blob: bf1dc35e75cb567305c38aef2ca011d083366032 [file] [log] [blame]
/*
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/p2p/base/dtlstransportchannel.h"
#include "webrtc/p2p/base/common.h"
#include "webrtc/base/buffer.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/dscp.h"
#include "webrtc/base/messagequeue.h"
#include "webrtc/base/sslstreamadapter.h"
#include "webrtc/base/stream.h"
#include "webrtc/base/thread.h"
namespace cricket {
// We don't pull the RTP constants from rtputils.h, to avoid a layer violation.
static const size_t kDtlsRecordHeaderLen = 13;
static const size_t kMaxDtlsPacketLen = 2048;
static const size_t kMinRtpPacketLen = 12;
// Maximum number of pending packets in the queue. Packets are read immediately
// after they have been written, so a capacity of "1" is sufficient.
static const size_t kMaxPendingPackets = 1;
static bool IsDtlsPacket(const char* data, size_t len) {
const uint8* u = reinterpret_cast<const uint8*>(data);
return (len >= kDtlsRecordHeaderLen && (u[0] > 19 && u[0] < 64));
}
static bool IsRtpPacket(const char* data, size_t len) {
const uint8* u = reinterpret_cast<const uint8*>(data);
return (len >= kMinRtpPacketLen && (u[0] & 0xC0) == 0x80);
}
StreamInterfaceChannel::StreamInterfaceChannel(TransportChannel* channel)
: channel_(channel),
state_(rtc::SS_OPEN),
packets_(kMaxPendingPackets, kMaxDtlsPacketLen) {
}
rtc::StreamResult StreamInterfaceChannel::Read(void* buffer,
size_t buffer_len,
size_t* read,
int* error) {
if (state_ == rtc::SS_CLOSED)
return rtc::SR_EOS;
if (state_ == rtc::SS_OPENING)
return rtc::SR_BLOCK;
if (!packets_.ReadFront(buffer, buffer_len, read)) {
return rtc::SR_BLOCK;
}
return rtc::SR_SUCCESS;
}
rtc::StreamResult StreamInterfaceChannel::Write(const void* data,
size_t data_len,
size_t* written,
int* error) {
// Always succeeds, since this is an unreliable transport anyway.
// TODO: Should this block if channel_'s temporarily unwritable?
rtc::PacketOptions packet_options;
channel_->SendPacket(static_cast<const char*>(data), data_len,
packet_options);
if (written) {
*written = data_len;
}
return rtc::SR_SUCCESS;
}
bool StreamInterfaceChannel::OnPacketReceived(const char* data, size_t size) {
// We force a read event here to ensure that we don't overflow our queue.
bool ret = packets_.WriteBack(data, size, NULL);
CHECK(ret) << "Failed to write packet to queue.";
if (ret) {
SignalEvent(this, rtc::SE_READ, 0);
}
return ret;
}
DtlsTransportChannelWrapper::DtlsTransportChannelWrapper(
Transport* transport,
TransportChannelImpl* channel)
: TransportChannelImpl(channel->content_name(), channel->component()),
transport_(transport),
worker_thread_(rtc::Thread::Current()),
channel_(channel),
downward_(NULL),
dtls_state_(STATE_NONE),
ssl_role_(rtc::SSL_CLIENT),
ssl_max_version_(rtc::SSL_PROTOCOL_DTLS_10) {
channel_->SignalReadableState.connect(this,
&DtlsTransportChannelWrapper::OnReadableState);
channel_->SignalWritableState.connect(this,
&DtlsTransportChannelWrapper::OnWritableState);
channel_->SignalReadPacket.connect(this,
&DtlsTransportChannelWrapper::OnReadPacket);
channel_->SignalReadyToSend.connect(this,
&DtlsTransportChannelWrapper::OnReadyToSend);
channel_->SignalRequestSignaling.connect(this,
&DtlsTransportChannelWrapper::OnRequestSignaling);
channel_->SignalCandidateReady.connect(this,
&DtlsTransportChannelWrapper::OnCandidateReady);
channel_->SignalCandidatesAllocationDone.connect(this,
&DtlsTransportChannelWrapper::OnCandidatesAllocationDone);
channel_->SignalRoleConflict.connect(this,
&DtlsTransportChannelWrapper::OnRoleConflict);
channel_->SignalRouteChange.connect(this,
&DtlsTransportChannelWrapper::OnRouteChange);
channel_->SignalConnectionRemoved.connect(this,
&DtlsTransportChannelWrapper::OnConnectionRemoved);
channel_->SignalReceivingState.connect(this,
&DtlsTransportChannelWrapper::OnReceivingState);
}
DtlsTransportChannelWrapper::~DtlsTransportChannelWrapper() {
}
void DtlsTransportChannelWrapper::Connect() {
// We should only get a single call to Connect.
ASSERT(dtls_state_ == STATE_NONE ||
dtls_state_ == STATE_OFFERED ||
dtls_state_ == STATE_ACCEPTED);
channel_->Connect();
}
bool DtlsTransportChannelWrapper::SetLocalCertificate(
const rtc::scoped_refptr<rtc::RTCCertificate>& certificate) {
if (dtls_state_ != STATE_NONE) {
if (certificate == local_certificate_) {
// This may happen during renegotiation.
LOG_J(LS_INFO, this) << "Ignoring identical DTLS identity";
return true;
} else {
LOG_J(LS_ERROR, this) << "Can't change DTLS local identity in this state";
return false;
}
}
if (certificate) {
local_certificate_ = certificate;
dtls_state_ = STATE_OFFERED;
} else {
LOG_J(LS_INFO, this) << "NULL DTLS identity supplied. Not doing DTLS";
}
return true;
}
rtc::scoped_refptr<rtc::RTCCertificate>
DtlsTransportChannelWrapper::GetLocalCertificate() const {
return local_certificate_;
}
bool DtlsTransportChannelWrapper::SetSslMaxProtocolVersion(
rtc::SSLProtocolVersion version) {
if (dtls_state_ != STATE_NONE) {
LOG(LS_ERROR) << "Not changing max. protocol version "
<< "while DTLS is negotiating";
return false;
}
ssl_max_version_ = version;
return true;
}
bool DtlsTransportChannelWrapper::SetSslRole(rtc::SSLRole role) {
if (dtls_state_ == STATE_OPEN) {
if (ssl_role_ != role) {
LOG(LS_ERROR) << "SSL Role can't be reversed after the session is setup.";
return false;
}
return true;
}
ssl_role_ = role;
return true;
}
bool DtlsTransportChannelWrapper::GetSslRole(rtc::SSLRole* role) const {
*role = ssl_role_;
return true;
}
bool DtlsTransportChannelWrapper::GetSslCipher(std::string* cipher) {
if (dtls_state_ != STATE_OPEN) {
return false;
}
return dtls_->GetSslCipher(cipher);
}
bool DtlsTransportChannelWrapper::SetRemoteFingerprint(
const std::string& digest_alg,
const uint8* digest,
size_t digest_len) {
rtc::Buffer remote_fingerprint_value(digest, digest_len);
if (dtls_state_ != STATE_NONE &&
remote_fingerprint_value_ == remote_fingerprint_value &&
!digest_alg.empty()) {
// This may happen during renegotiation.
LOG_J(LS_INFO, this) << "Ignoring identical remote DTLS fingerprint";
return true;
}
// Allow SetRemoteFingerprint with a NULL digest even if SetLocalIdentity
// hasn't been called.
if (dtls_state_ > STATE_OFFERED ||
(dtls_state_ == STATE_NONE && !digest_alg.empty())) {
LOG_J(LS_ERROR, this) << "Can't set DTLS remote settings in this state.";
return false;
}
if (digest_alg.empty()) {
LOG_J(LS_INFO, this) << "Other side didn't support DTLS.";
dtls_state_ = STATE_NONE;
return true;
}
// At this point we know we are doing DTLS
remote_fingerprint_value_ = remote_fingerprint_value.Pass();
remote_fingerprint_algorithm_ = digest_alg;
if (!SetupDtls()) {
dtls_state_ = STATE_CLOSED;
return false;
}
dtls_state_ = STATE_ACCEPTED;
return true;
}
bool DtlsTransportChannelWrapper::GetRemoteSSLCertificate(
rtc::SSLCertificate** cert) const {
if (!dtls_)
return false;
return dtls_->GetPeerCertificate(cert);
}
bool DtlsTransportChannelWrapper::SetupDtls() {
StreamInterfaceChannel* downward = new StreamInterfaceChannel(channel_);
dtls_.reset(rtc::SSLStreamAdapter::Create(downward));
if (!dtls_) {
LOG_J(LS_ERROR, this) << "Failed to create DTLS adapter.";
delete downward;
return false;
}
downward_ = downward;
dtls_->SetIdentity(local_certificate_->identity()->GetReference());
dtls_->SetMode(rtc::SSL_MODE_DTLS);
dtls_->SetMaxProtocolVersion(ssl_max_version_);
dtls_->SetServerRole(ssl_role_);
dtls_->SignalEvent.connect(this, &DtlsTransportChannelWrapper::OnDtlsEvent);
if (!dtls_->SetPeerCertificateDigest(
remote_fingerprint_algorithm_,
reinterpret_cast<unsigned char*>(remote_fingerprint_value_.data()),
remote_fingerprint_value_.size())) {
LOG_J(LS_ERROR, this) << "Couldn't set DTLS certificate digest.";
return false;
}
// Set up DTLS-SRTP, if it's been enabled.
if (!srtp_ciphers_.empty()) {
if (!dtls_->SetDtlsSrtpCiphers(srtp_ciphers_)) {
LOG_J(LS_ERROR, this) << "Couldn't set DTLS-SRTP ciphers.";
return false;
}
} else {
LOG_J(LS_INFO, this) << "Not using DTLS.";
}
LOG_J(LS_INFO, this) << "DTLS setup complete.";
return true;
}
bool DtlsTransportChannelWrapper::SetSrtpCiphers(
const std::vector<std::string>& ciphers) {
if (srtp_ciphers_ == ciphers)
return true;
if (dtls_state_ == STATE_STARTED) {
LOG(LS_WARNING) << "Ignoring new SRTP ciphers while DTLS is negotiating";
return true;
}
if (dtls_state_ == STATE_OPEN) {
// We don't support DTLS renegotiation currently. If new set of srtp ciphers
// are different than what's being used currently, we will not use it.
// So for now, let's be happy (or sad) with a warning message.
std::string current_srtp_cipher;
if (!dtls_->GetDtlsSrtpCipher(&current_srtp_cipher)) {
LOG(LS_ERROR) << "Failed to get the current SRTP cipher for DTLS channel";
return false;
}
const std::vector<std::string>::const_iterator iter =
std::find(ciphers.begin(), ciphers.end(), current_srtp_cipher);
if (iter == ciphers.end()) {
std::string requested_str;
for (size_t i = 0; i < ciphers.size(); ++i) {
requested_str.append(" ");
requested_str.append(ciphers[i]);
requested_str.append(" ");
}
LOG(LS_WARNING) << "Ignoring new set of SRTP ciphers, as DTLS "
<< "renegotiation is not supported currently "
<< "current cipher = " << current_srtp_cipher << " and "
<< "requested = " << "[" << requested_str << "]";
}
return true;
}
if (dtls_state_ != STATE_NONE &&
dtls_state_ != STATE_OFFERED &&
dtls_state_ != STATE_ACCEPTED) {
ASSERT(false);
return false;
}
srtp_ciphers_ = ciphers;
return true;
}
bool DtlsTransportChannelWrapper::GetSrtpCipher(std::string* cipher) {
if (dtls_state_ != STATE_OPEN) {
return false;
}
return dtls_->GetDtlsSrtpCipher(cipher);
}
// Called from upper layers to send a media packet.
int DtlsTransportChannelWrapper::SendPacket(
const char* data, size_t size,
const rtc::PacketOptions& options, int flags) {
int result = -1;
switch (dtls_state_) {
case STATE_OFFERED:
// We don't know if we are doing DTLS yet, so we can't send a packet.
// TODO(ekr@rtfm.com): assert here?
result = -1;
break;
case STATE_STARTED:
case STATE_ACCEPTED:
// Can't send data until the connection is active
result = -1;
break;
case STATE_OPEN:
if (flags & PF_SRTP_BYPASS) {
ASSERT(!srtp_ciphers_.empty());
if (!IsRtpPacket(data, size)) {
result = -1;
break;
}
result = channel_->SendPacket(data, size, options);
} else {
result = (dtls_->WriteAll(data, size, NULL, NULL) ==
rtc::SR_SUCCESS) ? static_cast<int>(size) : -1;
}
break;
// Not doing DTLS.
case STATE_NONE:
result = channel_->SendPacket(data, size, options);
break;
case STATE_CLOSED: // Can't send anything when we're closed.
return -1;
}
return result;
}
// The state transition logic here is as follows:
// (1) If we're not doing DTLS-SRTP, then the state is just the
// state of the underlying impl()
// (2) If we're doing DTLS-SRTP:
// - Prior to the DTLS handshake, the state is neither readable or
// writable
// - When the impl goes writable for the first time we
// start the DTLS handshake
// - Once the DTLS handshake completes, the state is that of the
// impl again
void DtlsTransportChannelWrapper::OnReadableState(TransportChannel* channel) {
ASSERT(rtc::Thread::Current() == worker_thread_);
ASSERT(channel == channel_);
LOG_J(LS_VERBOSE, this)
<< "DTLSTransportChannelWrapper: channel readable state changed to "
<< channel_->readable();
if (dtls_state_ == STATE_NONE || dtls_state_ == STATE_OPEN) {
set_readable(channel_->readable());
// Note: SignalReadableState fired by set_readable.
}
}
void DtlsTransportChannelWrapper::OnWritableState(TransportChannel* channel) {
ASSERT(rtc::Thread::Current() == worker_thread_);
ASSERT(channel == channel_);
LOG_J(LS_VERBOSE, this)
<< "DTLSTransportChannelWrapper: channel writable state changed to "
<< channel_->writable();
switch (dtls_state_) {
case STATE_NONE:
case STATE_OPEN:
set_writable(channel_->writable());
// Note: SignalWritableState fired by set_writable.
break;
case STATE_OFFERED:
// Do nothing
break;
case STATE_ACCEPTED:
if (!MaybeStartDtls()) {
// This should never happen:
// Because we are operating in a nonblocking mode and all
// incoming packets come in via OnReadPacket(), which rejects
// packets in this state, the incoming queue must be empty. We
// ignore write errors, thus any errors must be because of
// configuration and therefore are our fault.
// Note that in non-debug configurations, failure in
// MaybeStartDtls() changes the state to STATE_CLOSED.
ASSERT(false);
}
break;
case STATE_STARTED:
// Do nothing
break;
case STATE_CLOSED:
// Should not happen. Do nothing
break;
}
}
void DtlsTransportChannelWrapper::OnReceivingState(TransportChannel* channel) {
ASSERT(rtc::Thread::Current() == worker_thread_);
ASSERT(channel == channel_);
LOG_J(LS_VERBOSE, this)
<< "DTLSTransportChannelWrapper: channel receiving state changed to "
<< channel_->receiving();
if (dtls_state_ == STATE_NONE || dtls_state_ == STATE_OPEN) {
// Note: SignalReceivingState fired by set_receiving.
set_receiving(channel_->receiving());
}
}
void DtlsTransportChannelWrapper::OnReadPacket(
TransportChannel* channel, const char* data, size_t size,
const rtc::PacketTime& packet_time, int flags) {
ASSERT(rtc::Thread::Current() == worker_thread_);
ASSERT(channel == channel_);
ASSERT(flags == 0);
switch (dtls_state_) {
case STATE_NONE:
// We are not doing DTLS
SignalReadPacket(this, data, size, packet_time, 0);
break;
case STATE_OFFERED:
// Currently drop the packet, but we might in future
// decide to take this as evidence that the other
// side is ready to do DTLS and start the handshake
// on our end
LOG_J(LS_WARNING, this) << "Received packet before we know if we are "
<< "doing DTLS or not; dropping.";
break;
case STATE_ACCEPTED:
// Drop packets received before DTLS has actually started
LOG_J(LS_INFO, this) << "Dropping packet received before DTLS started.";
break;
case STATE_STARTED:
case STATE_OPEN:
// We should only get DTLS or SRTP packets; STUN's already been demuxed.
// Is this potentially a DTLS packet?
if (IsDtlsPacket(data, size)) {
if (!HandleDtlsPacket(data, size)) {
LOG_J(LS_ERROR, this) << "Failed to handle DTLS packet.";
return;
}
} else {
// Not a DTLS packet; our handshake should be complete by now.
if (dtls_state_ != STATE_OPEN) {
LOG_J(LS_ERROR, this) << "Received non-DTLS packet before DTLS "
<< "complete.";
return;
}
// And it had better be a SRTP packet.
if (!IsRtpPacket(data, size)) {
LOG_J(LS_ERROR, this) << "Received unexpected non-DTLS packet.";
return;
}
// Sanity check.
ASSERT(!srtp_ciphers_.empty());
// Signal this upwards as a bypass packet.
SignalReadPacket(this, data, size, packet_time, PF_SRTP_BYPASS);
}
break;
case STATE_CLOSED:
// This shouldn't be happening. Drop the packet
break;
}
}
void DtlsTransportChannelWrapper::OnReadyToSend(TransportChannel* channel) {
if (writable()) {
SignalReadyToSend(this);
}
}
void DtlsTransportChannelWrapper::OnDtlsEvent(rtc::StreamInterface* dtls,
int sig, int err) {
ASSERT(rtc::Thread::Current() == worker_thread_);
ASSERT(dtls == dtls_.get());
if (sig & rtc::SE_OPEN) {
// This is the first time.
LOG_J(LS_INFO, this) << "DTLS handshake complete.";
if (dtls_->GetState() == rtc::SS_OPEN) {
// The check for OPEN shouldn't be necessary but let's make
// sure we don't accidentally frob the state if it's closed.
dtls_state_ = STATE_OPEN;
set_readable(true);
set_writable(true);
}
}
if (sig & rtc::SE_READ) {
char buf[kMaxDtlsPacketLen];
size_t read;
if (dtls_->Read(buf, sizeof(buf), &read, NULL) == rtc::SR_SUCCESS) {
SignalReadPacket(this, buf, read, rtc::CreatePacketTime(0), 0);
}
}
if (sig & rtc::SE_CLOSE) {
ASSERT(sig == rtc::SE_CLOSE); // SE_CLOSE should be by itself.
if (!err) {
LOG_J(LS_INFO, this) << "DTLS channel closed";
} else {
LOG_J(LS_INFO, this) << "DTLS channel error, code=" << err;
}
set_readable(false);
set_writable(false);
dtls_state_ = STATE_CLOSED;
}
}
bool DtlsTransportChannelWrapper::MaybeStartDtls() {
if (channel_->writable()) {
if (dtls_->StartSSLWithPeer()) {
LOG_J(LS_ERROR, this) << "Couldn't start DTLS handshake";
dtls_state_ = STATE_CLOSED;
return false;
}
LOG_J(LS_INFO, this)
<< "DtlsTransportChannelWrapper: Started DTLS handshake";
dtls_state_ = STATE_STARTED;
}
return true;
}
// Called from OnReadPacket when a DTLS packet is received.
bool DtlsTransportChannelWrapper::HandleDtlsPacket(const char* data,
size_t size) {
// Sanity check we're not passing junk that
// just looks like DTLS.
const uint8* tmp_data = reinterpret_cast<const uint8* >(data);
size_t tmp_size = size;
while (tmp_size > 0) {
if (tmp_size < kDtlsRecordHeaderLen)
return false; // Too short for the header
size_t record_len = (tmp_data[11] << 8) | (tmp_data[12]);
if ((record_len + kDtlsRecordHeaderLen) > tmp_size)
return false; // Body too short
tmp_data += record_len + kDtlsRecordHeaderLen;
tmp_size -= record_len + kDtlsRecordHeaderLen;
}
// Looks good. Pass to the SIC which ends up being passed to
// the DTLS stack.
return downward_->OnPacketReceived(data, size);
}
void DtlsTransportChannelWrapper::OnRequestSignaling(
TransportChannelImpl* channel) {
ASSERT(channel == channel_);
SignalRequestSignaling(this);
}
void DtlsTransportChannelWrapper::OnCandidateReady(
TransportChannelImpl* channel, const Candidate& c) {
ASSERT(channel == channel_);
SignalCandidateReady(this, c);
}
void DtlsTransportChannelWrapper::OnCandidatesAllocationDone(
TransportChannelImpl* channel) {
ASSERT(channel == channel_);
SignalCandidatesAllocationDone(this);
}
void DtlsTransportChannelWrapper::OnRoleConflict(
TransportChannelImpl* channel) {
ASSERT(channel == channel_);
SignalRoleConflict(this);
}
void DtlsTransportChannelWrapper::OnRouteChange(
TransportChannel* channel, const Candidate& candidate) {
ASSERT(channel == channel_);
SignalRouteChange(this, candidate);
}
void DtlsTransportChannelWrapper::OnConnectionRemoved(
TransportChannelImpl* channel) {
ASSERT(channel == channel_);
SignalConnectionRemoved(this);
}
} // namespace cricket