|  | /* | 
|  | *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "modules/audio_processing/residual_echo_detector.h" | 
|  |  | 
|  | #include <vector> | 
|  |  | 
|  | #include "api/make_ref_counted.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | TEST(ResidualEchoDetectorTests, Echo) { | 
|  | auto echo_detector = rtc::make_ref_counted<ResidualEchoDetector>(); | 
|  | echo_detector->SetReliabilityForTest(1.0f); | 
|  | std::vector<float> ones(160, 1.f); | 
|  | std::vector<float> zeros(160, 0.f); | 
|  |  | 
|  | // In this test the capture signal has a delay of 10 frames w.r.t. the render | 
|  | // signal, but is otherwise identical. Both signals are periodic with a 20 | 
|  | // frame interval. | 
|  | for (int i = 0; i < 1000; i++) { | 
|  | if (i % 20 == 0) { | 
|  | echo_detector->AnalyzeRenderAudio(ones); | 
|  | echo_detector->AnalyzeCaptureAudio(zeros); | 
|  | } else if (i % 20 == 10) { | 
|  | echo_detector->AnalyzeRenderAudio(zeros); | 
|  | echo_detector->AnalyzeCaptureAudio(ones); | 
|  | } else { | 
|  | echo_detector->AnalyzeRenderAudio(zeros); | 
|  | echo_detector->AnalyzeCaptureAudio(zeros); | 
|  | } | 
|  | } | 
|  | // We expect to detect echo with near certain likelihood. | 
|  | auto ed_metrics = echo_detector->GetMetrics(); | 
|  | ASSERT_TRUE(ed_metrics.echo_likelihood); | 
|  | EXPECT_NEAR(1.f, ed_metrics.echo_likelihood.value(), 0.01f); | 
|  | } | 
|  |  | 
|  | TEST(ResidualEchoDetectorTests, NoEcho) { | 
|  | auto echo_detector = rtc::make_ref_counted<ResidualEchoDetector>(); | 
|  | echo_detector->SetReliabilityForTest(1.0f); | 
|  | std::vector<float> ones(160, 1.f); | 
|  | std::vector<float> zeros(160, 0.f); | 
|  |  | 
|  | // In this test the capture signal is always zero, so no echo should be | 
|  | // detected. | 
|  | for (int i = 0; i < 1000; i++) { | 
|  | if (i % 20 == 0) { | 
|  | echo_detector->AnalyzeRenderAudio(ones); | 
|  | } else { | 
|  | echo_detector->AnalyzeRenderAudio(zeros); | 
|  | } | 
|  | echo_detector->AnalyzeCaptureAudio(zeros); | 
|  | } | 
|  | // We expect to not detect any echo. | 
|  | auto ed_metrics = echo_detector->GetMetrics(); | 
|  | ASSERT_TRUE(ed_metrics.echo_likelihood); | 
|  | EXPECT_NEAR(0.f, ed_metrics.echo_likelihood.value(), 0.01f); | 
|  | } | 
|  |  | 
|  | TEST(ResidualEchoDetectorTests, EchoWithRenderClockDrift) { | 
|  | auto echo_detector = rtc::make_ref_counted<ResidualEchoDetector>(); | 
|  | echo_detector->SetReliabilityForTest(1.0f); | 
|  | std::vector<float> ones(160, 1.f); | 
|  | std::vector<float> zeros(160, 0.f); | 
|  |  | 
|  | // In this test the capture signal has a delay of 10 frames w.r.t. the render | 
|  | // signal, but is otherwise identical. Both signals are periodic with a 20 | 
|  | // frame interval. There is a simulated clock drift of 1% in this test, with | 
|  | // the render side producing data slightly faster. | 
|  | for (int i = 0; i < 1000; i++) { | 
|  | if (i % 20 == 0) { | 
|  | echo_detector->AnalyzeRenderAudio(ones); | 
|  | echo_detector->AnalyzeCaptureAudio(zeros); | 
|  | } else if (i % 20 == 10) { | 
|  | echo_detector->AnalyzeRenderAudio(zeros); | 
|  | echo_detector->AnalyzeCaptureAudio(ones); | 
|  | } else { | 
|  | echo_detector->AnalyzeRenderAudio(zeros); | 
|  | echo_detector->AnalyzeCaptureAudio(zeros); | 
|  | } | 
|  | if (i % 100 == 0) { | 
|  | // This is causing the simulated clock drift. | 
|  | echo_detector->AnalyzeRenderAudio(zeros); | 
|  | } | 
|  | } | 
|  | // We expect to detect echo with high likelihood. Clock drift is harder to | 
|  | // correct on the render side than on the capture side. This is due to the | 
|  | // render buffer, clock drift can only be discovered after a certain delay. | 
|  | // A growing buffer can be caused by jitter or clock drift and it's not | 
|  | // possible to make this decision right away. For this reason we only expect | 
|  | // an echo likelihood of 75% in this test. | 
|  | auto ed_metrics = echo_detector->GetMetrics(); | 
|  | ASSERT_TRUE(ed_metrics.echo_likelihood); | 
|  | EXPECT_GT(ed_metrics.echo_likelihood.value(), 0.75f); | 
|  | } | 
|  |  | 
|  | TEST(ResidualEchoDetectorTests, EchoWithCaptureClockDrift) { | 
|  | auto echo_detector = rtc::make_ref_counted<ResidualEchoDetector>(); | 
|  | echo_detector->SetReliabilityForTest(1.0f); | 
|  | std::vector<float> ones(160, 1.f); | 
|  | std::vector<float> zeros(160, 0.f); | 
|  |  | 
|  | // In this test the capture signal has a delay of 10 frames w.r.t. the render | 
|  | // signal, but is otherwise identical. Both signals are periodic with a 20 | 
|  | // frame interval. There is a simulated clock drift of 1% in this test, with | 
|  | // the capture side producing data slightly faster. | 
|  | for (int i = 0; i < 1000; i++) { | 
|  | if (i % 20 == 0) { | 
|  | echo_detector->AnalyzeRenderAudio(ones); | 
|  | echo_detector->AnalyzeCaptureAudio(zeros); | 
|  | } else if (i % 20 == 10) { | 
|  | echo_detector->AnalyzeRenderAudio(zeros); | 
|  | echo_detector->AnalyzeCaptureAudio(ones); | 
|  | } else { | 
|  | echo_detector->AnalyzeRenderAudio(zeros); | 
|  | echo_detector->AnalyzeCaptureAudio(zeros); | 
|  | } | 
|  | if (i % 100 == 0) { | 
|  | // This is causing the simulated clock drift. | 
|  | echo_detector->AnalyzeCaptureAudio(zeros); | 
|  | } | 
|  | } | 
|  | // We expect to detect echo with near certain likelihood. | 
|  | auto ed_metrics = echo_detector->GetMetrics(); | 
|  | ASSERT_TRUE(ed_metrics.echo_likelihood); | 
|  | EXPECT_NEAR(1.f, ed_metrics.echo_likelihood.value(), 0.01f); | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |