blob: 86af60f316fa867e6f2276c8aac7311fd867fa44 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/suppression_gain.h"
#include "webrtc/typedefs.h"
#if defined(WEBRTC_ARCH_X86_FAMILY)
#include <emmintrin.h>
#endif
#include <math.h>
#include <algorithm>
#include <functional>
#include <numeric>
#include "webrtc/base/checks.h"
#include "webrtc/modules/audio_processing/aec3/vector_math.h"
namespace webrtc {
namespace {
void GainPostProcessing(std::array<float, kFftLengthBy2Plus1>* gain_squared) {
// Limit the low frequency gains to avoid the impact of the high-pass filter
// on the lower-frequency gain influencing the overall achieved gain.
(*gain_squared)[1] = std::min((*gain_squared)[1], (*gain_squared)[2]);
(*gain_squared)[0] = (*gain_squared)[1];
// Limit the high frequency gains to avoid the impact of the anti-aliasing
// filter on the upper-frequency gains influencing the overall achieved
// gain. TODO(peah): Update this when new anti-aliasing filters are
// implemented.
constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000;
std::for_each(gain_squared->begin() + kAntiAliasingImpactLimit,
gain_squared->end() - 1,
[gain_squared, kAntiAliasingImpactLimit](float& a) {
a = std::min(a, (*gain_squared)[kAntiAliasingImpactLimit]);
});
(*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1];
}
constexpr int kNumIterations = 2;
constexpr float kEchoMaskingMargin = 1.f / 20.f;
constexpr float kBandMaskingFactor = 1.f / 10.f;
constexpr float kTimeMaskingFactor = 1.f / 10.f;
// TODO(peah): Add further optimizations, in particular for the divisions.
void ComputeGains(
Aec3Optimization optimization,
const std::array<float, kFftLengthBy2Plus1>& nearend_power,
const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
float strong_nearend_margin,
std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
std::array<float, kFftLengthBy2Minus1>* previous_masker,
std::array<float, kFftLengthBy2Plus1>* gain) {
std::array<float, kFftLengthBy2Minus1> masker;
std::array<float, kFftLengthBy2Minus1> same_band_masker;
std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
std::array<bool, kFftLengthBy2Minus1> strong_nearend;
std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
aec3::VectorMath math(optimization);
// Precompute 1/residual_echo_power.
std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
one_by_residual_echo_power.begin(),
[](float a) { return a > 0.f ? 1.f / a : -1.f; });
// Precompute indicators for bands with strong nearend.
std::transform(
residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
nearend_power.begin() + 1, strong_nearend.begin(),
[&](float a, float b) { return a <= strong_nearend_margin * b; });
// Precompute masker for the same band.
std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
previous_masker->begin(), same_band_masker.begin(),
[&](float a, float b) { return a + kTimeMaskingFactor * b; });
for (int k = 0; k < kNumIterations; ++k) {
if (k == 0) {
// Add masker from the same band.
std::copy(same_band_masker.begin(), same_band_masker.end(),
masker.begin());
} else {
// Add masker for neighboring bands.
math.Multiply(nearend_power, *gain_squared, neighboring_bands_masker);
math.Accumulate(comfort_noise_power, neighboring_bands_masker);
std::transform(
neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
neighboring_bands_masker.begin() + 2, masker.begin(),
[&](float a, float b) { return kBandMaskingFactor * (a + b); });
// Add masker from the same band.
math.Accumulate(same_band_masker, masker);
}
// Compute new gain as:
// G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
// kTimeMaskingFactor
// * kEchoMaskingMargin / residual_echo_power(t,f).
// or
// G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
// nearend_power(t-1)) * kTimeMaskingFactor +
// (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
// (G2(t,f-1)*nearend_power(t, f-1) +
// G2(t,f+1)*nearend_power(t, f+1)) *
// kTimeMaskingFactor) * kBandMaskingFactor)
// * kEchoMaskingMargin / residual_echo_power(t,f).
std::transform(
masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
gain_squared->begin() + 1, [&](float a, float b) {
return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
});
// Limit gain for bands with strong nearend.
std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
strong_nearend.begin(), gain_squared->begin() + 1,
[](float a, bool b) { return b ? 1.f : a; });
// Limit the allowed gain update over time.
std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
previous_gain_squared->begin(), gain_squared->begin() + 1,
[](float a, float b) {
return b < 0.001f ? std::min(a, 0.001f)
: std::min(a, b * 2.f);
});
// Process the gains to avoid artefacts caused by gain realization in the
// filterbank and impact of external pre-processing of the signal.
GainPostProcessing(gain_squared);
}
std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
previous_gain_squared->begin());
math.Multiply(
rtc::ArrayView<const float>(&(*gain_squared)[1], previous_masker->size()),
rtc::ArrayView<const float>(&nearend_power[1], previous_masker->size()),
*previous_masker);
math.Accumulate(rtc::ArrayView<const float>(&comfort_noise_power[1],
previous_masker->size()),
*previous_masker);
math.Sqrt(*gain);
}
} // namespace
// Computes an upper bound on the gain to apply for high frequencies.
float HighFrequencyGainBound(bool saturated_echo,
const std::vector<std::vector<float>>& render) {
if (render.size() == 1) {
return 1.f;
}
// Always attenuate the upper bands when there is saturated echo.
if (saturated_echo) {
return 0.001f;
}
// Compute the upper and lower band energies.
float low_band_energy =
std::accumulate(render[0].begin(), render[0].end(), 0.f,
[](float a, float b) -> float { return a + b * b; });
float high_band_energies = 0.f;
for (size_t k = 1; k < render.size(); ++k) {
high_band_energies = std::max(
high_band_energies,
std::accumulate(render[k].begin(), render[k].end(), 0.f,
[](float a, float b) -> float { return a + b * b; }));
}
// If there is more power in the lower frequencies than the upper frequencies,
// or if the power in upper frequencies is low, do not bound the gain in the
// upper bands.
if (high_band_energies < low_band_energy ||
high_band_energies < kSubBlockSize * 10.f * 10.f) {
return 1.f;
}
// In all other cases, bound the gain for upper frequencies.
RTC_DCHECK_LE(low_band_energy, high_band_energies);
return 0.01f * sqrtf(low_band_energy / high_band_energies);
}
SuppressionGain::SuppressionGain(Aec3Optimization optimization)
: optimization_(optimization) {
previous_gain_squared_.fill(1.f);
previous_masker_.fill(0.f);
}
void SuppressionGain::GetGain(
const std::array<float, kFftLengthBy2Plus1>& nearend_power,
const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
bool saturated_echo,
const std::vector<std::vector<float>>& render,
size_t num_capture_bands,
bool force_zero_gain,
float* high_bands_gain,
std::array<float, kFftLengthBy2Plus1>* low_band_gain) {
RTC_DCHECK(high_bands_gain);
RTC_DCHECK(low_band_gain);
if (force_zero_gain) {
previous_gain_squared_.fill(0.f);
std::copy(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
previous_masker_.begin());
low_band_gain->fill(0.f);
*high_bands_gain = 0.f;
return;
}
// Choose margin to use.
const float margin = saturated_echo ? 0.001f : 0.01f;
ComputeGains(optimization_, nearend_power, residual_echo_power,
comfort_noise_power, margin, &previous_gain_squared_,
&previous_masker_, low_band_gain);
if (num_capture_bands > 1) {
// Compute the gain for upper frequencies.
const float min_high_band_gain =
HighFrequencyGainBound(saturated_echo, render);
*high_bands_gain =
*std::min_element(low_band_gain->begin() + 32, low_band_gain->end());
*high_bands_gain = std::min(*high_bands_gain, min_high_band_gain);
} else {
*high_bands_gain = 1.f;
}
}
} // namespace webrtc