| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/pacing/include/paced_sender.h" |
| |
| #include <assert.h> |
| |
| #include <map> |
| #include <queue> |
| #include <set> |
| |
| #include "webrtc/modules/interface/module_common_types.h" |
| #include "webrtc/modules/pacing/bitrate_prober.h" |
| #include "webrtc/system_wrappers/interface/clock.h" |
| #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" |
| #include "webrtc/system_wrappers/interface/field_trial.h" |
| #include "webrtc/system_wrappers/interface/logging.h" |
| |
| namespace { |
| // Time limit in milliseconds between packet bursts. |
| const int64_t kMinPacketLimitMs = 5; |
| |
| // Upper cap on process interval, in case process has not been called in a long |
| // time. |
| const int64_t kMaxIntervalTimeMs = 30; |
| |
| } // namespace |
| |
| namespace webrtc { |
| namespace paced_sender { |
| struct Packet { |
| Packet(PacedSender::Priority priority, |
| uint32_t ssrc, |
| uint16_t seq_number, |
| int64_t capture_time_ms, |
| int64_t enqueue_time_ms, |
| size_t length_in_bytes, |
| bool retransmission, |
| uint64_t enqueue_order) |
| : priority(priority), |
| ssrc(ssrc), |
| sequence_number(seq_number), |
| capture_time_ms(capture_time_ms), |
| enqueue_time_ms(enqueue_time_ms), |
| bytes(length_in_bytes), |
| retransmission(retransmission), |
| enqueue_order(enqueue_order) {} |
| |
| PacedSender::Priority priority; |
| uint32_t ssrc; |
| uint16_t sequence_number; |
| int64_t capture_time_ms; |
| int64_t enqueue_time_ms; |
| size_t bytes; |
| bool retransmission; |
| uint64_t enqueue_order; |
| std::list<Packet>::iterator this_it; |
| }; |
| |
| // Used by priority queue to sort packets. |
| struct Comparator { |
| bool operator()(const Packet* first, const Packet* second) { |
| // Highest prio = 0. |
| if (first->priority != second->priority) |
| return first->priority > second->priority; |
| |
| // Retransmissions go first. |
| if (second->retransmission && !first->retransmission) |
| return true; |
| |
| // Older frames have higher prio. |
| if (first->capture_time_ms != second->capture_time_ms) |
| return first->capture_time_ms > second->capture_time_ms; |
| |
| return first->enqueue_order > second->enqueue_order; |
| } |
| }; |
| |
| // Class encapsulating a priority queue with some extensions. |
| class PacketQueue { |
| public: |
| PacketQueue() : bytes_(0) {} |
| virtual ~PacketQueue() {} |
| |
| void Push(const Packet& packet) { |
| if (!AddToDupeSet(packet)) { |
| return; |
| } |
| // Store packet in list, use pointers in priority queue for cheaper moves. |
| // Packets have a handle to its own iterator in the list, for easy removal |
| // when popping from queue. |
| packet_list_.push_front(packet); |
| std::list<Packet>::iterator it = packet_list_.begin(); |
| it->this_it = it; // Handle for direct removal from list. |
| prio_queue_.push(&(*it)); // Pointer into list. |
| bytes_ += packet.bytes; |
| } |
| |
| const Packet& BeginPop() { |
| const Packet& packet = *prio_queue_.top(); |
| prio_queue_.pop(); |
| return packet; |
| } |
| |
| void CancelPop(const Packet& packet) { prio_queue_.push(&(*packet.this_it)); } |
| |
| void FinalizePop(const Packet& packet) { |
| RemoveFromDupeSet(packet); |
| bytes_ -= packet.bytes; |
| packet_list_.erase(packet.this_it); |
| } |
| |
| bool Empty() const { return prio_queue_.empty(); } |
| |
| size_t SizeInPackets() const { return prio_queue_.size(); } |
| |
| uint64_t SizeInBytes() const { return bytes_; } |
| |
| int64_t OldestEnqueueTime() const { |
| std::list<Packet>::const_reverse_iterator it = packet_list_.rbegin(); |
| if (it == packet_list_.rend()) |
| return 0; |
| return it->enqueue_time_ms; |
| } |
| |
| private: |
| // Try to add a packet to the set of ssrc/seqno identifiers currently in the |
| // queue. Return true if inserted, false if this is a duplicate. |
| bool AddToDupeSet(const Packet& packet) { |
| SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc); |
| if (it == dupe_map_.end()) { |
| // First for this ssrc, just insert. |
| dupe_map_[packet.ssrc].insert(packet.sequence_number); |
| return true; |
| } |
| |
| // Insert returns a pair, where second is a bool set to true if new element. |
| return it->second.insert(packet.sequence_number).second; |
| } |
| |
| void RemoveFromDupeSet(const Packet& packet) { |
| SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc); |
| assert(it != dupe_map_.end()); |
| it->second.erase(packet.sequence_number); |
| if (it->second.empty()) { |
| dupe_map_.erase(it); |
| } |
| } |
| |
| // List of packets, in the order the were enqueued. Since dequeueing may |
| // occur out of order, use list instead of vector. |
| std::list<Packet> packet_list_; |
| // Priority queue of the packets, sorted according to Comparator. |
| // Use pointers into list, to avoid moving whole struct within heap. |
| std::priority_queue<Packet*, std::vector<Packet*>, Comparator> prio_queue_; |
| // Total number of bytes in the queue. |
| uint64_t bytes_; |
| // Map<ssrc, set<seq_no> >, for checking duplicates. |
| typedef std::map<uint32_t, std::set<uint16_t> > SsrcSeqNoMap; |
| SsrcSeqNoMap dupe_map_; |
| }; |
| |
| class IntervalBudget { |
| public: |
| explicit IntervalBudget(int initial_target_rate_kbps) |
| : target_rate_kbps_(initial_target_rate_kbps), |
| bytes_remaining_(0) {} |
| |
| void set_target_rate_kbps(int target_rate_kbps) { |
| target_rate_kbps_ = target_rate_kbps; |
| bytes_remaining_ = |
| std::max(-kWindowMs * target_rate_kbps_ / 8, bytes_remaining_); |
| } |
| |
| void IncreaseBudget(int64_t delta_time_ms) { |
| int64_t bytes = target_rate_kbps_ * delta_time_ms / 8; |
| if (bytes_remaining_ < 0) { |
| // We overused last interval, compensate this interval. |
| bytes_remaining_ = bytes_remaining_ + bytes; |
| } else { |
| // If we underused last interval we can't use it this interval. |
| bytes_remaining_ = bytes; |
| } |
| } |
| |
| void UseBudget(size_t bytes) { |
| bytes_remaining_ = std::max(bytes_remaining_ - static_cast<int>(bytes), |
| -kWindowMs * target_rate_kbps_ / 8); |
| } |
| |
| size_t bytes_remaining() const { |
| return static_cast<size_t>(std::max(0, bytes_remaining_)); |
| } |
| |
| int target_rate_kbps() const { return target_rate_kbps_; } |
| |
| private: |
| static const int kWindowMs = 500; |
| |
| int target_rate_kbps_; |
| int bytes_remaining_; |
| }; |
| } // namespace paced_sender |
| |
| const float PacedSender::kDefaultPaceMultiplier = 2.5f; |
| |
| PacedSender::PacedSender(Clock* clock, |
| Callback* callback, |
| int bitrate_kbps, |
| int max_bitrate_kbps, |
| int min_bitrate_kbps) |
| : clock_(clock), |
| callback_(callback), |
| critsect_(CriticalSectionWrapper::CreateCriticalSection()), |
| enabled_(true), |
| paused_(false), |
| probing_enabled_(true), |
| media_budget_(new paced_sender::IntervalBudget(max_bitrate_kbps)), |
| padding_budget_(new paced_sender::IntervalBudget(min_bitrate_kbps)), |
| prober_(new BitrateProber()), |
| bitrate_bps_(1000 * bitrate_kbps), |
| time_last_update_us_(clock->TimeInMicroseconds()), |
| packets_(new paced_sender::PacketQueue()), |
| packet_counter_(0) { |
| UpdateBytesPerInterval(kMinPacketLimitMs); |
| } |
| |
| PacedSender::~PacedSender() {} |
| |
| void PacedSender::Pause() { |
| CriticalSectionScoped cs(critsect_.get()); |
| paused_ = true; |
| } |
| |
| void PacedSender::Resume() { |
| CriticalSectionScoped cs(critsect_.get()); |
| paused_ = false; |
| } |
| |
| void PacedSender::SetProbingEnabled(bool enabled) { |
| assert(packet_counter_ == 0); |
| probing_enabled_ = enabled; |
| } |
| |
| void PacedSender::SetStatus(bool enable) { |
| CriticalSectionScoped cs(critsect_.get()); |
| enabled_ = enable; |
| } |
| |
| bool PacedSender::Enabled() const { |
| CriticalSectionScoped cs(critsect_.get()); |
| return enabled_; |
| } |
| |
| void PacedSender::UpdateBitrate(int bitrate_kbps, |
| int max_bitrate_kbps, |
| int min_bitrate_kbps) { |
| CriticalSectionScoped cs(critsect_.get()); |
| media_budget_->set_target_rate_kbps(max_bitrate_kbps); |
| padding_budget_->set_target_rate_kbps(min_bitrate_kbps); |
| bitrate_bps_ = 1000 * bitrate_kbps; |
| } |
| |
| bool PacedSender::SendPacket(Priority priority, uint32_t ssrc, |
| uint16_t sequence_number, int64_t capture_time_ms, size_t bytes, |
| bool retransmission) { |
| CriticalSectionScoped cs(critsect_.get()); |
| |
| if (!enabled_) { |
| return true; // We can send now. |
| } |
| if (probing_enabled_ && !prober_->IsProbing()) { |
| prober_->SetEnabled(true); |
| } |
| prober_->MaybeInitializeProbe(bitrate_bps_); |
| |
| if (capture_time_ms < 0) { |
| capture_time_ms = clock_->TimeInMilliseconds(); |
| } |
| |
| packets_->Push(paced_sender::Packet( |
| priority, ssrc, sequence_number, capture_time_ms, |
| clock_->TimeInMilliseconds(), bytes, retransmission, packet_counter_++)); |
| return false; |
| } |
| |
| int64_t PacedSender::ExpectedQueueTimeMs() const { |
| CriticalSectionScoped cs(critsect_.get()); |
| int target_rate = media_budget_->target_rate_kbps(); |
| assert(target_rate > 0); |
| return static_cast<int64_t>(packets_->SizeInBytes() * 8 / target_rate); |
| } |
| |
| size_t PacedSender::QueueSizePackets() const { |
| CriticalSectionScoped cs(critsect_.get()); |
| return packets_->SizeInPackets(); |
| } |
| |
| int64_t PacedSender::QueueInMs() const { |
| CriticalSectionScoped cs(critsect_.get()); |
| |
| int64_t oldest_packet = packets_->OldestEnqueueTime(); |
| if (oldest_packet == 0) |
| return 0; |
| |
| return clock_->TimeInMilliseconds() - oldest_packet; |
| } |
| |
| int64_t PacedSender::TimeUntilNextProcess() { |
| CriticalSectionScoped cs(critsect_.get()); |
| if (prober_->IsProbing()) { |
| int64_t ret = prober_->TimeUntilNextProbe(clock_->TimeInMilliseconds()); |
| if (ret >= 0) { |
| return ret; |
| } |
| } |
| int64_t elapsed_time_us = clock_->TimeInMicroseconds() - time_last_update_us_; |
| int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000; |
| return std::max<int64_t>(kMinPacketLimitMs - elapsed_time_ms, 0); |
| } |
| |
| int32_t PacedSender::Process() { |
| int64_t now_us = clock_->TimeInMicroseconds(); |
| CriticalSectionScoped cs(critsect_.get()); |
| int64_t elapsed_time_ms = (now_us - time_last_update_us_ + 500) / 1000; |
| time_last_update_us_ = now_us; |
| if (!enabled_) { |
| return 0; |
| } |
| if (!paused_) { |
| if (elapsed_time_ms > 0) { |
| int64_t delta_time_ms = std::min(kMaxIntervalTimeMs, elapsed_time_ms); |
| UpdateBytesPerInterval(delta_time_ms); |
| } |
| while (!packets_->Empty()) { |
| if (media_budget_->bytes_remaining() == 0 && !prober_->IsProbing()) { |
| return 0; |
| } |
| |
| // Since we need to release the lock in order to send, we first pop the |
| // element from the priority queue but keep it in storage, so that we can |
| // reinsert it if send fails. |
| const paced_sender::Packet& packet = packets_->BeginPop(); |
| if (SendPacket(packet)) { |
| // Send succeeded, remove it from the queue. |
| packets_->FinalizePop(packet); |
| if (prober_->IsProbing()) { |
| return 0; |
| } |
| } else { |
| // Send failed, put it back into the queue. |
| packets_->CancelPop(packet); |
| return 0; |
| } |
| } |
| |
| size_t padding_needed; |
| if (prober_->IsProbing() && ProbingExperimentIsEnabled()) |
| padding_needed = prober_->RecommendedPacketSize(); |
| else |
| padding_needed = padding_budget_->bytes_remaining(); |
| |
| if (padding_needed > 0) |
| SendPadding(static_cast<size_t>(padding_needed)); |
| } |
| return 0; |
| } |
| |
| bool PacedSender::SendPacket(const paced_sender::Packet& packet) { |
| critsect_->Leave(); |
| const bool success = callback_->TimeToSendPacket(packet.ssrc, |
| packet.sequence_number, |
| packet.capture_time_ms, |
| packet.retransmission); |
| critsect_->Enter(); |
| |
| if (success) { |
| // Update media bytes sent. |
| prober_->PacketSent(clock_->TimeInMilliseconds(), packet.bytes); |
| media_budget_->UseBudget(packet.bytes); |
| padding_budget_->UseBudget(packet.bytes); |
| } |
| |
| return success; |
| } |
| |
| void PacedSender::SendPadding(size_t padding_needed) { |
| critsect_->Leave(); |
| size_t bytes_sent = callback_->TimeToSendPadding(padding_needed); |
| critsect_->Enter(); |
| |
| if (bytes_sent > 0) { |
| prober_->PacketSent(clock_->TimeInMilliseconds(), bytes_sent); |
| media_budget_->UseBudget(bytes_sent); |
| padding_budget_->UseBudget(bytes_sent); |
| } |
| } |
| |
| void PacedSender::UpdateBytesPerInterval(int64_t delta_time_ms) { |
| media_budget_->IncreaseBudget(delta_time_ms); |
| padding_budget_->IncreaseBudget(delta_time_ms); |
| } |
| |
| bool PacedSender::ProbingExperimentIsEnabled() const { |
| return webrtc::field_trial::FindFullName("WebRTC-BitrateProbing") == |
| "Enabled"; |
| } |
| } // namespace webrtc |