|  | /* | 
|  | *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #ifndef API_NUMERICS_RUNNING_STATISTICS_H_ | 
|  | #define API_NUMERICS_RUNNING_STATISTICS_H_ | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <cstdint> | 
|  | #include <optional> | 
|  |  | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/numerics/math_utils.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace webrtc_impl { | 
|  |  | 
|  | // tl;dr: Robust and efficient online computation of statistics, | 
|  | //        using Welford's method for variance. [1] | 
|  | // | 
|  | // This should be your go-to class if you ever need to compute | 
|  | // min, max, mean, variance and standard deviation. | 
|  | // If you need to get percentiles, please use webrtc::SamplesStatsCounter. | 
|  | // | 
|  | // Please note RemoveSample() won't affect min and max. | 
|  | // If you want a full-fledged moving window over N last samples, | 
|  | // please use webrtc::RollingAccumulator. | 
|  | // | 
|  | // The measures return std::nullopt if no samples were fed (Size() == 0), | 
|  | // otherwise the returned optional is guaranteed to contain a value. | 
|  | // | 
|  | // [1] | 
|  | // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm | 
|  |  | 
|  | // The type T is a scalar which must be convertible to double. | 
|  | // Rationale: we often need greater precision for measures | 
|  | //            than for the samples themselves. | 
|  | template <typename T> | 
|  | class RunningStatistics { | 
|  | public: | 
|  | // Update stats //////////////////////////////////////////// | 
|  |  | 
|  | // Add a value participating in the statistics in O(1) time. | 
|  | void AddSample(T sample) { | 
|  | max_ = std::max(max_, sample); | 
|  | min_ = std::min(min_, sample); | 
|  | sum_ += sample; | 
|  | ++size_; | 
|  | // Welford's incremental update. | 
|  | const double delta = sample - mean_; | 
|  | mean_ += delta / size_; | 
|  | const double delta2 = sample - mean_; | 
|  | cumul_ += delta * delta2; | 
|  | } | 
|  |  | 
|  | // Remove a previously added value in O(1) time. | 
|  | // Nb: This doesn't affect min or max. | 
|  | // Calling RemoveSample when Size()==0 is incorrect. | 
|  | void RemoveSample(T sample) { | 
|  | RTC_DCHECK_GT(Size(), 0); | 
|  | // In production, just saturate at 0. | 
|  | if (Size() == 0) { | 
|  | return; | 
|  | } | 
|  | // Since samples order doesn't matter, this is the | 
|  | // exact reciprocal of Welford's incremental update. | 
|  | --size_; | 
|  | const double delta = sample - mean_; | 
|  | mean_ -= delta / size_; | 
|  | const double delta2 = sample - mean_; | 
|  | cumul_ -= delta * delta2; | 
|  | } | 
|  |  | 
|  | // Merge other stats, as if samples were added one by one, but in O(1). | 
|  | void MergeStatistics(const RunningStatistics<T>& other) { | 
|  | if (other.size_ == 0) { | 
|  | return; | 
|  | } | 
|  | max_ = std::max(max_, other.max_); | 
|  | min_ = std::min(min_, other.min_); | 
|  | const int64_t new_size = size_ + other.size_; | 
|  | const double new_mean = | 
|  | (mean_ * size_ + other.mean_ * other.size_) / new_size; | 
|  | // Each cumulant must be corrected. | 
|  | //   * from: sum((x_i - mean_)²) | 
|  | //   * to:   sum((x_i - new_mean)²) | 
|  | auto delta = [new_mean](const RunningStatistics<T>& stats) { | 
|  | return stats.size_ * (new_mean * (new_mean - 2 * stats.mean_) + | 
|  | stats.mean_ * stats.mean_); | 
|  | }; | 
|  | cumul_ = cumul_ + delta(*this) + other.cumul_ + delta(other); | 
|  | mean_ = new_mean; | 
|  | size_ = new_size; | 
|  | } | 
|  |  | 
|  | // Get Measures //////////////////////////////////////////// | 
|  |  | 
|  | // Returns number of samples involved via AddSample() or MergeStatistics(), | 
|  | // minus number of times RemoveSample() was called. | 
|  | int64_t Size() const { return size_; } | 
|  |  | 
|  | // Returns minimum among all seen samples, in O(1) time. | 
|  | // This isn't affected by RemoveSample(). | 
|  | std::optional<T> GetMin() const { | 
|  | if (size_ == 0) { | 
|  | return std::nullopt; | 
|  | } | 
|  | return min_; | 
|  | } | 
|  |  | 
|  | // Returns maximum among all seen samples, in O(1) time. | 
|  | // This isn't affected by RemoveSample(). | 
|  | std::optional<T> GetMax() const { | 
|  | if (size_ == 0) { | 
|  | return std::nullopt; | 
|  | } | 
|  | return max_; | 
|  | } | 
|  |  | 
|  | // Returns sum in O(1) time. | 
|  | std::optional<double> GetSum() const { | 
|  | if (size_ == 0) { | 
|  | return std::nullopt; | 
|  | } | 
|  | return sum_; | 
|  | } | 
|  |  | 
|  | // Returns mean in O(1) time. | 
|  | std::optional<double> GetMean() const { | 
|  | if (size_ == 0) { | 
|  | return std::nullopt; | 
|  | } | 
|  | return mean_; | 
|  | } | 
|  |  | 
|  | // Returns unbiased sample variance in O(1) time. | 
|  | std::optional<double> GetVariance() const { | 
|  | if (size_ == 0) { | 
|  | return std::nullopt; | 
|  | } | 
|  | return cumul_ / size_; | 
|  | } | 
|  |  | 
|  | // Returns unbiased standard deviation in O(1) time. | 
|  | std::optional<double> GetStandardDeviation() const { | 
|  | if (size_ == 0) { | 
|  | return std::nullopt; | 
|  | } | 
|  | return std::sqrt(*GetVariance()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | int64_t size_ = 0;  // Samples seen. | 
|  | T min_ = infinity_or_max<T>(); | 
|  | T max_ = minus_infinity_or_min<T>(); | 
|  | double mean_ = 0; | 
|  | double cumul_ = 0;  // Variance * size_, sometimes noted m2. | 
|  | double sum_ = 0; | 
|  | }; | 
|  |  | 
|  | }  // namespace webrtc_impl | 
|  | }  // namespace webrtc | 
|  |  | 
|  | #endif  // API_NUMERICS_RUNNING_STATISTICS_H_ |