blob: 16f529feea8d30306f46967e8782cee10d4a5146 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/rtp_frame_reference_finder.h"
#include <algorithm>
#include <limits>
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/modules/video_coding/frame_object.h"
#include "webrtc/modules/video_coding/packet_buffer.h"
namespace webrtc {
namespace video_coding {
RtpFrameReferenceFinder::RtpFrameReferenceFinder(
OnCompleteFrameCallback* frame_callback)
: last_picture_id_(-1),
last_unwrap_(-1),
current_ss_idx_(0),
cleared_to_seq_num_(-1),
frame_callback_(frame_callback) {}
void RtpFrameReferenceFinder::ManageFrame(
std::unique_ptr<RtpFrameObject> frame) {
rtc::CritScope lock(&crit_);
// If we have cleared past this frame, drop it.
if (cleared_to_seq_num_ != -1 &&
AheadOf<uint16_t>(cleared_to_seq_num_, frame->first_seq_num())) {
return;
}
FrameDecision decision = ManageFrameInternal(frame.get());
switch (decision) {
case kStash:
if (stashed_frames_.size() > kMaxStashedFrames)
stashed_frames_.pop_back();
stashed_frames_.push_front(std::move(frame));
break;
case kHandOff:
frame_callback_->OnCompleteFrame(std::move(frame));
RetryStashedFrames();
break;
case kDrop:
break;
}
}
void RtpFrameReferenceFinder::RetryStashedFrames() {
bool complete_frame = false;
do {
complete_frame = false;
for (auto frame_it = stashed_frames_.begin();
frame_it != stashed_frames_.end();) {
FrameDecision decision = ManageFrameInternal(frame_it->get());
switch (decision) {
case kStash:
++frame_it;
break;
case kHandOff:
complete_frame = true;
frame_callback_->OnCompleteFrame(std::move(*frame_it));
FALLTHROUGH();
case kDrop:
frame_it = stashed_frames_.erase(frame_it);
}
}
} while (complete_frame);
}
RtpFrameReferenceFinder::FrameDecision
RtpFrameReferenceFinder::ManageFrameInternal(RtpFrameObject* frame) {
switch (frame->codec_type()) {
case kVideoCodecFlexfec:
case kVideoCodecULPFEC:
case kVideoCodecRED:
RTC_NOTREACHED();
break;
case kVideoCodecVP8:
return ManageFrameVp8(frame);
case kVideoCodecVP9:
return ManageFrameVp9(frame);
// Since the EndToEndTests use kVicdeoCodecUnknow we treat it the same as
// kVideoCodecGeneric.
// TODO(philipel): Take a look at the EndToEndTests and see if maybe they
// should be changed to use kVideoCodecGeneric instead.
case kVideoCodecUnknown:
case kVideoCodecH264:
case kVideoCodecI420:
case kVideoCodecGeneric:
return ManageFrameGeneric(frame, kNoPictureId);
}
// If not all code paths return a value it makes the win compiler sad.
RTC_NOTREACHED();
return kDrop;
}
void RtpFrameReferenceFinder::PaddingReceived(uint16_t seq_num) {
rtc::CritScope lock(&crit_);
auto clean_padding_to =
stashed_padding_.lower_bound(seq_num - kMaxPaddingAge);
stashed_padding_.erase(stashed_padding_.begin(), clean_padding_to);
stashed_padding_.insert(seq_num);
UpdateLastPictureIdWithPadding(seq_num);
RetryStashedFrames();
}
void RtpFrameReferenceFinder::ClearTo(uint16_t seq_num) {
rtc::CritScope lock(&crit_);
cleared_to_seq_num_ = seq_num;
auto it = stashed_frames_.begin();
while (it != stashed_frames_.end()) {
if (AheadOf<uint16_t>(cleared_to_seq_num_, (*it)->first_seq_num())) {
it = stashed_frames_.erase(it);
} else {
++it;
}
}
}
void RtpFrameReferenceFinder::UpdateLastPictureIdWithPadding(uint16_t seq_num) {
auto gop_seq_num_it = last_seq_num_gop_.upper_bound(seq_num);
// If this padding packet "belongs" to a group of pictures that we don't track
// anymore, do nothing.
if (gop_seq_num_it == last_seq_num_gop_.begin())
return;
--gop_seq_num_it;
// Calculate the next contiuous sequence number and search for it in
// the padding packets we have stashed.
uint16_t next_seq_num_with_padding = gop_seq_num_it->second.second + 1;
auto padding_seq_num_it =
stashed_padding_.lower_bound(next_seq_num_with_padding);
// While there still are padding packets and those padding packets are
// continuous, then advance the "last-picture-id-with-padding" and remove
// the stashed padding packet.
while (padding_seq_num_it != stashed_padding_.end() &&
*padding_seq_num_it == next_seq_num_with_padding) {
gop_seq_num_it->second.second = next_seq_num_with_padding;
++next_seq_num_with_padding;
padding_seq_num_it = stashed_padding_.erase(padding_seq_num_it);
}
// In the case where the stream has been continuous without any new keyframes
// for a while there is a risk that new frames will appear to be older than
// the keyframe they belong to due to wrapping sequence number. In order
// to prevent this we advance the picture id of the keyframe every so often.
if (ForwardDiff(gop_seq_num_it->first, seq_num) > 10000) {
RTC_DCHECK_EQ(1ul, last_seq_num_gop_.size());
last_seq_num_gop_[seq_num] = gop_seq_num_it->second;
last_seq_num_gop_.erase(gop_seq_num_it);
}
}
RtpFrameReferenceFinder::FrameDecision
RtpFrameReferenceFinder::ManageFrameGeneric(RtpFrameObject* frame,
int picture_id) {
// If |picture_id| is specified then we use that to set the frame references,
// otherwise we use sequence number.
if (picture_id != kNoPictureId) {
if (last_unwrap_ == -1)
last_unwrap_ = picture_id;
frame->picture_id = UnwrapPictureId(picture_id % kPicIdLength);
frame->num_references = frame->frame_type() == kVideoFrameKey ? 0 : 1;
frame->references[0] = frame->picture_id - 1;
return kHandOff;
}
if (frame->frame_type() == kVideoFrameKey) {
last_seq_num_gop_.insert(std::make_pair(
frame->last_seq_num(),
std::make_pair(frame->last_seq_num(), frame->last_seq_num())));
}
// We have received a frame but not yet a keyframe, stash this frame.
if (last_seq_num_gop_.empty())
return kStash;
// Clean up info for old keyframes but make sure to keep info
// for the last keyframe.
auto clean_to = last_seq_num_gop_.lower_bound(frame->last_seq_num() - 100);
for (auto it = last_seq_num_gop_.begin();
it != clean_to && last_seq_num_gop_.size() > 1;) {
it = last_seq_num_gop_.erase(it);
}
// Find the last sequence number of the last frame for the keyframe
// that this frame indirectly references.
auto seq_num_it = last_seq_num_gop_.upper_bound(frame->last_seq_num());
if (seq_num_it == last_seq_num_gop_.begin()) {
LOG(LS_WARNING) << "Generic frame with packet range ["
<< frame->first_seq_num() << ", " << frame->last_seq_num()
<< "] has no GoP, dropping frame.";
return kDrop;
}
seq_num_it--;
// Make sure the packet sequence numbers are continuous, otherwise stash
// this frame.
uint16_t last_picture_id_gop = seq_num_it->second.first;
uint16_t last_picture_id_with_padding_gop = seq_num_it->second.second;
if (frame->frame_type() == kVideoFrameDelta) {
uint16_t prev_seq_num = frame->first_seq_num() - 1;
if (prev_seq_num != last_picture_id_with_padding_gop)
return kStash;
}
RTC_DCHECK(AheadOrAt(frame->last_seq_num(), seq_num_it->first));
// Since keyframes can cause reordering we can't simply assign the
// picture id according to some incrementing counter.
frame->picture_id = frame->last_seq_num();
frame->num_references = frame->frame_type() == kVideoFrameDelta;
frame->references[0] = last_picture_id_gop;
if (AheadOf(frame->picture_id, last_picture_id_gop)) {
seq_num_it->second.first = frame->picture_id;
seq_num_it->second.second = frame->picture_id;
}
last_picture_id_ = frame->picture_id;
UpdateLastPictureIdWithPadding(frame->picture_id);
return kHandOff;
}
RtpFrameReferenceFinder::FrameDecision RtpFrameReferenceFinder::ManageFrameVp8(
RtpFrameObject* frame) {
rtc::Optional<RTPVideoTypeHeader> rtp_codec_header = frame->GetCodecHeader();
if (!rtp_codec_header)
return kDrop;
const RTPVideoHeaderVP8& codec_header = rtp_codec_header->VP8;
if (codec_header.pictureId == kNoPictureId ||
codec_header.temporalIdx == kNoTemporalIdx ||
codec_header.tl0PicIdx == kNoTl0PicIdx) {
return ManageFrameGeneric(std::move(frame), codec_header.pictureId);
}
frame->picture_id = codec_header.pictureId % kPicIdLength;
if (last_unwrap_ == -1)
last_unwrap_ = codec_header.pictureId;
if (last_picture_id_ == -1)
last_picture_id_ = frame->picture_id;
// Find if there has been a gap in fully received frames and save the picture
// id of those frames in |not_yet_received_frames_|.
if (AheadOf<uint16_t, kPicIdLength>(frame->picture_id, last_picture_id_)) {
last_picture_id_ = Add<kPicIdLength>(last_picture_id_, 1);
while (last_picture_id_ != frame->picture_id) {
not_yet_received_frames_.insert(last_picture_id_);
last_picture_id_ = Add<kPicIdLength>(last_picture_id_, 1);
}
}
// Clean up info for base layers that are too old.
uint8_t old_tl0_pic_idx = codec_header.tl0PicIdx - kMaxLayerInfo;
auto clean_layer_info_to = layer_info_.lower_bound(old_tl0_pic_idx);
layer_info_.erase(layer_info_.begin(), clean_layer_info_to);
// Clean up info about not yet received frames that are too old.
uint16_t old_picture_id =
Subtract<kPicIdLength>(frame->picture_id, kMaxNotYetReceivedFrames);
auto clean_frames_to = not_yet_received_frames_.lower_bound(old_picture_id);
not_yet_received_frames_.erase(not_yet_received_frames_.begin(),
clean_frames_to);
if (frame->frame_type() == kVideoFrameKey) {
frame->num_references = 0;
layer_info_[codec_header.tl0PicIdx].fill(-1);
UpdateLayerInfoVp8(frame);
return kHandOff;
}
auto layer_info_it = layer_info_.find(codec_header.temporalIdx == 0
? codec_header.tl0PicIdx - 1
: codec_header.tl0PicIdx);
// If we don't have the base layer frame yet, stash this frame.
if (layer_info_it == layer_info_.end())
return kStash;
// A non keyframe base layer frame has been received, copy the layer info
// from the previous base layer frame and set a reference to the previous
// base layer frame.
if (codec_header.temporalIdx == 0) {
layer_info_it =
layer_info_
.insert(make_pair(codec_header.tl0PicIdx, layer_info_it->second))
.first;
frame->num_references = 1;
frame->references[0] = layer_info_it->second[0];
UpdateLayerInfoVp8(frame);
return kHandOff;
}
// Layer sync frame, this frame only references its base layer frame.
if (codec_header.layerSync) {
frame->num_references = 1;
frame->references[0] = layer_info_it->second[0];
UpdateLayerInfoVp8(frame);
return kHandOff;
}
// Find all references for this frame.
frame->num_references = 0;
for (uint8_t layer = 0; layer <= codec_header.temporalIdx; ++layer) {
// If we have not yet received a previous frame on this temporal layer,
// stash this frame.
if (layer_info_it->second[layer] == -1)
return kStash;
// If the last frame on this layer is ahead of this frame it means that
// a layer sync frame has been received after this frame for the same
// base layer frame, drop this frame.
if (AheadOf<uint16_t, kPicIdLength>(layer_info_it->second[layer],
frame->picture_id)) {
return kDrop;
}
// If we have not yet received a frame between this frame and the referenced
// frame then we have to wait for that frame to be completed first.
auto not_received_frame_it =
not_yet_received_frames_.upper_bound(layer_info_it->second[layer]);
if (not_received_frame_it != not_yet_received_frames_.end() &&
AheadOf<uint16_t, kPicIdLength>(frame->picture_id,
*not_received_frame_it)) {
return kStash;
}
if (!(AheadOf<uint16_t, kPicIdLength>(frame->picture_id,
layer_info_it->second[layer]))) {
LOG(LS_WARNING) << "Frame with picture id " << frame->picture_id
<< " and packet range [" << frame->first_seq_num() << ", "
<< frame->last_seq_num() << "] already received, "
<< " dropping frame.";
return kDrop;
}
++frame->num_references;
frame->references[layer] = layer_info_it->second[layer];
}
UpdateLayerInfoVp8(frame);
return kHandOff;
}
void RtpFrameReferenceFinder::UpdateLayerInfoVp8(RtpFrameObject* frame) {
rtc::Optional<RTPVideoTypeHeader> rtp_codec_header = frame->GetCodecHeader();
RTC_DCHECK(rtp_codec_header);
const RTPVideoHeaderVP8& codec_header = rtp_codec_header->VP8;
uint8_t tl0_pic_idx = codec_header.tl0PicIdx;
uint8_t temporal_index = codec_header.temporalIdx;
auto layer_info_it = layer_info_.find(tl0_pic_idx);
// Update this layer info and newer.
while (layer_info_it != layer_info_.end()) {
if (layer_info_it->second[temporal_index] != -1 &&
AheadOf<uint16_t, kPicIdLength>(layer_info_it->second[temporal_index],
frame->picture_id)) {
// The frame was not newer, then no subsequent layer info have to be
// update.
break;
}
layer_info_it->second[codec_header.temporalIdx] = frame->picture_id;
++tl0_pic_idx;
layer_info_it = layer_info_.find(tl0_pic_idx);
}
not_yet_received_frames_.erase(frame->picture_id);
UnwrapPictureIds(frame);
}
RtpFrameReferenceFinder::FrameDecision RtpFrameReferenceFinder::ManageFrameVp9(
RtpFrameObject* frame) {
rtc::Optional<RTPVideoTypeHeader> rtp_codec_header = frame->GetCodecHeader();
RTC_DCHECK(rtp_codec_header);
const RTPVideoHeaderVP9& codec_header = rtp_codec_header->VP9;
bool old_frame = Vp9PidTl0Fix(*frame, &rtp_codec_header->VP9.picture_id,
&rtp_codec_header->VP9.tl0_pic_idx);
if (old_frame)
return kDrop;
if (codec_header.picture_id == kNoPictureId ||
codec_header.temporal_idx == kNoTemporalIdx) {
return ManageFrameGeneric(std::move(frame), codec_header.picture_id);
}
frame->spatial_layer = codec_header.spatial_idx;
frame->inter_layer_predicted = codec_header.inter_layer_predicted;
frame->picture_id = codec_header.picture_id % kPicIdLength;
if (last_unwrap_ == -1)
last_unwrap_ = codec_header.picture_id;
if (last_picture_id_ == -1)
last_picture_id_ = frame->picture_id;
if (codec_header.flexible_mode) {
frame->num_references = codec_header.num_ref_pics;
for (size_t i = 0; i < frame->num_references; ++i) {
frame->references[i] =
Subtract<1 << 16>(frame->picture_id, codec_header.pid_diff[i]);
}
UnwrapPictureIds(frame);
return kHandOff;
}
if (codec_header.ss_data_available) {
// Scalability structures can only be sent with tl0 frames.
if (codec_header.temporal_idx != 0) {
LOG(LS_WARNING) << "Received scalability structure on a non base layer"
" frame. Scalability structure ignored.";
} else {
current_ss_idx_ = Add<kMaxGofSaved>(current_ss_idx_, 1);
scalability_structures_[current_ss_idx_] = codec_header.gof;
scalability_structures_[current_ss_idx_].pid_start = frame->picture_id;
GofInfo info(&scalability_structures_[current_ss_idx_],
frame->picture_id);
gof_info_.insert(std::make_pair(codec_header.tl0_pic_idx, info));
}
}
// Clean up info for base layers that are too old.
uint8_t old_tl0_pic_idx = codec_header.tl0_pic_idx - kMaxGofSaved;
auto clean_gof_info_to = gof_info_.lower_bound(old_tl0_pic_idx);
gof_info_.erase(gof_info_.begin(), clean_gof_info_to);
if (frame->frame_type() == kVideoFrameKey) {
// When using GOF all keyframes must include the scalability structure.
if (!codec_header.ss_data_available)
LOG(LS_WARNING) << "Received keyframe without scalability structure";
frame->num_references = 0;
GofInfo info = gof_info_.find(codec_header.tl0_pic_idx)->second;
FrameReceivedVp9(frame->picture_id, &info);
UnwrapPictureIds(frame);
return kHandOff;
}
auto gof_info_it = gof_info_.find(
(codec_header.temporal_idx == 0 && !codec_header.ss_data_available)
? codec_header.tl0_pic_idx - 1
: codec_header.tl0_pic_idx);
// Gof info for this frame is not available yet, stash this frame.
if (gof_info_it == gof_info_.end())
return kStash;
GofInfo* info = &gof_info_it->second;
FrameReceivedVp9(frame->picture_id, info);
// Make sure we don't miss any frame that could potentially have the
// up switch flag set.
if (MissingRequiredFrameVp9(frame->picture_id, *info))
return kStash;
if (codec_header.temporal_up_switch) {
auto pid_tidx =
std::make_pair(frame->picture_id, codec_header.temporal_idx);
up_switch_.insert(pid_tidx);
}
// If this is a base layer frame that contains a scalability structure
// then gof info has already been inserted earlier, so we only want to
// insert if we haven't done so already.
if (codec_header.temporal_idx == 0 && !codec_header.ss_data_available) {
GofInfo new_info(info->gof, frame->picture_id);
gof_info_.insert(std::make_pair(codec_header.tl0_pic_idx, new_info));
}
// Clean out old info about up switch frames.
uint16_t old_picture_id = Subtract<kPicIdLength>(frame->picture_id, 50);
auto up_switch_erase_to = up_switch_.lower_bound(old_picture_id);
up_switch_.erase(up_switch_.begin(), up_switch_erase_to);
size_t diff = ForwardDiff<uint16_t, kPicIdLength>(info->gof->pid_start,
frame->picture_id);
size_t gof_idx = diff % info->gof->num_frames_in_gof;
// Populate references according to the scalability structure.
frame->num_references = info->gof->num_ref_pics[gof_idx];
for (size_t i = 0; i < frame->num_references; ++i) {
frame->references[i] = Subtract<kPicIdLength>(
frame->picture_id, info->gof->pid_diff[gof_idx][i]);
// If this is a reference to a frame earlier than the last up switch point,
// then ignore this reference.
if (UpSwitchInIntervalVp9(frame->picture_id, codec_header.temporal_idx,
frame->references[i])) {
--frame->num_references;
}
}
UnwrapPictureIds(frame);
return kHandOff;
}
bool RtpFrameReferenceFinder::MissingRequiredFrameVp9(uint16_t picture_id,
const GofInfo& info) {
size_t diff =
ForwardDiff<uint16_t, kPicIdLength>(info.gof->pid_start, picture_id);
size_t gof_idx = diff % info.gof->num_frames_in_gof;
size_t temporal_idx = info.gof->temporal_idx[gof_idx];
// For every reference this frame has, check if there is a frame missing in
// the interval (|ref_pid|, |picture_id|) in any of the lower temporal
// layers. If so, we are missing a required frame.
uint8_t num_references = info.gof->num_ref_pics[gof_idx];
for (size_t i = 0; i < num_references; ++i) {
uint16_t ref_pid =
Subtract<kPicIdLength>(picture_id, info.gof->pid_diff[gof_idx][i]);
for (size_t l = 0; l < temporal_idx; ++l) {
auto missing_frame_it = missing_frames_for_layer_[l].lower_bound(ref_pid);
if (missing_frame_it != missing_frames_for_layer_[l].end() &&
AheadOf<uint16_t, kPicIdLength>(picture_id, *missing_frame_it)) {
return true;
}
}
}
return false;
}
void RtpFrameReferenceFinder::FrameReceivedVp9(uint16_t picture_id,
GofInfo* info) {
int last_picture_id = info->last_picture_id;
// If there is a gap, find which temporal layer the missing frames
// belong to and add the frame as missing for that temporal layer.
// Otherwise, remove this frame from the set of missing frames.
if (AheadOf<uint16_t, kPicIdLength>(picture_id, last_picture_id)) {
size_t diff = ForwardDiff<uint16_t, kPicIdLength>(info->gof->pid_start,
last_picture_id);
size_t gof_idx = diff % info->gof->num_frames_in_gof;
last_picture_id = Add<kPicIdLength>(last_picture_id, 1);
while (last_picture_id != picture_id) {
++gof_idx;
RTC_DCHECK_NE(0ul, gof_idx % info->gof->num_frames_in_gof);
size_t temporal_idx = info->gof->temporal_idx[gof_idx];
missing_frames_for_layer_[temporal_idx].insert(last_picture_id);
last_picture_id = Add<kPicIdLength>(last_picture_id, 1);
}
info->last_picture_id = last_picture_id;
} else {
size_t diff =
ForwardDiff<uint16_t, kPicIdLength>(info->gof->pid_start, picture_id);
size_t gof_idx = diff % info->gof->num_frames_in_gof;
size_t temporal_idx = info->gof->temporal_idx[gof_idx];
missing_frames_for_layer_[temporal_idx].erase(picture_id);
}
}
bool RtpFrameReferenceFinder::UpSwitchInIntervalVp9(uint16_t picture_id,
uint8_t temporal_idx,
uint16_t pid_ref) {
for (auto up_switch_it = up_switch_.upper_bound(pid_ref);
up_switch_it != up_switch_.end() &&
AheadOf<uint16_t, kPicIdLength>(picture_id, up_switch_it->first);
++up_switch_it) {
if (up_switch_it->second < temporal_idx)
return true;
}
return false;
}
void RtpFrameReferenceFinder::UnwrapPictureIds(RtpFrameObject* frame) {
for (size_t i = 0; i < frame->num_references; ++i)
frame->references[i] = UnwrapPictureId(frame->references[i]);
frame->picture_id = UnwrapPictureId(frame->picture_id);
}
uint16_t RtpFrameReferenceFinder::UnwrapPictureId(uint16_t picture_id) {
RTC_DCHECK_NE(-1, last_unwrap_);
uint16_t unwrap_truncated = last_unwrap_ % kPicIdLength;
uint16_t diff = MinDiff<uint16_t, kPicIdLength>(unwrap_truncated, picture_id);
if (AheadOf<uint16_t, kPicIdLength>(picture_id, unwrap_truncated))
last_unwrap_ = Add<1 << 16>(last_unwrap_, diff);
else
last_unwrap_ = Subtract<1 << 16>(last_unwrap_, diff);
return last_unwrap_;
}
bool RtpFrameReferenceFinder::Vp9PidTl0Fix(const RtpFrameObject& frame,
int16_t* picture_id,
int16_t* tl0_pic_idx) {
const int kTl0PicIdLength = 256;
const uint8_t kMaxPidDiff = 128;
// We are currently receiving VP9 without PID, nothing to fix.
if (*picture_id == kNoPictureId)
return false;
// If |vp9_fix_jump_timestamp_| != -1 then a jump has occurred recently.
if (vp9_fix_jump_timestamp_ != -1) {
// If this frame has a timestamp older than |vp9_fix_jump_timestamp_| then
// this frame is old (more previous than the frame where we detected the
// jump) and should be dropped.
if (AheadOf<uint32_t>(vp9_fix_jump_timestamp_, frame.timestamp))
return true;
// After 60 seconds, reset |vp9_fix_jump_timestamp_| in order to not
// discard old frames when the timestamp wraps.
int diff_ms =
ForwardDiff<uint32_t>(vp9_fix_jump_timestamp_, frame.timestamp) / 90;
if (diff_ms > 60 * 1000)
vp9_fix_jump_timestamp_ = -1;
}
// Update |vp9_fix_last_timestamp_| with the most recent timestamp.
if (vp9_fix_last_timestamp_ == -1)
vp9_fix_last_timestamp_ = frame.timestamp;
if (AheadOf<uint32_t>(frame.timestamp, vp9_fix_last_timestamp_))
vp9_fix_last_timestamp_ = frame.timestamp;
uint16_t fixed_pid = Add<kPicIdLength>(*picture_id, vp9_fix_pid_offset_);
if (vp9_fix_last_picture_id_ == -1)
vp9_fix_last_picture_id_ = *picture_id;
int16_t fixed_tl0 = kNoTl0PicIdx;
if (*tl0_pic_idx != kNoTl0PicIdx) {
fixed_tl0 = Add<kTl0PicIdLength>(*tl0_pic_idx, vp9_fix_tl0_pic_idx_offset_);
// Update |vp9_fix_last_tl0_pic_idx_| with the most recent tl0 pic index.
if (vp9_fix_last_tl0_pic_idx_ == -1)
vp9_fix_last_tl0_pic_idx_ = *tl0_pic_idx;
if (AheadOf<uint8_t>(fixed_tl0, vp9_fix_last_tl0_pic_idx_))
vp9_fix_last_tl0_pic_idx_ = fixed_tl0;
}
bool has_jumped = DetectVp9PicIdJump(fixed_pid, fixed_tl0, frame.timestamp);
if (!has_jumped)
has_jumped = DetectVp9Tl0PicIdxJump(fixed_tl0, frame.timestamp);
if (has_jumped) {
// First we calculate the offset to get to the previous picture id, and then
// we add kMaxPid to avoid accidently referencing any previous
// frames that was inserted into the FrameBuffer.
vp9_fix_pid_offset_ = ForwardDiff<uint16_t, kPicIdLength>(
*picture_id, vp9_fix_last_picture_id_);
vp9_fix_pid_offset_ += kMaxPidDiff;
fixed_pid = Add<kPicIdLength>(*picture_id, vp9_fix_pid_offset_);
vp9_fix_last_picture_id_ = fixed_pid;
vp9_fix_jump_timestamp_ = frame.timestamp;
gof_info_.clear();
if (fixed_tl0 != kNoTl0PicIdx) {
vp9_fix_tl0_pic_idx_offset_ =
ForwardDiff<uint8_t>(*tl0_pic_idx, vp9_fix_last_tl0_pic_idx_);
vp9_fix_tl0_pic_idx_offset_ += kMaxGofSaved;
fixed_tl0 =
Add<kTl0PicIdLength>(*tl0_pic_idx, vp9_fix_tl0_pic_idx_offset_);
vp9_fix_last_tl0_pic_idx_ = fixed_tl0;
}
}
// Update |vp9_fix_last_picture_id_| with the most recent picture id.
if (AheadOf<uint16_t, kPicIdLength>(fixed_pid, vp9_fix_last_picture_id_))
vp9_fix_last_picture_id_ = fixed_pid;
*picture_id = fixed_pid;
*tl0_pic_idx = fixed_tl0;
return false;
}
bool RtpFrameReferenceFinder::DetectVp9PicIdJump(int fixed_pid,
int fixed_tl0,
uint32_t timestamp) const {
// Test if there has been a jump backwards in the picture id.
if (AheadOrAt<uint32_t>(timestamp, vp9_fix_last_timestamp_) &&
AheadOf<uint16_t, kPicIdLength>(vp9_fix_last_picture_id_, fixed_pid)) {
return true;
}
// Test if we have jumped forward too much. The reason we have to do this
// is because the FrameBuffer holds history of old frames and inserting
// frames with a much advanced picture id can result in the frame buffer
// holding more than half of the interval of picture ids.
if (AheadOrAt<uint32_t>(timestamp, vp9_fix_last_timestamp_) &&
ForwardDiff<uint16_t, kPicIdLength>(vp9_fix_last_picture_id_, fixed_pid) >
128) {
return true;
}
// Special case where the picture id jump forward but not by much and the
// tl0 jumps to the id of an already saved gof for that id. In order to
// detect this we check if the picture id span over the length of the GOF.
if (fixed_tl0 != kNoTl0PicIdx) {
auto info_it = gof_info_.find(fixed_tl0);
if (info_it != gof_info_.end()) {
int last_pid_gof_idx_0 =
Subtract<kPicIdLength>(info_it->second.last_picture_id,
info_it->second.last_picture_id %
info_it->second.gof->num_frames_in_gof);
int pif_gof_end = Add<kPicIdLength>(
last_pid_gof_idx_0, info_it->second.gof->num_frames_in_gof);
if (AheadOf<uint16_t, kPicIdLength>(fixed_pid, pif_gof_end))
return true;
}
}
return false;
}
bool RtpFrameReferenceFinder::DetectVp9Tl0PicIdxJump(int fixed_tl0,
uint32_t timestamp) const {
if (fixed_tl0 != kNoTl0PicIdx) {
// Test if there has been a jump backwards in tl0 pic index.
if (AheadOrAt<uint32_t>(timestamp, vp9_fix_last_timestamp_) &&
AheadOf<uint8_t>(vp9_fix_last_tl0_pic_idx_, fixed_tl0)) {
return true;
}
// Test if there has been a jump forward. If the jump forward results
// in the tl0 pic index for this frame to be considered smaller than the
// smallest item in |gof_info_| then we have jumped forward far enough to
// wrap.
if (!gof_info_.empty() &&
AheadOf<uint8_t>(gof_info_.begin()->first, fixed_tl0)) {
return true;
}
}
return false;
}
} // namespace video_coding
} // namespace webrtc