOTE: Username should not be used in verifying response messages. |
| out_username->clear(); |
| } else if (stun_msg->type() == STUN_BINDING_INDICATION) { |
| LOG_J(LS_VERBOSE, this) << "Received STUN binding indication:" |
| << " from " << addr.ToSensitiveString(); |
| out_username->clear(); |
| // No stun attributes will be verified, if it's stun indication message. |
| // Returning from end of the this method. |
| } else { |
| LOG_J(LS_ERROR, this) << "Received STUN packet with invalid type (" |
| << stun_msg->type() << ") from " |
| << addr.ToSensitiveString(); |
| return true; |
| } |
| |
| // Return the STUN message found. |
| *out_msg = stun_msg.release(); |
| return true; |
| } |
| |
| bool Port::IsCompatibleAddress(const rtc::SocketAddress& addr) { |
| int family = ip().family(); |
| // We use single-stack sockets, so families must match. |
| if (addr.family() != family) { |
| return false; |
| } |
| // Link-local IPv6 ports can only connect to other link-local IPv6 ports. |
| if (family == AF_INET6 && (IPIsPrivate(ip()) != IPIsPrivate(addr.ipaddr()))) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool Port::ParseStunUsername(const StunMessage* stun_msg, |
| std::string* local_ufrag, |
| std::string* remote_ufrag, |
| IceProtocolType* remote_protocol_type) const { |
| // The packet must include a username that either begins or ends with our |
| // fragment. It should begin with our fragment if it is a request and it |
| // should end with our fragment if it is a response. |
| local_ufrag->clear(); |
| remote_ufrag->clear(); |
| const StunByteStringAttribute* username_attr = |
| stun_msg->GetByteString(STUN_ATTR_USERNAME); |
| if (username_attr == NULL) |
| return false; |
| |
| const std::string username_attr_str = username_attr->GetString(); |
| size_t colon_pos = username_attr_str.find(":"); |
| // If we are in hybrid mode set the appropriate ice protocol type based on |
| // the username argument style. |
| if (IsHybridIce()) { |
| *remote_protocol_type = (colon_pos != std::string::npos) ? |
| ICEPROTO_RFC5245 : ICEPROTO_GOOGLE; |
| } else { |
| *remote_protocol_type = ice_protocol_; |
| } |
| if (*remote_protocol_type == ICEPROTO_RFC5245) { |
| if (colon_pos != std::string::npos) { // RFRAG:LFRAG |
| *local_ufrag = username_attr_str.substr(0, colon_pos); |
| *remote_ufrag = username_attr_str.substr( |
| colon_pos + 1, username_attr_str.size()); |
| } else { |
| return false; |
| } |
| } else if (*remote_protocol_type == ICEPROTO_GOOGLE) { |
| int remote_frag_len = static_cast<int>(username_attr_str.size()); |
| remote_frag_len -= static_cast<int>(username_fragment().size()); |
| if (remote_frag_len < 0) |
| return false; |
| |
| *local_ufrag = username_attr_str.substr(0, username_fragment().size()); |
| *remote_ufrag = username_attr_str.substr( |
| username_fragment().size(), username_attr_str.size()); |
| } |
| return true; |
| } |
| |
| bool Port::MaybeIceRoleConflict( |
| const rtc::SocketAddress& addr, IceMessage* stun_msg, |
| const std::string& remote_ufrag) { |
| // Validate ICE_CONTROLLING or ICE_CONTROLLED attributes. |
| bool ret = true; |
| IceRole remote_ice_role = ICEROLE_UNKNOWN; |
| uint64 remote_tiebreaker = 0; |
| const StunUInt64Attribute* stun_attr = |
| stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); |
| if (stun_attr) { |
| remote_ice_role = ICEROLE_CONTROLLING; |
| remote_tiebreaker = stun_attr->value(); |
| } |
| |
| // If |remote_ufrag| is same as port local username fragment and |
| // tie breaker value received in the ping message matches port |
| // tiebreaker value this must be a loopback call. |
| // We will treat this as valid scenario. |
| if (remote_ice_role == ICEROLE_CONTROLLING && |
| username_fragment() == remote_ufrag && |
| remote_tiebreaker == IceTiebreaker()) { |
| return true; |
| } |
| |
| stun_attr = stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED); |
| if (stun_attr) { |
| remote_ice_role = ICEROLE_CONTROLLED; |
| remote_tiebreaker = stun_attr->value(); |
| } |
| |
| switch (ice_role_) { |
| case ICEROLE_CONTROLLING: |
| if (ICEROLE_CONTROLLING == remote_ice_role) { |
| if (remote_tiebreaker >= tiebreaker_) { |
| SignalRoleConflict(this); |
| } else { |
| // Send Role Conflict (487) error response. |
| SendBindingErrorResponse(stun_msg, addr, |
| STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT); |
| ret = false; |
| } |
| } |
| break; |
| case ICEROLE_CONTROLLED: |
| if (ICEROLE_CONTROLLED == remote_ice_role) { |
| if (remote_tiebreaker < tiebreaker_) { |
| SignalRoleConflict(this); |
| } else { |
| // Send Role Conflict (487) error response. |
| SendBindingErrorResponse(stun_msg, addr, |
| STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT); |
| ret = false; |
| } |
| } |
| break; |
| default: |
| ASSERT(false); |
| } |
| return ret; |
| } |
| |
| void Port::CreateStunUsername(const std::string& remote_username, |
| std::string* stun_username_attr_str) const { |
| stun_username_attr_str->clear(); |
| *stun_username_attr_str = remote_username; |
| if (IsStandardIce()) { |
| // Connectivity checks from L->R will have username RFRAG:LFRAG. |
| stun_username_attr_str->append(":"); |
| } |
| stun_username_attr_str->append(username_fragment()); |
| } |
| |
| void Port::SendBindingResponse(StunMessage* request, |
| const rtc::SocketAddress& addr) { |
| ASSERT(request->type() == STUN_BINDING_REQUEST); |
| |
| // Retrieve the username from the request. |
| const StunByteStringAttribute* username_attr = |
| request->GetByteString(STUN_ATTR_USERNAME); |
| ASSERT(username_attr != NULL); |
| if (username_attr == NULL) { |
| // No valid username, skip the response. |
| return; |
| } |
| |
| // Fill in the response message. |
| StunMessage response; |
| response.SetType(STUN_BINDING_RESPONSE); |
| response.SetTransactionID(request->transaction_id()); |
| const StunUInt32Attribute* retransmit_attr = |
| request->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); |
| if (retransmit_attr) { |
| // Inherit the incoming retransmit value in the response so the other side |
| // can see our view of lost pings. |
| response.AddAttribute(new StunUInt32Attribute( |
| STUN_ATTR_RETRANSMIT_COUNT, retransmit_attr->value())); |
| |
| if (retransmit_attr->value() > CONNECTION_WRITE_CONNECT_FAILURES) { |
| LOG_J(LS_INFO, this) |
| << "Received a remote ping with high retransmit count: " |
| << retransmit_attr->value(); |
| } |
| } |
| |
| // Only GICE messages have USERNAME and MAPPED-ADDRESS in the response. |
| // ICE messages use XOR-MAPPED-ADDRESS, and add MESSAGE-INTEGRITY. |
| if (IsStandardIce()) { |
| response.AddAttribute( |
| new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, addr)); |
| response.AddMessageIntegrity(password_); |
| response.AddFingerprint(); |
| } else if (IsGoogleIce()) { |
| response.AddAttribute( |
| new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, addr)); |
| response.AddAttribute(new StunByteStringAttribute( |
| STUN_ATTR_USERNAME, username_attr->GetString())); |
| } |
| |
| // Send the response message. |
| rtc::ByteBuffer buf; |
| response.Write(&buf); |
| rtc::PacketOptions options(DefaultDscpValue()); |
| if (SendTo(buf.Data(), buf.Length(), addr, options, false) < 0) { |
| LOG_J(LS_ERROR, this) << "Failed to send STUN ping response to " |
| << addr.ToSensitiveString(); |
| } |
| |
| // The fact that we received a successful request means that this connection |
| // (if one exists) should now be readable. |
| Connection* conn = GetConnection(addr); |
| ASSERT(conn != NULL); |
| if (conn) |
| conn->ReceivedPing(); |
| } |
| |
| void Port::SendBindingErrorResponse(StunMessage* request, |
| const rtc::SocketAddress& addr, |
| int error_code, const std::string& reason) { |
| ASSERT(request->type() == STUN_BINDING_REQUEST); |
| |
| // Fill in the response message. |
| StunMessage response; |
| response.SetType(STUN_BINDING_ERROR_RESPONSE); |
| response.SetTransactionID(request->transaction_id()); |
| |
| // When doing GICE, we need to write out the error code incorrectly to |
| // maintain backwards compatiblility. |
| StunErrorCodeAttribute* error_attr = StunAttribute::CreateErrorCode(); |
| if (IsStandardIce()) { |
| error_attr->SetCode(error_code); |
| } else if (IsGoogleIce()) { |
| error_attr->SetClass(error_code / 256); |
| error_attr->SetNumber(error_code % 256); |
| } |
| error_attr->SetReason(reason); |
| response.AddAttribute(error_attr); |
| |
| if (IsStandardIce()) { |
| // Per Section 10.1.2, certain error cases don't get a MESSAGE-INTEGRITY, |
| // because we don't have enough information to determine the shared secret. |
| if (error_code != STUN_ERROR_BAD_REQUEST && |
| error_code != STUN_ERROR_UNAUTHORIZED) |
| response.AddMessageIntegrity(password_); |
| response.AddFingerprint(); |
| } else if (IsGoogleIce()) { |
| // GICE responses include a username, if one exists. |
| const StunByteStringAttribute* username_attr = |
| request->GetByteString(STUN_ATTR_USERNAME); |
| if (username_attr) |
| response.AddAttribute(new StunByteStringAttribute( |
| STUN_ATTR_USERNAME, username_attr->GetString())); |
| } |
| |
| // Send the response message. |
| rtc::ByteBuffer buf; |
| response.Write(&buf); |
| rtc::PacketOptions options(DefaultDscpValue()); |
| SendTo(buf.Data(), buf.Length(), addr, options, false); |
| LOG_J(LS_INFO, this) << "Sending STUN binding error: reason=" << reason |
| << " to " << addr.ToSensitiveString(); |
| } |
| |
| void Port::OnMessage(rtc::Message *pmsg) { |
| ASSERT(pmsg->message_id == MSG_CHECKTIMEOUT); |
| CheckTimeout(); |
| } |
| |
| std::string Port::ToString() const { |
| std::stringstream ss; |
| ss << "Port[" << content_name_ << ":" << component_ |
| << ":" << generation_ << ":" << type_ |
| << ":" << network_->ToString() << "]"; |
| return ss.str(); |
| } |
| |
| void Port::EnablePortPackets() { |
| enable_port_packets_ = true; |
| } |
| |
| void Port::OnConnectionDestroyed(Connection* conn) { |
| AddressMap::iterator iter = |
| connections_.find(conn->remote_candidate().address()); |
| ASSERT(iter != connections_.end()); |
| connections_.erase(iter); |
| |
| // On the controlled side, ports time out, but only after all connections |
| // fail. Note: If a new connection is added after this message is posted, |
| // but it fails and is removed before kPortTimeoutDelay, then this message |
| // will still cause the Port to be destroyed. |
| if (ice_role_ == ICEROLE_CONTROLLED) |
| thread_->PostDelayed(timeout_delay_, this, MSG_CHECKTIMEOUT); |
| } |
| |
| void Port::Destroy() { |
| ASSERT(connections_.empty()); |
| LOG_J(LS_INFO, this) << "Port deleted"; |
| SignalDestroyed(this); |
| delete this; |
| } |
| |
| void Port::CheckTimeout() { |
| ASSERT(ice_role_ == ICEROLE_CONTROLLED); |
| // If this port has no connections, then there's no reason to keep it around. |
| // When the connections time out (both read and write), they will delete |
| // themselves, so if we have any connections, they are either readable or |
| // writable (or still connecting). |
| if (connections_.empty()) |
| Destroy(); |
| } |
| |
| const std::string Port::username_fragment() const { |
| if (!IsStandardIce() && |
| component_ == ICE_CANDIDATE_COMPONENT_RTCP) { |
| // In GICE mode, we should adjust username fragment for rtcp component. |
| return GetRtcpUfragFromRtpUfrag(ice_username_fragment_); |
| } else { |
| return ice_username_fragment_; |
| } |
| } |
| |
| // A ConnectionRequest is a simple STUN ping used to determine writability. |
| class ConnectionRequest : public StunRequest { |
| public: |
| explicit ConnectionRequest(Connection* connection) |
| : StunRequest(new IceMessage()), |
| connection_(connection) { |
| } |
| |
| virtual ~ConnectionRequest() { |
| } |
| |
| virtual void Prepare(StunMessage* request) { |
| request->SetType(STUN_BINDING_REQUEST); |
| std::string username; |
| connection_->port()->CreateStunUsername( |
| connection_->remote_candidate().username(), &username); |
| request->AddAttribute( |
| new StunByteStringAttribute(STUN_ATTR_USERNAME, username)); |
| |
| // connection_ already holds this ping, so subtract one from count. |
| if (connection_->port()->send_retransmit_count_attribute()) { |
| request->AddAttribute(new StunUInt32Attribute( |
| STUN_ATTR_RETRANSMIT_COUNT, |
| static_cast<uint32>( |
| connection_->pings_since_last_response_.size() - 1))); |
| } |
| |
| // Adding ICE-specific attributes to the STUN request message. |
| if (connection_->port()->IsStandardIce()) { |
| // Adding ICE_CONTROLLED or ICE_CONTROLLING attribute based on the role. |
| if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLING) { |
| request->AddAttribute(new StunUInt64Attribute( |
| STUN_ATTR_ICE_CONTROLLING, connection_->port()->IceTiebreaker())); |
| // Since we are trying aggressive nomination, sending USE-CANDIDATE |
| // attribute in every ping. |
| // If we are dealing with a ice-lite end point, nomination flag |
| // in Connection will be set to false by default. Once the connection |
| // becomes "best connection", nomination flag will be turned on. |
| if (connection_->use_candidate_attr()) { |
| request->AddAttribute(new StunByteStringAttribute( |
| STUN_ATTR_USE_CANDIDATE)); |
| } |
| } else if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLED) { |
| request->AddAttribute(new StunUInt64Attribute( |
| STUN_ATTR_ICE_CONTROLLED, connection_->port()->IceTiebreaker())); |
| } else { |
| ASSERT(false); |
| } |
| |
| // Adding PRIORITY Attribute. |
| // Changing the type preference to Peer Reflexive and local preference |
| // and component id information is unchanged from the original priority. |
| // priority = (2^24)*(type preference) + |
| // (2^8)*(local preference) + |
| // (2^0)*(256 - component ID) |
| uint32 prflx_priority = ICE_TYPE_PREFERENCE_PRFLX << 24 | |
| (connection_->local_candidate().priority() & 0x00FFFFFF); |
| request->AddAttribute( |
| new StunUInt32Attribute(STUN_ATTR_PRIORITY, prflx_priority)); |
| |
| // Adding Message Integrity attribute. |
| request->AddMessageIntegrity(connection_->remote_candidate().password()); |
| // Adding Fingerprint. |
| request->AddFingerprint(); |
| } |
| } |
| |
| virtual void OnResponse(StunMessage* response) { |
| connection_->OnConnectionRequestResponse(this, response); |
| } |
| |
| virtual void OnErrorResponse(StunMessage* response) { |
| connection_->OnConnectionRequestErrorResponse(this, response); |
| } |
| |
| virtual void OnTimeout() { |
| connection_->OnConnectionRequestTimeout(this); |
| } |
| |
| virtual int GetNextDelay() { |
| // Each request is sent only once. After a single delay , the request will |
| // time out. |
| timeout_ = true; |
| return CONNECTION_RESPONSE_TIMEOUT; |
| } |
| |
| private: |
| Connection* connection_; |
| }; |
| |
| // |
| // Connection |
| // |
| |
| Connection::Connection(Port* port, |
| size_t index, |
| const Candidate& remote_candidate) |
| : port_(port), |
| local_candidate_index_(index), |
| remote_candidate_(remote_candidate), |
| read_state_(STATE_READ_INIT), |
| write_state_(STATE_WRITE_INIT), |
| connected_(true), |
| pruned_(false), |
| use_candidate_attr_(false), |
| remote_ice_mode_(ICEMODE_FULL), |
| requests_(port->thread()), |
| rtt_(DEFAULT_RTT), |
| last_ping_sent_(0), |
| last_ping_received_(0), |
| last_data_received_(0), |
| last_ping_response_received_(0), |
| sent_packets_discarded_(0), |
| sent_packets_total_(0), |
| reported_(false), |
| state_(STATE_WAITING) { |
| // All of our connections start in WAITING state. |
| // TODO(mallinath) - Start connections from STATE_FROZEN. |
| // Wire up to send stun packets |
| requests_.SignalSendPacket.connect(this, &Connection::OnSendStunPacket); |
| LOG_J(LS_INFO, this) << "Connection created"; |
| } |
| |
| Connection::~Connection() { |
| } |
| |
| const Candidate& Connection::local_candidate() const { |
| ASSERT(local_candidate_index_ < port_->Candidates().size()); |
| return port_->Candidates()[local_candidate_index_]; |
| } |
| |
| uint64 Connection::priority() const { |
| uint64 priority = 0; |
| // RFC 5245 - 5.7.2. Computing Pair Priority and Ordering Pairs |
| // Let G be the priority for the candidate provided by the controlling |
| // agent. Let D be the priority for the candidate provided by the |
| // controlled agent. |
| // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0) |
| IceRole role = port_->GetIceRole(); |
| if (role != ICEROLE_UNKNOWN) { |
| uint32 g = 0; |
| uint32 d = 0; |
| if (role == ICEROLE_CONTROLLING) { |
| g = local_candidate().priority(); |
| d = remote_candidate_.priority(); |
| } else { |
| g = remote_candidate_.priority(); |
| d = local_candidate().priority(); |
| } |
| priority = rtc::_min(g, d); |
| priority = priority << 32; |
| priority += 2 * rtc::_max(g, d) + (g > d ? 1 : 0); |
| } |
| return priority; |
| } |
| |
| void Connection::set_read_state(ReadState value) { |
| ReadState old_value = read_state_; |
| read_state_ = value; |
| if (value != old_value) { |
| LOG_J(LS_VERBOSE, this) << "set_read_state"; |
| SignalStateChange(this); |
| CheckTimeout(); |
| } |
| } |
| |
| void Connection::set_write_state(WriteState value) { |
| WriteState old_value = write_state_; |
| write_state_ = value; |
| if (value != old_value) { |
| LOG_J(LS_VERBOSE, this) << "set_write_state from: " << old_value << " to " |
| << value; |
| SignalStateChange(this); |
| CheckTimeout(); |
| } |
| } |
| |
| void Connection::set_state(State state) { |
| State old_state = state_; |
| state_ = state; |
| if (state != old_state) { |
| LOG_J(LS_VERBOSE, this) << "set_state"; |
| } |
| } |
| |
| void Connection::set_connected(bool value) { |
| bool old_value = connected_; |
| connected_ = value; |
| if (value != old_value) { |
| LOG_J(LS_VERBOSE, this) << "set_connected"; |
| } |
| } |
| |
| void Connection::set_use_candidate_attr(bool enable) { |
| use_candidate_attr_ = enable; |
| } |
| |
| void Connection::OnSendStunPacket(const void* data, size_t size, |
| StunRequest* req) { |
| rtc::PacketOptions options(port_->DefaultDscpValue()); |
| if (port_->SendTo(data, size, remote_candidate_.address(), |
| options, false) < 0) { |
| LOG_J(LS_WARNING, this) << "Failed to send STUN ping " << req->id(); |
| } |
| } |
| |
| void Connection::OnReadPacket( |
| const char* data, size_t size, const rtc::PacketTime& packet_time) { |
| rtc::scoped_ptr<IceMessage> msg; |
| std::string remote_ufrag; |
| const rtc::SocketAddress& addr(remote_candidate_.address()); |
| if (!port_->GetStunMessage(data, size, addr, msg.accept(), &remote_ufrag)) { |
| // The packet did not parse as a valid STUN message |
| |
| // If this connection is readable, then pass along the packet. |
| if (read_state_ == STATE_READABLE) { |
| // readable means data from this address is acceptable |
| // Send it on! |
| |
| last_data_received_ = rtc::Time(); |
| recv_rate_tracker_.Update(size); |
| SignalReadPacket(this, data, size, packet_time); |
| |
| // If timed out sending writability checks, start up again |
| if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) { |
| LOG(LS_WARNING) << "Received a data packet on a timed-out Connection. " |
| << "Resetting state to STATE_WRITE_INIT."; |
| set_write_state(STATE_WRITE_INIT); |
| } |
| } else { |
| // Not readable means the remote address hasn't sent a valid |
| // binding request yet. |
| |
| LOG_J(LS_WARNING, this) |
| << "Received non-STUN packet from an unreadable connection."; |
| } |
| } else if (!msg) { |
| // The packet was STUN, but failed a check and was handled internally. |
| } else { |
| // The packet is STUN and passed the Port checks. |
| // Perform our own checks to ensure this packet is valid. |
| // If this is a STUN request, then update the readable bit and respond. |
| // If this is a STUN response, then update the writable bit. |
| switch (msg->type()) { |
| case STUN_BINDING_REQUEST: |
| if (remote_ufrag == remote_candidate_.username()) { |
| // Check for role conflicts. |
| if (port_->IsStandardIce() && |
| !port_->MaybeIceRoleConflict(addr, msg.get(), remote_ufrag)) { |
| // Received conflicting role from the peer. |
| LOG(LS_INFO) << "Received conflicting role from the peer."; |
| return; |
| } |
| |
| // Incoming, validated stun request from remote peer. |
| // This call will also set the connection readable. |
| port_->SendBindingResponse(msg.get(), addr); |
| |
| // If timed out sending writability checks, start up again |
| if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) |
| set_write_state(STATE_WRITE_INIT); |
| |
| if ((port_->IsStandardIce()) && |
| (port_->GetIceRole() == ICEROLE_CONTROLLED)) { |
| const StunByteStringAttribute* use_candidate_attr = |
| msg->GetByteString(STUN_ATTR_USE_CANDIDATE); |
| if (use_candidate_attr) |
| SignalUseCandidate(this); |
| } |
| } else { |
| // The packet had the right local username, but the remote username |
| // was not the right one for the remote address. |
| LOG_J(LS_ERROR, this) |
| << "Received STUN request with bad remote username " |
| << remote_ufrag; |
| port_->SendBindingErrorResponse(msg.get(), addr, |
| STUN_ERROR_UNAUTHORIZED, |
| STUN_ERROR_REASON_UNAUTHORIZED); |
| |
| } |
| break; |
| |
| // Response from remote peer. Does it match request sent? |
| // This doesn't just check, it makes callbacks if transaction |
| // id's match. |
| case STUN_BINDING_RESPONSE: |
| case STUN_BINDING_ERROR_RESPONSE: |
| if (port_->IsGoogleIce() || |
| msg->ValidateMessageIntegrity( |
| data, size, remote_candidate().password())) { |
| requests_.CheckResponse(msg.get()); |
| } |
| // Otherwise silently discard the response message. |
| break; |
| |
| // Remote end point sent an STUN indication instead of regular |
| // binding request. In this case |last_ping_received_| will be updated. |
| // Otherwise we can mark connection to read timeout. No response will be |
| // sent in this scenario. |
| case STUN_BINDING_INDICATION: |
| if (port_->IsStandardIce() && read_state_ == STATE_READABLE) { |
| ReceivedPing(); |
| } else { |
| LOG_J(LS_WARNING, this) << "Received STUN binding indication " |
| << "from an unreadable connection."; |
| } |
| break; |
| |
| default: |
| ASSERT(false); |
| break; |
| } |
| } |
| } |
| |
| void Connection::OnReadyToSend() { |
| if (write_state_ == STATE_WRITABLE) { |
| SignalReadyToSend(this); |
| } |
| } |
| |
| void Connection::Prune() { |
| if (!pruned_) { |
| LOG_J(LS_VERBOSE, this) << "Connection pruned"; |
| pruned_ = true; |
| requests_.Clear(); |
| set_write_state(STATE_WRITE_TIMEOUT); |
| } |
| } |
| |
| void Connection::Destroy() { |
| LOG_J(LS_VERBOSE, this) << "Connection destroyed"; |
| set_read_state(STATE_READ_TIMEOUT); |
| set_write_state(STATE_WRITE_TIMEOUT); |
| } |
| |
| void Connection::UpdateState(uint32 now) { |
| uint32 rtt = ConservativeRTTEstimate(rtt_); |
| |
| std::string pings; |
| for (size_t i = 0; i < pings_since_last_response_.size(); ++i) { |
| char buf[32]; |
| rtc::sprintfn(buf, sizeof(buf), "%u", |
| pings_since_last_response_[i]); |
| pings.append(buf).append(" "); |
| } |
| LOG_J(LS_VERBOSE, this) << "UpdateState(): pings_since_last_response_=" |
| << pings << ", rtt=" << rtt << ", now=" << now |
| << ", last ping received: " << last_ping_received_ |
| << ", last data_received: " << last_data_received_; |
| |
| // Check the readable state. |
| // |
| // Since we don't know how many pings the other side has attempted, the best |
| // test we can do is a simple window. |
| // If other side has not sent ping after connection has become readable, use |
| // |last_data_received_| as the indication. |
| // If remote endpoint is doing RFC 5245, it's not required to send ping |
| // after connection is established. If this connection is serving a data |
| // channel, it may not be in a position to send media continuously. Do not |
| // mark connection timeout if it's in RFC5245 mode. |
| // Below check will be performed with end point if it's doing google-ice. |
| if (port_->IsGoogleIce() && (read_state_ == STATE_READABLE) && |
| (last_ping_received_ + CONNECTION_READ_TIMEOUT <= now) && |
| (last_data_received_ + CONNECTION_READ_TIMEOUT <= now)) { |
| LOG_J(LS_INFO, this) << "Unreadable after " |
| << now - last_ping_received_ |
| << " ms without a ping," |
| << " ms since last received response=" |
| << now - last_ping_response_received_ |
| << " ms since last received data=" |
| << now - last_data_received_ |
| << " rtt=" << rtt; |
| set_read_state(STATE_READ_TIMEOUT); |
| } |
| |
| // Check the writable state. (The order of these checks is important.) |
| // |
| // Before becoming unwritable, we allow for a fixed number of pings to fail |
| // (i.e., receive no response). We also have to give the response time to |
| // get back, so we include a conservative estimate of this. |
| // |
| // Before timing out writability, we give a fixed amount of time. This is to |
| // allow for changes in network conditions. |
| |
| if ((write_state_ == STATE_WRITABLE) && |
| TooManyFailures(pings_since_last_response_, |
| CONNECTION_WRITE_CONNECT_FAILURES, |
| rtt, |
| now) && |
| TooLongWithoutResponse(pings_since_last_response_, |
| CONNECTION_WRITE_CONNECT_TIMEOUT, |
| now)) { |
| uint32 max_pings = CONNECTION_WRITE_CONNECT_FAILURES; |
| LOG_J(LS_INFO, this) << "Unwritable after " << max_pings |
| << " ping failures and " |
| << now - pings_since_last_response_[0] |
| << " ms without a response," |
| << " ms since last received ping=" |
| << now - last_ping_received_ |
| << " ms since last received data=" |
| << now - last_data_received_ |
| << " rtt=" << rtt; |
| set_write_state(STATE_WRITE_UNRELIABLE); |
| } |
| |
| if ((write_state_ == STATE_WRITE_UNRELIABLE || |
| write_state_ == STATE_WRITE_INIT) && |
| TooLongWithoutResponse(pings_since_last_response_, |
| CONNECTION_WRITE_TIMEOUT, |
| now)) { |
| LOG_J(LS_INFO, this) << "Timed out after " |
| << now - pings_since_last_response_[0] |
| << " ms without a response, rtt=" << rtt; |
| set_write_state(STATE_WRITE_TIMEOUT); |
| } |
| } |
| |
| void Connection::Ping(uint32 now) { |
| ASSERT(connected_); |
| last_ping_sent_ = now; |
| pings_since_last_response_.push_back(now); |
| ConnectionRequest *req = new ConnectionRequest(this); |
| LOG_J(LS_VERBOSE, this) << "Sending STUN ping " << req->id() << " at " << now; |
| requests_.Send(req); |
| state_ = STATE_INPROGRESS; |
| } |
| |
| void Connection::ReceivedPing() { |
| last_ping_received_ = rtc::Time(); |
| set_read_state(STATE_READABLE); |
| } |
| |
| std::string Connection::ToDebugId() const { |
| std::stringstream ss; |
| ss << std::hex << this; |
| return ss.str(); |
| } |
| |
| std::string Connection::ToString() const { |
| const char CONNECT_STATE_ABBREV[2] = { |
| '-', // not connected (false) |
| 'C', // connected (true) |
| }; |
| const char READ_STATE_ABBREV[3] = { |
| '-', // STATE_READ_INIT |
| 'R', // STATE_READABLE |
| 'x', // STATE_READ_TIMEOUT |
| }; |
| const char WRITE_STATE_ABBREV[4] = { |
| 'W', // STATE_WRITABLE |
| 'w', // STATE_WRITE_UNRELIABLE |
| '-', // STATE_WRITE_INIT |
| 'x', // STATE_WRITE_TIMEOUT |
| }; |
| const std::string ICESTATE[4] = { |
| "W", // STATE_WAITING |
| "I", // STATE_INPROGRESS |
| "S", // STATE_SUCCEEDED |
| "F" // STATE_FAILED |
| }; |
| const Candidate& local = local_candidate(); |
| const Candidate& remote = remote_candidate(); |
| std::stringstream ss; |
| ss << "Conn[" << ToDebugId() |
| << ":" << port_->content_name() |
| << ":" << local.id() << ":" << local.component() |
| << ":" << local.generation() |
| << ":" << local.type() << ":" << local.protocol() |
| << ":" << local.address().ToSensitiveString() |
| << "->" << remote.id() << ":" << remote.component() |
| << ":" << remote.priority() |
| << ":" << remote.type() << ":" |
| << remote.protocol() << ":" << remote.address().ToSensitiveString() << "|" |
| << CONNECT_STATE_ABBREV[connected()] |
| << READ_STATE_ABBREV[read_state()] |
| << WRITE_STATE_ABBREV[write_state()] |
| << ICESTATE[state()] << "|" |
| << priority() << "|"; |
| if (rtt_ < DEFAULT_RTT) { |
| ss << rtt_ << "]"; |
| } else { |
| ss << "-]"; |
| } |
| return ss.str(); |
| } |
| |
| std::string Connection::ToSensitiveString() const { |
| return ToString(); |
| } |
| |
| void Connection::OnConnectionRequestResponse(ConnectionRequest* request, |
| StunMessage* response) { |
| // We've already validated that this is a STUN binding response with |
| // the correct local and remote username for this connection. |
| // So if we're not already, become writable. We may be bringing a pruned |
| // connection back to life, but if we don't really want it, we can always |
| // prune it again. |
| uint32 rtt = request->Elapsed(); |
| set_write_state(STATE_WRITABLE); |
| set_state(STATE_SUCCEEDED); |
| |
| if (remote_ice_mode_ == ICEMODE_LITE) { |
| // A ice-lite end point never initiates ping requests. This will allow |
| // us to move to STATE_READABLE. |
| ReceivedPing(); |
| } |
| |
| std::string pings; |
| for (size_t i = 0; i < pings_since_last_response_.size(); ++i) { |
| char buf[32]; |
| rtc::sprintfn(buf, sizeof(buf), "%u", |
| pings_since_last_response_[i]); |
| pings.append(buf).append(" "); |
| } |
| |
| rtc::LoggingSeverity level = |
| (pings_since_last_response_.size() > CONNECTION_WRITE_CONNECT_FAILURES) ? |
| rtc::LS_INFO : rtc::LS_VERBOSE; |
| |
| LOG_JV(level, this) << "Received STUN ping response " << request->id() |
| << ", pings_since_last_response_=" << pings |
| << ", rtt=" << rtt; |
| |
| pings_since_last_response_.clear(); |
| last_ping_response_received_ = rtc::Time(); |
| rtt_ = (RTT_RATIO * rtt_ + rtt) / (RTT_RATIO + 1); |
| |
| // Peer reflexive candidate is only for RFC 5245 ICE. |
| if (port_->IsStandardIce()) { |
| MaybeAddPrflxCandidate(request, response); |
| } |
| } |
| |
| void Connection::OnConnectionRequestErrorResponse(ConnectionRequest* request, |
| StunMessage* response) { |
| const StunErrorCodeAttribute* error_attr = response->GetErrorCode(); |
| int error_code = STUN_ERROR_GLOBAL_FAILURE; |
| if (error_attr) { |
| if (port_->IsGoogleIce()) { |
| // When doing GICE, the error code is written out incorrectly, so we need |
| // to unmunge it here. |
| error_code = error_attr->eclass() * 256 + error_attr->number(); |
| } else { |
| error_code = error_attr->code(); |
| } |
| } |
| |
| if (error_code == STUN_ERROR_UNKNOWN_ATTRIBUTE || |
| error_code == STUN_ERROR_SERVER_ERROR || |
| error_code == STUN_ERROR_UNAUTHORIZED) { |
| // Recoverable error, retry |
| } else if (error_code == STUN_ERROR_STALE_CREDENTIALS) { |
| // Race failure, retry |
| } else if (error_code == STUN_ERROR_ROLE_CONFLICT) { |
| HandleRoleConflictFromPeer(); |
| } else { |
| // This is not a valid connection. |
| LOG_J(LS_ERROR, this) << "Received STUN error response, code=" |
| << error_code << "; killing connection"; |
| set_state(STATE_FAILED); |
| set_write_state(STATE_WRITE_TIMEOUT); |
| } |
| } |
| |
| void Connection::OnConnectionRequestTimeout(ConnectionRequest* request) { |
| // Log at LS_INFO if we miss a ping on a writable connection. |
| rtc::LoggingSeverity sev = (write_state_ == STATE_WRITABLE) ? |
| rtc::LS_INFO : rtc::LS_VERBOSE; |
| LOG_JV(sev, this) << "Timing-out STUN ping " << request->id() |
| << " after " << request->Elapsed() << " ms"; |
| } |
| |
| void Connection::CheckTimeout() { |
| // If both read and write have timed out or read has never initialized, then |
| // this connection can contribute no more to p2p socket unless at some later |
| // date readability were to come back. However, we gave readability a long |
| // time to timeout, so at this point, it seems fair to get rid of this |
| // connection. |
| if ((read_state_ == STATE_READ_TIMEOUT || |
| read_state_ == STATE_READ_INIT) && |
| write_state_ == STATE_WRITE_TIMEOUT) { |
| port_->thread()->Post(this, MSG_DELETE); |
| } |
| } |
| |
| void Connection::HandleRoleConflictFromPeer() { |
| port_->SignalRoleConflict(port_); |
| } |
| |
| void Connection::OnMessage(rtc::Message *pmsg) { |
| ASSERT(pmsg->message_id == MSG_DELETE); |
| |
| LOG_J(LS_INFO, this) << "Connection deleted due to read or write timeout"; |
| SignalDestroyed(this); |
| delete this; |
| } |
| |
| size_t Connection::recv_bytes_second() { |
| return recv_rate_tracker_.units_second(); |
| } |
| |
| size_t Connection::recv_total_bytes() { |
| return recv_rate_tracker_.total_units(); |
| } |
| |
| size_t Connection::sent_bytes_second() { |
| return send_rate_tracker_.units_second(); |
| } |
| |
| size_t Connection::sent_total_bytes() { |
| return send_rate_tracker_.total_units(); |
| } |
| |
| size_t Connection::sent_discarded_packets() { |
| return sent_packets_discarded_; |
| } |
| |
| size_t Connection::sent_total_packets() { |
| return sent_packets_total_; |
| } |
| |
| void Connection::MaybeAddPrflxCandidate(ConnectionRequest* request, |
| StunMessage* response) { |
| // RFC 5245 |
| // The agent checks the mapped address from the STUN response. If the |
| // transport address does not match any of the local candidates that the |
| // agent knows about, the mapped address represents a new candidate -- a |
| // peer reflexive candidate. |
| const StunAddressAttribute* addr = |
| response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| if (!addr) { |
| LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - " |
| << "No MAPPED-ADDRESS or XOR-MAPPED-ADDRESS found in the " |
| << "stun response message"; |
| return; |
| } |
| |
| bool known_addr = false; |
| for (size_t i = 0; i < port_->Candidates().size(); ++i) { |
| if (port_->Candidates()[i].address() == addr->GetAddress()) { |
| known_addr = true; |
| break; |
| } |
| } |
| if (known_addr) { |
| return; |
| } |
| |
| // RFC 5245 |
| // Its priority is set equal to the value of the PRIORITY attribute |
| // in the Binding request. |
| const StunUInt32Attribute* priority_attr = |
| request->msg()->GetUInt32(STUN_ATTR_PRIORITY); |
| if (!priority_attr) { |
| LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - " |
| << "No STUN_ATTR_PRIORITY found in the " |
| << "stun response message"; |
| return; |
| } |
| const uint32 priority = priority_attr->value(); |
| std::string id = rtc::CreateRandomString(8); |
| |
| Candidate new_local_candidate; |
| new_local_candidate.set_id(id); |
| new_local_candidate.set_component(local_candidate().component()); |
| new_local_candidate.set_type(PRFLX_PORT_TYPE); |
| new_local_candidate.set_protocol(local_candidate().protocol()); |
| new_local_candidate.set_address(addr->GetAddress()); |
| new_local_candidate.set_priority(priority); |
| new_local_candidate.set_username(local_candidate().username()); |
| new_local_candidate.set_password(local_candidate().password()); |
| new_local_candidate.set_network_name(local_candidate().network_name()); |
| new_local_candidate.set_network_type(local_candidate().network_type()); |
| new_local_candidate.set_related_address(local_candidate().address()); |
| new_local_candidate.set_foundation( |
| ComputeFoundation(PRFLX_PORT_TYPE, local_candidate().protocol(), |
| local_candidate().address())); |
| |
| // Change the local candidate of this Connection to the new prflx candidate. |
| local_candidate_index_ = port_->AddPrflxCandidate(new_local_candidate); |
| |
| // SignalStateChange to force a re-sort in P2PTransportChannel as this |
| // Connection's local candidate has changed. |
| SignalStateChange(this); |
| } |
| |
| ProxyConnection::ProxyConnection(Port* port, size_t index, |
| const Candidate& candidate) |
| : Connection(port, index, candidate), error_(0) { |
| } |
| |
| int ProxyConnection::Send(const void* data, size_t size, |
| const rtc::PacketOptions& options) { |
| if (write_state_ == STATE_WRITE_INIT || write_state_ == STATE_WRITE_TIMEOUT) { |
| error_ = EWOULDBLOCK; |
| return SOCKET_ERROR; |
| } |
| sent_packets_total_++; |
| int sent = port_->SendTo(data, size, remote_candidate_.address(), |
| options, true); |
| if (sent <= 0) { |
| ASSERT(sent < 0); |
| error_ = port_->GetError(); |
| sent_packets_discarded_++; |
| } else { |
| send_rate_tracker_.Update(sent); |
| } |
| return sent; |
| } |
| |
| } // namespace cricket |