blob: 2f8921102e3d2ff328d073b72e78f17513cb29d5 [file] [log] [blame]
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/task_queue.h"
#include <fcntl.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>
#include "base/third_party/libevent/event.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/refcount.h"
#include "rtc_base/refcountedobject.h"
#include "rtc_base/task_queue.h"
#include "rtc_base/task_queue_posix.h"
#include "rtc_base/timeutils.h"
namespace rtc {
using internal::GetQueuePtrTls;
using internal::AutoSetCurrentQueuePtr;
namespace {
static const char kQuit = 1;
static const char kRunTask = 2;
static const char kRunReplyTask = 3;
using Priority = TaskQueue::Priority;
// This ignores the SIGPIPE signal on the calling thread.
// This signal can be fired when trying to write() to a pipe that's being
// closed or while closing a pipe that's being written to.
// We can run into that situation (e.g. reply tasks that don't get a chance to
// run because the task queue is being deleted) so we ignore this signal and
// continue as normal.
// As a side note for this implementation, it would be great if we could safely
// restore the sigmask, but unfortunately the operation of restoring it, can
// itself actually cause SIGPIPE to be signaled :-| (e.g. on MacOS)
// The SIGPIPE signal by default causes the process to be terminated, so we
// don't want to risk that.
// An alternative to this approach is to ignore the signal for the whole
// process:
// signal(SIGPIPE, SIG_IGN);
void IgnoreSigPipeSignalOnCurrentThread() {
sigset_t sigpipe_mask;
sigemptyset(&sigpipe_mask);
sigaddset(&sigpipe_mask, SIGPIPE);
pthread_sigmask(SIG_BLOCK, &sigpipe_mask, nullptr);
}
struct TimerEvent {
explicit TimerEvent(std::unique_ptr<QueuedTask> task)
: task(std::move(task)) {}
~TimerEvent() { event_del(&ev); }
event ev;
std::unique_ptr<QueuedTask> task;
};
bool SetNonBlocking(int fd) {
const int flags = fcntl(fd, F_GETFL);
RTC_CHECK(flags != -1);
return (flags & O_NONBLOCK) || fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1;
}
// TODO(tommi): This is a hack to support two versions of libevent that we're
// compatible with. The method we really want to call is event_assign(),
// since event_set() has been marked as deprecated (and doesn't accept
// passing event_base__ as a parameter). However, the version of libevent
// that we have in Chromium, doesn't have event_assign(), so we need to call
// event_set() there.
void EventAssign(struct event* ev,
struct event_base* base,
int fd,
short events,
void (*callback)(int, short, void*),
void* arg) {
#if defined(_EVENT2_EVENT_H_)
RTC_CHECK_EQ(0, event_assign(ev, base, fd, events, callback, arg));
#else
event_set(ev, fd, events, callback, arg);
RTC_CHECK_EQ(0, event_base_set(base, ev));
#endif
}
ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) {
switch (priority) {
case Priority::HIGH:
return kRealtimePriority;
case Priority::LOW:
return kLowPriority;
case Priority::NORMAL:
return kNormalPriority;
default:
RTC_NOTREACHED();
break;
}
return kNormalPriority;
}
} // namespace
class TaskQueue::Impl : public RefCountInterface {
public:
explicit Impl(const char* queue_name,
TaskQueue* queue,
Priority priority = Priority::NORMAL);
~Impl() override;
static TaskQueue::Impl* Current();
static TaskQueue* CurrentQueue();
// Used for DCHECKing the current queue.
bool IsCurrent() const;
void PostTask(std::unique_ptr<QueuedTask> task);
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue::Impl* reply_queue);
void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds);
private:
static void ThreadMain(void* context);
static void OnWakeup(int socket, short flags, void* context); // NOLINT
static void RunTask(int fd, short flags, void* context); // NOLINT
static void RunTimer(int fd, short flags, void* context); // NOLINT
class ReplyTaskOwner;
class PostAndReplyTask;
class SetTimerTask;
typedef RefCountedObject<ReplyTaskOwner> ReplyTaskOwnerRef;
void PrepareReplyTask(scoped_refptr<ReplyTaskOwnerRef> reply_task);
struct QueueContext;
TaskQueue* const queue_;
int wakeup_pipe_in_ = -1;
int wakeup_pipe_out_ = -1;
event_base* event_base_;
std::unique_ptr<event> wakeup_event_;
PlatformThread thread_;
rtc::CriticalSection pending_lock_;
std::list<std::unique_ptr<QueuedTask>> pending_ RTC_GUARDED_BY(pending_lock_);
std::list<scoped_refptr<ReplyTaskOwnerRef>> pending_replies_
RTC_GUARDED_BY(pending_lock_);
};
struct TaskQueue::Impl::QueueContext {
explicit QueueContext(TaskQueue::Impl* q) : queue(q), is_active(true) {}
TaskQueue::Impl* queue;
bool is_active;
// Holds a list of events pending timers for cleanup when the loop exits.
std::list<TimerEvent*> pending_timers_;
};
// Posting a reply task is tricky business. This class owns the reply task
// and a reference to it is held by both the reply queue and the first task.
// Here's an outline of what happens when dealing with a reply task.
// * The ReplyTaskOwner owns the |reply_| task.
// * One ref owned by PostAndReplyTask
// * One ref owned by the reply TaskQueue
// * ReplyTaskOwner has a flag |run_task_| initially set to false.
// * ReplyTaskOwner has a method: HasOneRef() (provided by RefCountedObject).
// * After successfully running the original |task_|, PostAndReplyTask() calls
// set_should_run_task(). This sets |run_task_| to true.
// * In PostAndReplyTask's dtor:
// * It releases its reference to ReplyTaskOwner (important to do this first).
// * Sends (write()) a kRunReplyTask message to the reply queue's pipe.
// * PostAndReplyTask doesn't care if write() fails, but when it does:
// * The reply queue is gone.
// * ReplyTaskOwner has already been deleted and the reply task too.
// * If write() succeeds:
// * ReplyQueue receives the kRunReplyTask message
// * Goes through all pending tasks, finding the first that HasOneRef()
// * Calls ReplyTaskOwner::Run()
// * if set_should_run_task() was called, the reply task will be run
// * Release the reference to ReplyTaskOwner
// * ReplyTaskOwner and associated |reply_| are deleted.
class TaskQueue::Impl::ReplyTaskOwner {
public:
ReplyTaskOwner(std::unique_ptr<QueuedTask> reply)
: reply_(std::move(reply)) {}
void Run() {
RTC_DCHECK(reply_);
if (run_task_) {
if (!reply_->Run())
reply_.release();
}
reply_.reset();
}
void set_should_run_task() {
RTC_DCHECK(!run_task_);
run_task_ = true;
}
private:
std::unique_ptr<QueuedTask> reply_;
bool run_task_ = false;
};
class TaskQueue::Impl::PostAndReplyTask : public QueuedTask {
public:
PostAndReplyTask(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue::Impl* reply_queue,
int reply_pipe)
: task_(std::move(task)),
reply_pipe_(reply_pipe),
reply_task_owner_(
new RefCountedObject<ReplyTaskOwner>(std::move(reply))) {
reply_queue->PrepareReplyTask(reply_task_owner_);
}
~PostAndReplyTask() override {
reply_task_owner_ = nullptr;
IgnoreSigPipeSignalOnCurrentThread();
// Send a signal to the reply queue that the reply task can run now.
// Depending on whether |set_should_run_task()| was called by the
// PostAndReplyTask(), the reply task may or may not actually run.
// In either case, it will be deleted.
char message = kRunReplyTask;
write(reply_pipe_, &message, sizeof(message));
}
private:
bool Run() override {
if (!task_->Run())
task_.release();
reply_task_owner_->set_should_run_task();
return true;
}
std::unique_ptr<QueuedTask> task_;
int reply_pipe_;
scoped_refptr<RefCountedObject<ReplyTaskOwner>> reply_task_owner_;
};
class TaskQueue::Impl::SetTimerTask : public QueuedTask {
public:
SetTimerTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds)
: task_(std::move(task)),
milliseconds_(milliseconds),
posted_(Time32()) {}
private:
bool Run() override {
// Compensate for the time that has passed since construction
// and until we got here.
uint32_t post_time = Time32() - posted_;
TaskQueue::Impl::Current()->PostDelayedTask(
std::move(task_),
post_time > milliseconds_ ? 0 : milliseconds_ - post_time);
return true;
}
std::unique_ptr<QueuedTask> task_;
const uint32_t milliseconds_;
const uint32_t posted_;
};
TaskQueue::Impl::Impl(const char* queue_name,
TaskQueue* queue,
Priority priority /*= NORMAL*/)
: queue_(queue),
event_base_(event_base_new()),
wakeup_event_(new event()),
thread_(&TaskQueue::Impl::ThreadMain,
this,
queue_name,
TaskQueuePriorityToThreadPriority(priority)) {
RTC_DCHECK(queue_name);
int fds[2];
RTC_CHECK(pipe(fds) == 0);
SetNonBlocking(fds[0]);
SetNonBlocking(fds[1]);
wakeup_pipe_out_ = fds[0];
wakeup_pipe_in_ = fds[1];
EventAssign(wakeup_event_.get(), event_base_, wakeup_pipe_out_,
EV_READ | EV_PERSIST, OnWakeup, this);
event_add(wakeup_event_.get(), 0);
thread_.Start();
}
TaskQueue::Impl::~Impl() {
RTC_DCHECK(!IsCurrent());
struct timespec ts;
char message = kQuit;
while (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) {
// The queue is full, so we have no choice but to wait and retry.
RTC_CHECK_EQ(EAGAIN, errno);
ts.tv_sec = 0;
ts.tv_nsec = 1000000;
nanosleep(&ts, nullptr);
}
thread_.Stop();
event_del(wakeup_event_.get());
IgnoreSigPipeSignalOnCurrentThread();
close(wakeup_pipe_in_);
close(wakeup_pipe_out_);
wakeup_pipe_in_ = -1;
wakeup_pipe_out_ = -1;
event_base_free(event_base_);
}
// static
TaskQueue::Impl* TaskQueue::Impl::Current() {
QueueContext* ctx =
static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls()));
return ctx ? ctx->queue : nullptr;
}
// static
TaskQueue* TaskQueue::Impl::CurrentQueue() {
TaskQueue::Impl* current = Current();
if (current) {
return current->queue_;
}
return nullptr;
}
bool TaskQueue::Impl::IsCurrent() const {
return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef());
}
void TaskQueue::Impl::PostTask(std::unique_ptr<QueuedTask> task) {
RTC_DCHECK(task.get());
// libevent isn't thread safe. This means that we can't use methods such
// as event_base_once to post tasks to the worker thread from a different
// thread. However, we can use it when posting from the worker thread itself.
if (IsCurrent()) {
if (event_base_once(event_base_, -1, EV_TIMEOUT, &TaskQueue::Impl::RunTask,
task.get(), nullptr) == 0) {
task.release();
}
} else {
QueuedTask* task_id = task.get(); // Only used for comparison.
{
CritScope lock(&pending_lock_);
pending_.push_back(std::move(task));
}
char message = kRunTask;
if (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) {
RTC_LOG(WARNING) << "Failed to queue task.";
CritScope lock(&pending_lock_);
pending_.remove_if([task_id](std::unique_ptr<QueuedTask>& t) {
return t.get() == task_id;
});
}
}
}
void TaskQueue::Impl::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
if (IsCurrent()) {
TimerEvent* timer = new TimerEvent(std::move(task));
EventAssign(&timer->ev, event_base_, -1, 0, &TaskQueue::Impl::RunTimer,
timer);
QueueContext* ctx =
static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls()));
ctx->pending_timers_.push_back(timer);
timeval tv = {rtc::dchecked_cast<int>(milliseconds / 1000),
rtc::dchecked_cast<int>(milliseconds % 1000) * 1000};
event_add(&timer->ev, &tv);
} else {
PostTask(std::unique_ptr<QueuedTask>(
new SetTimerTask(std::move(task), milliseconds)));
}
}
void TaskQueue::Impl::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue::Impl* reply_queue) {
std::unique_ptr<QueuedTask> wrapper_task(
new PostAndReplyTask(std::move(task), std::move(reply), reply_queue,
reply_queue->wakeup_pipe_in_));
PostTask(std::move(wrapper_task));
}
// static
void TaskQueue::Impl::ThreadMain(void* context) {
TaskQueue::Impl* me = static_cast<TaskQueue::Impl*>(context);
QueueContext queue_context(me);
pthread_setspecific(GetQueuePtrTls(), &queue_context);
while (queue_context.is_active)
event_base_loop(me->event_base_, 0);
pthread_setspecific(GetQueuePtrTls(), nullptr);
for (TimerEvent* timer : queue_context.pending_timers_)
delete timer;
}
// static
void TaskQueue::Impl::OnWakeup(int socket,
short flags,
void* context) { // NOLINT
QueueContext* ctx =
static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls()));
RTC_DCHECK(ctx->queue->wakeup_pipe_out_ == socket);
char buf;
RTC_CHECK(sizeof(buf) == read(socket, &buf, sizeof(buf)));
switch (buf) {
case kQuit:
ctx->is_active = false;
event_base_loopbreak(ctx->queue->event_base_);
break;
case kRunTask: {
std::unique_ptr<QueuedTask> task;
{
CritScope lock(&ctx->queue->pending_lock_);
RTC_DCHECK(!ctx->queue->pending_.empty());
task = std::move(ctx->queue->pending_.front());
ctx->queue->pending_.pop_front();
RTC_DCHECK(task.get());
}
if (!task->Run())
task.release();
break;
}
case kRunReplyTask: {
scoped_refptr<ReplyTaskOwnerRef> reply_task;
{
CritScope lock(&ctx->queue->pending_lock_);
for (auto it = ctx->queue->pending_replies_.begin();
it != ctx->queue->pending_replies_.end(); ++it) {
if ((*it)->HasOneRef()) {
reply_task = std::move(*it);
ctx->queue->pending_replies_.erase(it);
break;
}
}
}
reply_task->Run();
break;
}
default:
RTC_NOTREACHED();
break;
}
}
// static
void TaskQueue::Impl::RunTask(int fd, short flags, void* context) { // NOLINT
auto* task = static_cast<QueuedTask*>(context);
if (task->Run())
delete task;
}
// static
void TaskQueue::Impl::RunTimer(int fd, short flags, void* context) { // NOLINT
TimerEvent* timer = static_cast<TimerEvent*>(context);
if (!timer->task->Run())
timer->task.release();
QueueContext* ctx =
static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls()));
ctx->pending_timers_.remove(timer);
delete timer;
}
void TaskQueue::Impl::PrepareReplyTask(
scoped_refptr<ReplyTaskOwnerRef> reply_task) {
RTC_DCHECK(reply_task);
CritScope lock(&pending_lock_);
pending_replies_.push_back(std::move(reply_task));
}
TaskQueue::TaskQueue(const char* queue_name, Priority priority)
: impl_(new RefCountedObject<TaskQueue::Impl>(queue_name, this, priority)) {
}
TaskQueue::~TaskQueue() {}
// static
TaskQueue* TaskQueue::Current() {
return TaskQueue::Impl::CurrentQueue();
}
// Used for DCHECKing the current queue.
bool TaskQueue::IsCurrent() const {
return impl_->IsCurrent();
}
void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
return TaskQueue::impl_->PostTask(std::move(task));
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue) {
return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply),
reply_queue->impl_.get());
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply) {
return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply),
impl_.get());
}
void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
return TaskQueue::impl_->PostDelayedTask(std::move(task), milliseconds);
}
} // namespace rtc