| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // GraphCycles provides incremental cycle detection on a dynamic |
| // graph using the following algorithm: |
| // |
| // A dynamic topological sort algorithm for directed acyclic graphs |
| // David J. Pearce, Paul H. J. Kelly |
| // Journal of Experimental Algorithmics (JEA) JEA Homepage archive |
| // Volume 11, 2006, Article No. 1.7 |
| // |
| // Brief summary of the algorithm: |
| // |
| // (1) Maintain a rank for each node that is consistent |
| // with the topological sort of the graph. I.e., path from x to y |
| // implies rank[x] < rank[y]. |
| // (2) When a new edge (x->y) is inserted, do nothing if rank[x] < rank[y]. |
| // (3) Otherwise: adjust ranks in the neighborhood of x and y. |
| |
| #include "absl/base/attributes.h" |
| // This file is a no-op if the required LowLevelAlloc support is missing. |
| #include "absl/base/internal/low_level_alloc.h" |
| #ifndef ABSL_LOW_LEVEL_ALLOC_MISSING |
| |
| #include "absl/synchronization/internal/graphcycles.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/base/internal/spinlock.h" |
| |
| // Do not use STL. This module does not use standard memory allocation. |
| |
| namespace absl { |
| namespace synchronization_internal { |
| |
| namespace { |
| |
| // Avoid LowLevelAlloc's default arena since it calls malloc hooks in |
| // which people are doing things like acquiring Mutexes. |
| static absl::base_internal::SpinLock arena_mu( |
| absl::base_internal::kLinkerInitialized); |
| static base_internal::LowLevelAlloc::Arena* arena; |
| |
| static void InitArenaIfNecessary() { |
| arena_mu.Lock(); |
| if (arena == nullptr) { |
| arena = base_internal::LowLevelAlloc::NewArena(0); |
| } |
| arena_mu.Unlock(); |
| } |
| |
| // Number of inlined elements in Vec. Hash table implementation |
| // relies on this being a power of two. |
| static const uint32_t kInline = 8; |
| |
| // A simple LowLevelAlloc based resizable vector with inlined storage |
| // for a few elements. T must be a plain type since constructor |
| // and destructor are not run on elements of type T managed by Vec. |
| template <typename T> |
| class Vec { |
| public: |
| Vec() { Init(); } |
| ~Vec() { Discard(); } |
| |
| void clear() { |
| Discard(); |
| Init(); |
| } |
| |
| bool empty() const { return size_ == 0; } |
| uint32_t size() const { return size_; } |
| T* begin() { return ptr_; } |
| T* end() { return ptr_ + size_; } |
| const T& operator[](uint32_t i) const { return ptr_[i]; } |
| T& operator[](uint32_t i) { return ptr_[i]; } |
| const T& back() const { return ptr_[size_-1]; } |
| void pop_back() { size_--; } |
| |
| void push_back(const T& v) { |
| if (size_ == capacity_) Grow(size_ + 1); |
| ptr_[size_] = v; |
| size_++; |
| } |
| |
| void resize(uint32_t n) { |
| if (n > capacity_) Grow(n); |
| size_ = n; |
| } |
| |
| void fill(const T& val) { |
| for (uint32_t i = 0; i < size(); i++) { |
| ptr_[i] = val; |
| } |
| } |
| |
| // Guarantees src is empty at end. |
| // Provided for the hash table resizing code below. |
| void MoveFrom(Vec<T>* src) { |
| if (src->ptr_ == src->space_) { |
| // Need to actually copy |
| resize(src->size_); |
| std::copy(src->ptr_, src->ptr_ + src->size_, ptr_); |
| src->size_ = 0; |
| } else { |
| Discard(); |
| ptr_ = src->ptr_; |
| size_ = src->size_; |
| capacity_ = src->capacity_; |
| src->Init(); |
| } |
| } |
| |
| private: |
| T* ptr_; |
| T space_[kInline]; |
| uint32_t size_; |
| uint32_t capacity_; |
| |
| void Init() { |
| ptr_ = space_; |
| size_ = 0; |
| capacity_ = kInline; |
| } |
| |
| void Discard() { |
| if (ptr_ != space_) base_internal::LowLevelAlloc::Free(ptr_); |
| } |
| |
| void Grow(uint32_t n) { |
| while (capacity_ < n) { |
| capacity_ *= 2; |
| } |
| size_t request = static_cast<size_t>(capacity_) * sizeof(T); |
| T* copy = static_cast<T*>( |
| base_internal::LowLevelAlloc::AllocWithArena(request, arena)); |
| std::copy(ptr_, ptr_ + size_, copy); |
| Discard(); |
| ptr_ = copy; |
| } |
| |
| Vec(const Vec&) = delete; |
| Vec& operator=(const Vec&) = delete; |
| }; |
| |
| // A hash set of non-negative int32_t that uses Vec for its underlying storage. |
| class NodeSet { |
| public: |
| NodeSet() { Init(); } |
| |
| void clear() { Init(); } |
| bool contains(int32_t v) const { return table_[FindIndex(v)] == v; } |
| |
| bool insert(int32_t v) { |
| uint32_t i = FindIndex(v); |
| if (table_[i] == v) { |
| return false; |
| } |
| if (table_[i] == kEmpty) { |
| // Only inserting over an empty cell increases the number of occupied |
| // slots. |
| occupied_++; |
| } |
| table_[i] = v; |
| // Double when 75% full. |
| if (occupied_ >= table_.size() - table_.size()/4) Grow(); |
| return true; |
| } |
| |
| void erase(uint32_t v) { |
| uint32_t i = FindIndex(v); |
| if (static_cast<uint32_t>(table_[i]) == v) { |
| table_[i] = kDel; |
| } |
| } |
| |
| // Iteration: is done via HASH_FOR_EACH |
| // Example: |
| // HASH_FOR_EACH(elem, node->out) { ... } |
| #define HASH_FOR_EACH(elem, eset) \ |
| for (int32_t elem, _cursor = 0; (eset).Next(&_cursor, &elem); ) |
| bool Next(int32_t* cursor, int32_t* elem) { |
| while (static_cast<uint32_t>(*cursor) < table_.size()) { |
| int32_t v = table_[*cursor]; |
| (*cursor)++; |
| if (v >= 0) { |
| *elem = v; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| private: |
| static const int32_t kEmpty; |
| static const int32_t kDel; |
| Vec<int32_t> table_; |
| uint32_t occupied_; // Count of non-empty slots (includes deleted slots) |
| |
| static uint32_t Hash(uint32_t a) { return a * 41; } |
| |
| // Return index for storing v. May return an empty index or deleted index |
| int FindIndex(int32_t v) const { |
| // Search starting at hash index. |
| const uint32_t mask = table_.size() - 1; |
| uint32_t i = Hash(v) & mask; |
| int deleted_index = -1; // If >= 0, index of first deleted element we see |
| while (true) { |
| int32_t e = table_[i]; |
| if (v == e) { |
| return i; |
| } else if (e == kEmpty) { |
| // Return any previously encountered deleted slot. |
| return (deleted_index >= 0) ? deleted_index : i; |
| } else if (e == kDel && deleted_index < 0) { |
| // Keep searching since v might be present later. |
| deleted_index = i; |
| } |
| i = (i + 1) & mask; // Linear probing; quadratic is slightly slower. |
| } |
| } |
| |
| void Init() { |
| table_.clear(); |
| table_.resize(kInline); |
| table_.fill(kEmpty); |
| occupied_ = 0; |
| } |
| |
| void Grow() { |
| Vec<int32_t> copy; |
| copy.MoveFrom(&table_); |
| occupied_ = 0; |
| table_.resize(copy.size() * 2); |
| table_.fill(kEmpty); |
| |
| for (const auto& e : copy) { |
| if (e >= 0) insert(e); |
| } |
| } |
| |
| NodeSet(const NodeSet&) = delete; |
| NodeSet& operator=(const NodeSet&) = delete; |
| }; |
| |
| const int32_t NodeSet::kEmpty = -1; |
| const int32_t NodeSet::kDel = -2; |
| |
| // We encode a node index and a node version in GraphId. The version |
| // number is incremented when the GraphId is freed which automatically |
| // invalidates all copies of the GraphId. |
| |
| inline GraphId MakeId(int32_t index, uint32_t version) { |
| GraphId g; |
| g.handle = |
| (static_cast<uint64_t>(version) << 32) | static_cast<uint32_t>(index); |
| return g; |
| } |
| |
| inline int32_t NodeIndex(GraphId id) { |
| return static_cast<uint32_t>(id.handle & 0xfffffffful); |
| } |
| |
| inline uint32_t NodeVersion(GraphId id) { |
| return static_cast<uint32_t>(id.handle >> 32); |
| } |
| |
| // We need to hide Mutexes (or other deadlock detection's pointers) |
| // from the leak detector. Xor with an arbitrary number with high bits set. |
| static const uintptr_t kHideMask = static_cast<uintptr_t>(0xF03A5F7BF03A5F7Bll); |
| |
| static inline uintptr_t MaskPtr(void *ptr) { |
| return reinterpret_cast<uintptr_t>(ptr) ^ kHideMask; |
| } |
| |
| static inline void* UnmaskPtr(uintptr_t word) { |
| return reinterpret_cast<void*>(word ^ kHideMask); |
| } |
| |
| struct Node { |
| int32_t rank; // rank number assigned by Pearce-Kelly algorithm |
| uint32_t version; // Current version number |
| int32_t next_hash; // Next entry in hash table |
| bool visited; // Temporary marker used by depth-first-search |
| uintptr_t masked_ptr; // User-supplied pointer |
| NodeSet in; // List of immediate predecessor nodes in graph |
| NodeSet out; // List of immediate successor nodes in graph |
| int priority; // Priority of recorded stack trace. |
| int nstack; // Depth of recorded stack trace. |
| void* stack[40]; // stack[0,nstack-1] holds stack trace for node. |
| }; |
| |
| // Hash table for pointer to node index lookups. |
| class PointerMap { |
| public: |
| explicit PointerMap(const Vec<Node*>* nodes) : nodes_(nodes) { |
| table_.fill(-1); |
| } |
| |
| int32_t Find(void* ptr) { |
| auto masked = MaskPtr(ptr); |
| for (int32_t i = table_[Hash(ptr)]; i != -1;) { |
| Node* n = (*nodes_)[i]; |
| if (n->masked_ptr == masked) return i; |
| i = n->next_hash; |
| } |
| return -1; |
| } |
| |
| void Add(void* ptr, int32_t i) { |
| int32_t* head = &table_[Hash(ptr)]; |
| (*nodes_)[i]->next_hash = *head; |
| *head = i; |
| } |
| |
| int32_t Remove(void* ptr) { |
| // Advance through linked list while keeping track of the |
| // predecessor slot that points to the current entry. |
| auto masked = MaskPtr(ptr); |
| for (int32_t* slot = &table_[Hash(ptr)]; *slot != -1; ) { |
| int32_t index = *slot; |
| Node* n = (*nodes_)[index]; |
| if (n->masked_ptr == masked) { |
| *slot = n->next_hash; // Remove n from linked list |
| n->next_hash = -1; |
| return index; |
| } |
| slot = &n->next_hash; |
| } |
| return -1; |
| } |
| |
| private: |
| // Number of buckets in hash table for pointer lookups. |
| static constexpr uint32_t kHashTableSize = 8171; // should be prime |
| |
| const Vec<Node*>* nodes_; |
| std::array<int32_t, kHashTableSize> table_; |
| |
| static uint32_t Hash(void* ptr) { |
| return reinterpret_cast<uintptr_t>(ptr) % kHashTableSize; |
| } |
| }; |
| |
| } // namespace |
| |
| struct GraphCycles::Rep { |
| Vec<Node*> nodes_; |
| Vec<int32_t> free_nodes_; // Indices for unused entries in nodes_ |
| PointerMap ptrmap_; |
| |
| // Temporary state. |
| Vec<int32_t> deltaf_; // Results of forward DFS |
| Vec<int32_t> deltab_; // Results of backward DFS |
| Vec<int32_t> list_; // All nodes to reprocess |
| Vec<int32_t> merged_; // Rank values to assign to list_ entries |
| Vec<int32_t> stack_; // Emulates recursion stack for depth-first searches |
| |
| Rep() : ptrmap_(&nodes_) {} |
| }; |
| |
| static Node* FindNode(GraphCycles::Rep* rep, GraphId id) { |
| Node* n = rep->nodes_[NodeIndex(id)]; |
| return (n->version == NodeVersion(id)) ? n : nullptr; |
| } |
| |
| GraphCycles::GraphCycles() { |
| InitArenaIfNecessary(); |
| rep_ = new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Rep), arena)) |
| Rep; |
| } |
| |
| GraphCycles::~GraphCycles() { |
| for (auto* node : rep_->nodes_) { |
| node->Node::~Node(); |
| base_internal::LowLevelAlloc::Free(node); |
| } |
| rep_->Rep::~Rep(); |
| base_internal::LowLevelAlloc::Free(rep_); |
| } |
| |
| bool GraphCycles::CheckInvariants() const { |
| Rep* r = rep_; |
| NodeSet ranks; // Set of ranks seen so far. |
| for (uint32_t x = 0; x < r->nodes_.size(); x++) { |
| Node* nx = r->nodes_[x]; |
| void* ptr = UnmaskPtr(nx->masked_ptr); |
| if (ptr != nullptr && static_cast<uint32_t>(r->ptrmap_.Find(ptr)) != x) { |
| ABSL_RAW_LOG(FATAL, "Did not find live node in hash table %u %p", x, ptr); |
| } |
| if (nx->visited) { |
| ABSL_RAW_LOG(FATAL, "Did not clear visited marker on node %u", x); |
| } |
| if (!ranks.insert(nx->rank)) { |
| ABSL_RAW_LOG(FATAL, "Duplicate occurrence of rank %d", nx->rank); |
| } |
| HASH_FOR_EACH(y, nx->out) { |
| Node* ny = r->nodes_[y]; |
| if (nx->rank >= ny->rank) { |
| ABSL_RAW_LOG(FATAL, "Edge %u->%d has bad rank assignment %d->%d", x, y, |
| nx->rank, ny->rank); |
| } |
| } |
| } |
| return true; |
| } |
| |
| GraphId GraphCycles::GetId(void* ptr) { |
| int32_t i = rep_->ptrmap_.Find(ptr); |
| if (i != -1) { |
| return MakeId(i, rep_->nodes_[i]->version); |
| } else if (rep_->free_nodes_.empty()) { |
| Node* n = |
| new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Node), arena)) |
| Node; |
| n->version = 1; // Avoid 0 since it is used by InvalidGraphId() |
| n->visited = false; |
| n->rank = rep_->nodes_.size(); |
| n->masked_ptr = MaskPtr(ptr); |
| n->nstack = 0; |
| n->priority = 0; |
| rep_->nodes_.push_back(n); |
| rep_->ptrmap_.Add(ptr, n->rank); |
| return MakeId(n->rank, n->version); |
| } else { |
| // Preserve preceding rank since the set of ranks in use must be |
| // a permutation of [0,rep_->nodes_.size()-1]. |
| int32_t r = rep_->free_nodes_.back(); |
| rep_->free_nodes_.pop_back(); |
| Node* n = rep_->nodes_[r]; |
| n->masked_ptr = MaskPtr(ptr); |
| n->nstack = 0; |
| n->priority = 0; |
| rep_->ptrmap_.Add(ptr, r); |
| return MakeId(r, n->version); |
| } |
| } |
| |
| void GraphCycles::RemoveNode(void* ptr) { |
| int32_t i = rep_->ptrmap_.Remove(ptr); |
| if (i == -1) { |
| return; |
| } |
| Node* x = rep_->nodes_[i]; |
| HASH_FOR_EACH(y, x->out) { |
| rep_->nodes_[y]->in.erase(i); |
| } |
| HASH_FOR_EACH(y, x->in) { |
| rep_->nodes_[y]->out.erase(i); |
| } |
| x->in.clear(); |
| x->out.clear(); |
| x->masked_ptr = MaskPtr(nullptr); |
| if (x->version == std::numeric_limits<uint32_t>::max()) { |
| // Cannot use x any more |
| } else { |
| x->version++; // Invalidates all copies of node. |
| rep_->free_nodes_.push_back(i); |
| } |
| } |
| |
| void* GraphCycles::Ptr(GraphId id) { |
| Node* n = FindNode(rep_, id); |
| return n == nullptr ? nullptr : UnmaskPtr(n->masked_ptr); |
| } |
| |
| bool GraphCycles::HasNode(GraphId node) { |
| return FindNode(rep_, node) != nullptr; |
| } |
| |
| bool GraphCycles::HasEdge(GraphId x, GraphId y) const { |
| Node* xn = FindNode(rep_, x); |
| return xn && FindNode(rep_, y) && xn->out.contains(NodeIndex(y)); |
| } |
| |
| void GraphCycles::RemoveEdge(GraphId x, GraphId y) { |
| Node* xn = FindNode(rep_, x); |
| Node* yn = FindNode(rep_, y); |
| if (xn && yn) { |
| xn->out.erase(NodeIndex(y)); |
| yn->in.erase(NodeIndex(x)); |
| // No need to update the rank assignment since a previous valid |
| // rank assignment remains valid after an edge deletion. |
| } |
| } |
| |
| static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound); |
| static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound); |
| static void Reorder(GraphCycles::Rep* r); |
| static void Sort(const Vec<Node*>&, Vec<int32_t>* delta); |
| static void MoveToList( |
| GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst); |
| |
| bool GraphCycles::InsertEdge(GraphId idx, GraphId idy) { |
| Rep* r = rep_; |
| const int32_t x = NodeIndex(idx); |
| const int32_t y = NodeIndex(idy); |
| Node* nx = FindNode(r, idx); |
| Node* ny = FindNode(r, idy); |
| if (nx == nullptr || ny == nullptr) return true; // Expired ids |
| |
| if (nx == ny) return false; // Self edge |
| if (!nx->out.insert(y)) { |
| // Edge already exists. |
| return true; |
| } |
| |
| ny->in.insert(x); |
| |
| if (nx->rank <= ny->rank) { |
| // New edge is consistent with existing rank assignment. |
| return true; |
| } |
| |
| // Current rank assignments are incompatible with the new edge. Recompute. |
| // We only need to consider nodes that fall in the range [ny->rank,nx->rank]. |
| if (!ForwardDFS(r, y, nx->rank)) { |
| // Found a cycle. Undo the insertion and tell caller. |
| nx->out.erase(y); |
| ny->in.erase(x); |
| // Since we do not call Reorder() on this path, clear any visited |
| // markers left by ForwardDFS. |
| for (const auto& d : r->deltaf_) { |
| r->nodes_[d]->visited = false; |
| } |
| return false; |
| } |
| BackwardDFS(r, x, ny->rank); |
| Reorder(r); |
| return true; |
| } |
| |
| static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound) { |
| // Avoid recursion since stack space might be limited. |
| // We instead keep a stack of nodes to visit. |
| r->deltaf_.clear(); |
| r->stack_.clear(); |
| r->stack_.push_back(n); |
| while (!r->stack_.empty()) { |
| n = r->stack_.back(); |
| r->stack_.pop_back(); |
| Node* nn = r->nodes_[n]; |
| if (nn->visited) continue; |
| |
| nn->visited = true; |
| r->deltaf_.push_back(n); |
| |
| HASH_FOR_EACH(w, nn->out) { |
| Node* nw = r->nodes_[w]; |
| if (nw->rank == upper_bound) { |
| return false; // Cycle |
| } |
| if (!nw->visited && nw->rank < upper_bound) { |
| r->stack_.push_back(w); |
| } |
| } |
| } |
| return true; |
| } |
| |
| static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound) { |
| r->deltab_.clear(); |
| r->stack_.clear(); |
| r->stack_.push_back(n); |
| while (!r->stack_.empty()) { |
| n = r->stack_.back(); |
| r->stack_.pop_back(); |
| Node* nn = r->nodes_[n]; |
| if (nn->visited) continue; |
| |
| nn->visited = true; |
| r->deltab_.push_back(n); |
| |
| HASH_FOR_EACH(w, nn->in) { |
| Node* nw = r->nodes_[w]; |
| if (!nw->visited && lower_bound < nw->rank) { |
| r->stack_.push_back(w); |
| } |
| } |
| } |
| } |
| |
| static void Reorder(GraphCycles::Rep* r) { |
| Sort(r->nodes_, &r->deltab_); |
| Sort(r->nodes_, &r->deltaf_); |
| |
| // Adds contents of delta lists to list_ (backwards deltas first). |
| r->list_.clear(); |
| MoveToList(r, &r->deltab_, &r->list_); |
| MoveToList(r, &r->deltaf_, &r->list_); |
| |
| // Produce sorted list of all ranks that will be reassigned. |
| r->merged_.resize(r->deltab_.size() + r->deltaf_.size()); |
| std::merge(r->deltab_.begin(), r->deltab_.end(), |
| r->deltaf_.begin(), r->deltaf_.end(), |
| r->merged_.begin()); |
| |
| // Assign the ranks in order to the collected list. |
| for (uint32_t i = 0; i < r->list_.size(); i++) { |
| r->nodes_[r->list_[i]]->rank = r->merged_[i]; |
| } |
| } |
| |
| static void Sort(const Vec<Node*>& nodes, Vec<int32_t>* delta) { |
| struct ByRank { |
| const Vec<Node*>* nodes; |
| bool operator()(int32_t a, int32_t b) const { |
| return (*nodes)[a]->rank < (*nodes)[b]->rank; |
| } |
| }; |
| ByRank cmp; |
| cmp.nodes = &nodes; |
| std::sort(delta->begin(), delta->end(), cmp); |
| } |
| |
| static void MoveToList( |
| GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst) { |
| for (auto& v : *src) { |
| int32_t w = v; |
| v = r->nodes_[w]->rank; // Replace v entry with its rank |
| r->nodes_[w]->visited = false; // Prepare for future DFS calls |
| dst->push_back(w); |
| } |
| } |
| |
| int GraphCycles::FindPath(GraphId idx, GraphId idy, int max_path_len, |
| GraphId path[]) const { |
| Rep* r = rep_; |
| if (FindNode(r, idx) == nullptr || FindNode(r, idy) == nullptr) return 0; |
| const int32_t x = NodeIndex(idx); |
| const int32_t y = NodeIndex(idy); |
| |
| // Forward depth first search starting at x until we hit y. |
| // As we descend into a node, we push it onto the path. |
| // As we leave a node, we remove it from the path. |
| int path_len = 0; |
| |
| NodeSet seen; |
| r->stack_.clear(); |
| r->stack_.push_back(x); |
| while (!r->stack_.empty()) { |
| int32_t n = r->stack_.back(); |
| r->stack_.pop_back(); |
| if (n < 0) { |
| // Marker to indicate that we are leaving a node |
| path_len--; |
| continue; |
| } |
| |
| if (path_len < max_path_len) { |
| path[path_len] = MakeId(n, rep_->nodes_[n]->version); |
| } |
| path_len++; |
| r->stack_.push_back(-1); // Will remove tentative path entry |
| |
| if (n == y) { |
| return path_len; |
| } |
| |
| HASH_FOR_EACH(w, r->nodes_[n]->out) { |
| if (seen.insert(w)) { |
| r->stack_.push_back(w); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| bool GraphCycles::IsReachable(GraphId x, GraphId y) const { |
| return FindPath(x, y, 0, nullptr) > 0; |
| } |
| |
| void GraphCycles::UpdateStackTrace(GraphId id, int priority, |
| int (*get_stack_trace)(void** stack, int)) { |
| Node* n = FindNode(rep_, id); |
| if (n == nullptr || n->priority >= priority) { |
| return; |
| } |
| n->nstack = (*get_stack_trace)(n->stack, ABSL_ARRAYSIZE(n->stack)); |
| n->priority = priority; |
| } |
| |
| int GraphCycles::GetStackTrace(GraphId id, void*** ptr) { |
| Node* n = FindNode(rep_, id); |
| if (n == nullptr) { |
| *ptr = nullptr; |
| return 0; |
| } else { |
| *ptr = n->stack; |
| return n->nstack; |
| } |
| } |
| |
| } // namespace synchronization_internal |
| } // namespace absl |
| |
| #endif // ABSL_LOW_LEVEL_ALLOC_MISSING |