blob: b865f5eff6305e68eb806a1ded9a4758e43f8f31 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include <algorithm>
#include <memory>
#include <vector>
#include <utility>
#include "rtc_base/checks.h"
namespace webrtc {
SimulcastRateAllocator::SimulcastRateAllocator(
const VideoCodec& codec,
std::unique_ptr<TemporalLayersFactory> tl_factory)
: codec_(codec), tl_factory_(std::move(tl_factory)) {
if (tl_factory_.get())
tl_factory_->SetListener(this);
}
void SimulcastRateAllocator::OnTemporalLayersCreated(int simulcast_id,
TemporalLayers* layers) {
RTC_DCHECK(temporal_layers_.find(simulcast_id) == temporal_layers_.end());
RTC_DCHECK(layers);
temporal_layers_[simulcast_id] = layers;
}
BitrateAllocation SimulcastRateAllocator::GetAllocation(
uint32_t total_bitrate_bps,
uint32_t framerate) {
BitrateAllocation allocated_bitrates_bps;
DistributeAllocationToSimulcastLayers(total_bitrate_bps,
&allocated_bitrates_bps);
DistributeAllocationToTemporalLayers(framerate, &allocated_bitrates_bps);
return allocated_bitrates_bps;
}
void SimulcastRateAllocator::DistributeAllocationToSimulcastLayers(
uint32_t total_bitrate_bps,
BitrateAllocation* allocated_bitrates_bps) {
uint32_t left_to_allocate = total_bitrate_bps;
if (codec_.maxBitrate && codec_.maxBitrate * 1000 < left_to_allocate)
left_to_allocate = codec_.maxBitrate * 1000;
if (codec_.numberOfSimulcastStreams == 0) {
// No simulcast, just set the target as this has been capped already.
if (codec_.active) {
allocated_bitrates_bps->SetBitrate(
0, 0, std::max(codec_.minBitrate * 1000, left_to_allocate));
}
return;
}
// Find the first active layer. We don't allocate to inactive layers.
size_t active_layer = 0;
for (; active_layer < codec_.numberOfSimulcastStreams; ++active_layer) {
if (codec_.simulcastStream[active_layer].active) {
// Found the first active layer.
break;
}
}
// All streams could be inactive, and nothing more to do.
if (active_layer == codec_.numberOfSimulcastStreams) {
return;
}
// Always allocate enough bitrate for the minimum bitrate of the first
// active layer. Suspending below min bitrate is controlled outside the
// codec implementation and is not overridden by this.
left_to_allocate = std::max(
codec_.simulcastStream[active_layer].minBitrate * 1000, left_to_allocate);
// Begin by allocating bitrate to simulcast streams, putting all bitrate in
// temporal layer 0. We'll then distribute this bitrate, across potential
// temporal layers, when stream allocation is done.
size_t top_active_layer = active_layer;
// Allocate up to the target bitrate for each active simulcast layer.
for (; active_layer < codec_.numberOfSimulcastStreams; ++active_layer) {
const SimulcastStream& stream = codec_.simulcastStream[active_layer];
if (!stream.active) {
continue;
}
// If we can't allocate to the current layer we can't allocate to higher
// layers because they require a higher minimum bitrate.
if (left_to_allocate < stream.minBitrate * 1000) {
break;
}
// We are allocating to this layer so it is the current active allocation.
top_active_layer = active_layer;
uint32_t allocation =
std::min(left_to_allocate, stream.targetBitrate * 1000);
allocated_bitrates_bps->SetBitrate(active_layer, 0, allocation);
RTC_DCHECK_LE(allocation, left_to_allocate);
left_to_allocate -= allocation;
}
// Next, try allocate remaining bitrate, up to max bitrate, in top active
// stream.
// TODO(sprang): Allocate up to max bitrate for all layers once we have a
// better idea of possible performance implications.
if (left_to_allocate > 0) {
const SimulcastStream& stream = codec_.simulcastStream[top_active_layer];
uint32_t bitrate_bps =
allocated_bitrates_bps->GetSpatialLayerSum(top_active_layer);
uint32_t allocation =
std::min(left_to_allocate, stream.maxBitrate * 1000 - bitrate_bps);
bitrate_bps += allocation;
RTC_DCHECK_LE(allocation, left_to_allocate);
left_to_allocate -= allocation;
allocated_bitrates_bps->SetBitrate(top_active_layer, 0, bitrate_bps);
}
}
void SimulcastRateAllocator::DistributeAllocationToTemporalLayers(
uint32_t framerate,
BitrateAllocation* allocated_bitrates_bps) {
const int num_spatial_streams =
std::max(1, static_cast<int>(codec_.numberOfSimulcastStreams));
// Finally, distribute the bitrate for the simulcast streams across the
// available temporal layers.
for (int simulcast_id = 0; simulcast_id < num_spatial_streams;
++simulcast_id) {
// TODO(shampson): Consider adding a continue here if the simulcast stream
// is inactive. Currently this is not added because the call
// below to OnRatesUpdated changes the TemporalLayer's
// state.
auto tl_it = temporal_layers_.find(simulcast_id);
if (tl_it == temporal_layers_.end())
continue; // TODO(sprang): If > 1 SS, assume default TL alloc?
uint32_t target_bitrate_kbps =
allocated_bitrates_bps->GetBitrate(simulcast_id, 0) / 1000;
const uint32_t expected_allocated_bitrate_kbps = target_bitrate_kbps;
RTC_DCHECK_EQ(
target_bitrate_kbps,
allocated_bitrates_bps->GetSpatialLayerSum(simulcast_id) / 1000);
const int num_temporal_streams = std::max<uint8_t>(
1, codec_.numberOfSimulcastStreams == 0
? codec_.VP8().numberOfTemporalLayers
: codec_.simulcastStream[simulcast_id].numberOfTemporalLayers);
uint32_t max_bitrate_kbps;
// Legacy temporal-layered only screenshare, or simulcast screenshare
// with legacy mode for simulcast stream 0.
if (codec_.mode == kScreensharing && codec_.targetBitrate > 0 &&
((num_spatial_streams == 1 && num_temporal_streams == 2) || // Legacy.
(num_spatial_streams > 1 && simulcast_id == 0))) { // Simulcast.
// TODO(holmer): This is a "temporary" hack for screensharing, where we
// interpret the startBitrate as the encoder target bitrate. This is
// to allow for a different max bitrate, so if the codec can't meet
// the target we still allow it to overshoot up to the max before dropping
// frames. This hack should be improved.
int tl0_bitrate = std::min(codec_.targetBitrate, target_bitrate_kbps);
max_bitrate_kbps = std::min(codec_.maxBitrate, target_bitrate_kbps);
target_bitrate_kbps = tl0_bitrate;
} else if (num_spatial_streams == 1) {
max_bitrate_kbps = codec_.maxBitrate;
} else {
max_bitrate_kbps = codec_.simulcastStream[simulcast_id].maxBitrate;
}
std::vector<uint32_t> tl_allocation = tl_it->second->OnRatesUpdated(
target_bitrate_kbps, max_bitrate_kbps, framerate);
RTC_DCHECK_GT(tl_allocation.size(), 0);
RTC_DCHECK_LE(tl_allocation.size(), num_temporal_streams);
uint64_t tl_allocation_sum_kbps = 0;
for (size_t tl_index = 0; tl_index < tl_allocation.size(); ++tl_index) {
uint32_t layer_rate_kbps = tl_allocation[tl_index];
if (layer_rate_kbps > 0) {
allocated_bitrates_bps->SetBitrate(simulcast_id, tl_index,
layer_rate_kbps * 1000);
}
tl_allocation_sum_kbps += layer_rate_kbps;
}
RTC_DCHECK_LE(tl_allocation_sum_kbps, expected_allocated_bitrate_kbps);
}
}
uint32_t SimulcastRateAllocator::GetPreferredBitrateBps(uint32_t framerate) {
// Create a temporary instance without temporal layers, as they may be
// stateful, and updating the bitrate to max here can cause side effects.
SimulcastRateAllocator temp_allocator(codec_, nullptr);
BitrateAllocation allocation =
temp_allocator.GetAllocation(codec_.maxBitrate * 1000, framerate);
return allocation.get_sum_bps();
}
const VideoCodec& webrtc::SimulcastRateAllocator::GetCodec() const {
return codec_;
}
} // namespace webrtc