blob: d437d419248f1c4e260a13d94c5c460275ecd59f [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/test/rtp_file_reader.h"
#include <stdio.h>
#include <map>
#include <string>
#include <vector>
#include "webrtc/base/checks.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/base/format_macros.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_utility.h"
namespace webrtc {
namespace test {
static const size_t kFirstLineLength = 40;
static uint16_t kPacketHeaderSize = 8;
#if 1
# define DEBUG_LOG(text)
# define DEBUG_LOG1(text, arg)
#else
# define DEBUG_LOG(text) (printf(text "\n"))
# define DEBUG_LOG1(text, arg) (printf(text "\n", arg))
#endif
#define TRY(expr) \
do { \
if (!(expr)) { \
DEBUG_LOG1("FAIL at " __FILE__ ":%d", __LINE__); \
return false; \
} \
} while (0)
bool ReadUint32(uint32_t* out, FILE* file) {
*out = 0;
for (size_t i = 0; i < 4; ++i) {
*out <<= 8;
uint8_t tmp;
if (fread(&tmp, 1, sizeof(uint8_t), file) != sizeof(uint8_t))
return false;
*out |= tmp;
}
return true;
}
bool ReadUint16(uint16_t* out, FILE* file) {
*out = 0;
for (size_t i = 0; i < 2; ++i) {
*out <<= 8;
uint8_t tmp;
if (fread(&tmp, 1, sizeof(uint8_t), file) != sizeof(uint8_t))
return false;
*out |= tmp;
}
return true;
}
class RtpFileReaderImpl : public RtpFileReader {
public:
virtual bool Init(const std::string& filename,
const std::set<uint32_t>& ssrc_filter) = 0;
};
class InterleavedRtpFileReader : public RtpFileReaderImpl {
public:
virtual ~InterleavedRtpFileReader() {
if (file_ != NULL) {
fclose(file_);
file_ = NULL;
}
}
virtual bool Init(const std::string& filename,
const std::set<uint32_t>& ssrc_filter) {
file_ = fopen(filename.c_str(), "rb");
if (file_ == NULL) {
printf("ERROR: Can't open file: %s\n", filename.c_str());
return false;
}
return true;
}
virtual bool NextPacket(RtpPacket* packet) {
assert(file_ != NULL);
packet->length = RtpPacket::kMaxPacketBufferSize;
uint32_t len = 0;
TRY(ReadUint32(&len, file_));
if (packet->length < len) {
FATAL() << "Packet is too large to fit: " << len << " bytes vs "
<< packet->length
<< " bytes allocated. Consider increasing the buffer "
"size";
}
if (fread(packet->data, 1, len, file_) != len)
return false;
packet->length = len;
packet->original_length = len;
packet->time_ms = time_ms_;
time_ms_ += 5;
return true;
}
private:
FILE* file_ = NULL;
int64_t time_ms_ = 0;
};
// Read RTP packets from file in rtpdump format, as documented at:
// http://www.cs.columbia.edu/irt/software/rtptools/
class RtpDumpReader : public RtpFileReaderImpl {
public:
RtpDumpReader() : file_(NULL) {}
virtual ~RtpDumpReader() {
if (file_ != NULL) {
fclose(file_);
file_ = NULL;
}
}
bool Init(const std::string& filename,
const std::set<uint32_t>& ssrc_filter) override {
file_ = fopen(filename.c_str(), "rb");
if (file_ == NULL) {
printf("ERROR: Can't open file: %s\n", filename.c_str());
return false;
}
char firstline[kFirstLineLength + 1] = {0};
if (fgets(firstline, kFirstLineLength, file_) == NULL) {
DEBUG_LOG("ERROR: Can't read from file\n");
return false;
}
if (strncmp(firstline, "#!rtpplay", 9) == 0) {
if (strncmp(firstline, "#!rtpplay1.0", 12) != 0) {
DEBUG_LOG("ERROR: wrong rtpplay version, must be 1.0\n");
return false;
}
} else if (strncmp(firstline, "#!RTPencode", 11) == 0) {
if (strncmp(firstline, "#!RTPencode1.0", 14) != 0) {
DEBUG_LOG("ERROR: wrong RTPencode version, must be 1.0\n");
return false;
}
} else {
DEBUG_LOG("ERROR: wrong file format of input file\n");
return false;
}
uint32_t start_sec;
uint32_t start_usec;
uint32_t source;
uint16_t port;
uint16_t padding;
TRY(ReadUint32(&start_sec, file_));
TRY(ReadUint32(&start_usec, file_));
TRY(ReadUint32(&source, file_));
TRY(ReadUint16(&port, file_));
TRY(ReadUint16(&padding, file_));
return true;
}
bool NextPacket(RtpPacket* packet) override {
uint8_t* rtp_data = packet->data;
packet->length = RtpPacket::kMaxPacketBufferSize;
uint16_t len;
uint16_t plen;
uint32_t offset;
TRY(ReadUint16(&len, file_));
TRY(ReadUint16(&plen, file_));
TRY(ReadUint32(&offset, file_));
// Use 'len' here because a 'plen' of 0 specifies rtcp.
len -= kPacketHeaderSize;
if (packet->length < len) {
FATAL() << "Packet is too large to fit: " << len << " bytes vs "
<< packet->length
<< " bytes allocated. Consider increasing the buffer "
"size";
}
if (fread(rtp_data, 1, len, file_) != len) {
return false;
}
packet->length = len;
packet->original_length = plen;
packet->time_ms = offset;
return true;
}
private:
FILE* file_;
RTC_DISALLOW_COPY_AND_ASSIGN(RtpDumpReader);
};
enum {
kResultFail = -1,
kResultSuccess = 0,
kResultSkip = 1,
kPcapVersionMajor = 2,
kPcapVersionMinor = 4,
kLinktypeNull = 0,
kLinktypeEthernet = 1,
kBsdNullLoopback1 = 0x00000002,
kBsdNullLoopback2 = 0x02000000,
kEthernetIIHeaderMacSkip = 12,
kEthertypeIp = 0x0800,
kIpVersion4 = 4,
kMinIpHeaderLength = 20,
kFragmentOffsetClear = 0x0000,
kFragmentOffsetDoNotFragment = 0x4000,
kProtocolTcp = 0x06,
kProtocolUdp = 0x11,
kUdpHeaderLength = 8,
kMaxReadBufferSize = 4096
};
const uint32_t kPcapBOMSwapOrder = 0xd4c3b2a1UL;
const uint32_t kPcapBOMNoSwapOrder = 0xa1b2c3d4UL;
#define TRY_PCAP(expr) \
do { \
int r = (expr); \
if (r == kResultFail) { \
DEBUG_LOG1("FAIL at " __FILE__ ":%d", __LINE__); \
return kResultFail; \
} else if (r == kResultSkip) { \
return kResultSkip; \
} \
} while (0)
// Read RTP packets from file in tcpdump/libpcap format, as documented at:
// http://wiki.wireshark.org/Development/LibpcapFileFormat
class PcapReader : public RtpFileReaderImpl {
public:
PcapReader()
: file_(NULL),
swap_pcap_byte_order_(false),
#ifdef WEBRTC_ARCH_BIG_ENDIAN
swap_network_byte_order_(false),
#else
swap_network_byte_order_(true),
#endif
read_buffer_(),
packets_by_ssrc_(),
packets_(),
next_packet_it_() {
}
virtual ~PcapReader() {
if (file_ != NULL) {
fclose(file_);
file_ = NULL;
}
}
bool Init(const std::string& filename,
const std::set<uint32_t>& ssrc_filter) override {
return Initialize(filename, ssrc_filter) == kResultSuccess;
}
int Initialize(const std::string& filename,
const std::set<uint32_t>& ssrc_filter) {
file_ = fopen(filename.c_str(), "rb");
if (file_ == NULL) {
printf("ERROR: Can't open file: %s\n", filename.c_str());
return kResultFail;
}
if (ReadGlobalHeader() < 0) {
return kResultFail;
}
int total_packet_count = 0;
uint32_t stream_start_ms = 0;
int32_t next_packet_pos = ftell(file_);
for (;;) {
TRY_PCAP(fseek(file_, next_packet_pos, SEEK_SET));
int result = ReadPacket(&next_packet_pos, stream_start_ms,
++total_packet_count, ssrc_filter);
if (result == kResultFail) {
break;
} else if (result == kResultSuccess && packets_.size() == 1) {
assert(stream_start_ms == 0);
PacketIterator it = packets_.begin();
stream_start_ms = it->time_offset_ms;
it->time_offset_ms = 0;
}
}
if (feof(file_) == 0) {
printf("Failed reading file!\n");
return kResultFail;
}
printf("Total packets in file: %d\n", total_packet_count);
printf("Total RTP/RTCP packets: %" PRIuS "\n", packets_.size());
for (SsrcMapIterator mit = packets_by_ssrc_.begin();
mit != packets_by_ssrc_.end(); ++mit) {
uint32_t ssrc = mit->first;
const std::vector<uint32_t>& packet_indices = mit->second;
uint8_t pt = packets_[packet_indices[0]].rtp_header.payloadType;
printf("SSRC: %08x, %" PRIuS " packets, pt=%d\n", ssrc,
packet_indices.size(), pt);
}
// TODO(solenberg): Better validation of identified SSRC streams.
//
// Since we're dealing with raw network data here, we will wrongly identify
// some packets as RTP. When these packets are consumed by RtpPlayer, they
// are unlikely to cause issues as they will ultimately be filtered out by
// the RtpRtcp module. However, we should really do better filtering here,
// which we can accomplish in a number of ways, e.g.:
//
// - Verify that the time stamps and sequence numbers for RTP packets are
// both increasing/decreasing. If they move in different directions, the
// SSRC is likely bogus and can be dropped. (Normally they should be inc-
// reasing but we must allow packet reordering).
// - If RTP sequence number is not changing, drop the stream.
// - Can also use srcip:port->dstip:port pairs, assuming few SSRC collisions
// for up/down streams.
next_packet_it_ = packets_.begin();
return kResultSuccess;
}
bool NextPacket(RtpPacket* packet) override {
uint32_t length = RtpPacket::kMaxPacketBufferSize;
if (NextPcap(packet->data, &length, &packet->time_ms) != kResultSuccess)
return false;
packet->length = static_cast<size_t>(length);
packet->original_length = packet->length;
return true;
}
virtual int NextPcap(uint8_t* data, uint32_t* length, uint32_t* time_ms) {
assert(data);
assert(length);
assert(time_ms);
if (next_packet_it_ == packets_.end()) {
return -1;
}
if (*length < next_packet_it_->payload_length) {
return -1;
}
TRY_PCAP(fseek(file_, next_packet_it_->pos_in_file, SEEK_SET));
TRY_PCAP(Read(data, next_packet_it_->payload_length));
*length = next_packet_it_->payload_length;
*time_ms = next_packet_it_->time_offset_ms;
next_packet_it_++;
return 0;
}
private:
// A marker of an RTP packet within the file.
struct RtpPacketMarker {
uint32_t packet_number; // One-based index (like in WireShark)
uint32_t time_offset_ms;
uint32_t source_ip;
uint32_t dest_ip;
uint16_t source_port;
uint16_t dest_port;
RTPHeader rtp_header;
int32_t pos_in_file; // Byte offset of payload from start of file.
uint32_t payload_length;
};
typedef std::vector<RtpPacketMarker>::iterator PacketIterator;
typedef std::map<uint32_t, std::vector<uint32_t> > SsrcMap;
typedef std::map<uint32_t, std::vector<uint32_t> >::iterator SsrcMapIterator;
int ReadGlobalHeader() {
uint32_t magic;
TRY_PCAP(Read(&magic, false));
if (magic == kPcapBOMSwapOrder) {
swap_pcap_byte_order_ = true;
} else if (magic == kPcapBOMNoSwapOrder) {
swap_pcap_byte_order_ = false;
} else {
return kResultFail;
}
uint16_t version_major;
uint16_t version_minor;
TRY_PCAP(Read(&version_major, false));
TRY_PCAP(Read(&version_minor, false));
if (version_major != kPcapVersionMajor ||
version_minor != kPcapVersionMinor) {
return kResultFail;
}
int32_t this_zone; // GMT to local correction.
uint32_t sigfigs; // Accuracy of timestamps.
uint32_t snaplen; // Max length of captured packets, in octets.
uint32_t network; // Data link type.
TRY_PCAP(Read(&this_zone, false));
TRY_PCAP(Read(&sigfigs, false));
TRY_PCAP(Read(&snaplen, false));
TRY_PCAP(Read(&network, false));
// Accept only LINKTYPE_NULL and LINKTYPE_ETHERNET.
// See: http://www.tcpdump.org/linktypes.html
if (network != kLinktypeNull && network != kLinktypeEthernet) {
return kResultFail;
}
return kResultSuccess;
}
int ReadPacket(int32_t* next_packet_pos,
uint32_t stream_start_ms,
uint32_t number,
const std::set<uint32_t>& ssrc_filter) {
assert(next_packet_pos);
uint32_t ts_sec; // Timestamp seconds.
uint32_t ts_usec; // Timestamp microseconds.
uint32_t incl_len; // Number of octets of packet saved in file.
uint32_t orig_len; // Actual length of packet.
TRY_PCAP(Read(&ts_sec, false));
TRY_PCAP(Read(&ts_usec, false));
TRY_PCAP(Read(&incl_len, false));
TRY_PCAP(Read(&orig_len, false));
*next_packet_pos = ftell(file_) + incl_len;
RtpPacketMarker marker = {0};
marker.packet_number = number;
marker.time_offset_ms = CalcTimeDelta(ts_sec, ts_usec, stream_start_ms);
TRY_PCAP(ReadPacketHeader(&marker));
marker.pos_in_file = ftell(file_);
if (marker.payload_length > sizeof(read_buffer_)) {
printf("Packet too large!\n");
return kResultFail;
}
TRY_PCAP(Read(read_buffer_, marker.payload_length));
RtpUtility::RtpHeaderParser rtp_parser(read_buffer_, marker.payload_length);
if (rtp_parser.RTCP()) {
rtp_parser.ParseRtcp(&marker.rtp_header);
packets_.push_back(marker);
} else {
if (!rtp_parser.Parse(&marker.rtp_header, nullptr)) {
DEBUG_LOG("Not recognized as RTP/RTCP");
return kResultSkip;
}
uint32_t ssrc = marker.rtp_header.ssrc;
if (ssrc_filter.empty() || ssrc_filter.find(ssrc) != ssrc_filter.end()) {
packets_by_ssrc_[ssrc].push_back(
static_cast<uint32_t>(packets_.size()));
packets_.push_back(marker);
} else {
return kResultSkip;
}
}
return kResultSuccess;
}
int ReadPacketHeader(RtpPacketMarker* marker) {
int32_t file_pos = ftell(file_);
// Check for BSD null/loopback frame header. The header is just 4 bytes in
// native byte order, so we check for both versions as we don't care about
// the header as such and will likely fail reading the IP header if this is
// something else than null/loopback.
uint32_t protocol;
TRY_PCAP(Read(&protocol, true));
if (protocol == kBsdNullLoopback1 || protocol == kBsdNullLoopback2) {
int result = ReadXxpIpHeader(marker);
DEBUG_LOG("Recognized loopback frame");
if (result != kResultSkip) {
return result;
}
}
TRY_PCAP(fseek(file_, file_pos, SEEK_SET));
// Check for Ethernet II, IP frame header.
uint16_t type;
TRY_PCAP(Skip(kEthernetIIHeaderMacSkip)); // Source+destination MAC.
TRY_PCAP(Read(&type, true));
if (type == kEthertypeIp) {
int result = ReadXxpIpHeader(marker);
DEBUG_LOG("Recognized ethernet 2 frame");
if (result != kResultSkip) {
return result;
}
}
return kResultSkip;
}
uint32_t CalcTimeDelta(uint32_t ts_sec, uint32_t ts_usec, uint32_t start_ms) {
// Round to nearest ms.
uint64_t t2_ms = ((static_cast<uint64_t>(ts_sec) * 1000000) + ts_usec +
500) / 1000;
uint64_t t1_ms = static_cast<uint64_t>(start_ms);
if (t2_ms < t1_ms) {
return 0;
} else {
return t2_ms - t1_ms;
}
}
int ReadXxpIpHeader(RtpPacketMarker* marker) {
assert(marker);
uint16_t version;
uint16_t length;
uint16_t id;
uint16_t fragment;
uint16_t protocol;
uint16_t checksum;
TRY_PCAP(Read(&version, true));
TRY_PCAP(Read(&length, true));
TRY_PCAP(Read(&id, true));
TRY_PCAP(Read(&fragment, true));
TRY_PCAP(Read(&protocol, true));
TRY_PCAP(Read(&checksum, true));
TRY_PCAP(Read(&marker->source_ip, true));
TRY_PCAP(Read(&marker->dest_ip, true));
if (((version >> 12) & 0x000f) != kIpVersion4) {
DEBUG_LOG("IP header is not IPv4");
return kResultSkip;
}
if (fragment != kFragmentOffsetClear &&
fragment != kFragmentOffsetDoNotFragment) {
DEBUG_LOG("IP fragments cannot be handled");
return kResultSkip;
}
// Skip remaining fields of IP header.
uint16_t header_length = (version & 0x0f00) >> (8 - 2);
assert(header_length >= kMinIpHeaderLength);
TRY_PCAP(Skip(header_length - kMinIpHeaderLength));
protocol = protocol & 0x00ff;
if (protocol == kProtocolTcp) {
DEBUG_LOG("TCP packets are not handled");
return kResultSkip;
} else if (protocol == kProtocolUdp) {
uint16_t length;
uint16_t checksum;
TRY_PCAP(Read(&marker->source_port, true));
TRY_PCAP(Read(&marker->dest_port, true));
TRY_PCAP(Read(&length, true));
TRY_PCAP(Read(&checksum, true));
marker->payload_length = length - kUdpHeaderLength;
} else {
DEBUG_LOG("Unknown transport (expected UDP or TCP)");
return kResultSkip;
}
return kResultSuccess;
}
int Read(uint32_t* out, bool expect_network_order) {
uint32_t tmp = 0;
if (fread(&tmp, 1, sizeof(uint32_t), file_) != sizeof(uint32_t)) {
return kResultFail;
}
if ((!expect_network_order && swap_pcap_byte_order_) ||
(expect_network_order && swap_network_byte_order_)) {
tmp = ((tmp >> 24) & 0x000000ff) | (tmp << 24) |
((tmp >> 8) & 0x0000ff00) | ((tmp << 8) & 0x00ff0000);
}
*out = tmp;
return kResultSuccess;
}
int Read(uint16_t* out, bool expect_network_order) {
uint16_t tmp = 0;
if (fread(&tmp, 1, sizeof(uint16_t), file_) != sizeof(uint16_t)) {
return kResultFail;
}
if ((!expect_network_order && swap_pcap_byte_order_) ||
(expect_network_order && swap_network_byte_order_)) {
tmp = ((tmp >> 8) & 0x00ff) | (tmp << 8);
}
*out = tmp;
return kResultSuccess;
}
int Read(uint8_t* out, uint32_t count) {
if (fread(out, 1, count, file_) != count) {
return kResultFail;
}
return kResultSuccess;
}
int Read(int32_t* out, bool expect_network_order) {
int32_t tmp = 0;
if (fread(&tmp, 1, sizeof(uint32_t), file_) != sizeof(uint32_t)) {
return kResultFail;
}
if ((!expect_network_order && swap_pcap_byte_order_) ||
(expect_network_order && swap_network_byte_order_)) {
tmp = ((tmp >> 24) & 0x000000ff) | (tmp << 24) |
((tmp >> 8) & 0x0000ff00) | ((tmp << 8) & 0x00ff0000);
}
*out = tmp;
return kResultSuccess;
}
int Skip(uint32_t length) {
if (fseek(file_, length, SEEK_CUR) != 0) {
return kResultFail;
}
return kResultSuccess;
}
FILE* file_;
bool swap_pcap_byte_order_;
const bool swap_network_byte_order_;
uint8_t read_buffer_[kMaxReadBufferSize];
SsrcMap packets_by_ssrc_;
std::vector<RtpPacketMarker> packets_;
PacketIterator next_packet_it_;
RTC_DISALLOW_COPY_AND_ASSIGN(PcapReader);
};
RtpFileReader* RtpFileReader::Create(FileFormat format,
const std::string& filename,
const std::set<uint32_t>& ssrc_filter) {
RtpFileReaderImpl* reader = NULL;
switch (format) {
case kPcap:
reader = new PcapReader();
break;
case kRtpDump:
reader = new RtpDumpReader();
break;
case kLengthPacketInterleaved:
reader = new InterleavedRtpFileReader();
break;
}
if (!reader->Init(filename, ssrc_filter)) {
delete reader;
return NULL;
}
return reader;
}
RtpFileReader* RtpFileReader::Create(FileFormat format,
const std::string& filename) {
return RtpFileReader::Create(format, filename, std::set<uint32_t>());
}
} // namespace test
} // namespace webrtc