|  | /* | 
|  | *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "common_audio/audio_converter.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <cstddef> | 
|  | #include <cstdio> | 
|  | #include <memory> | 
|  | #include <vector> | 
|  |  | 
|  | #include "common_audio/channel_buffer.h" | 
|  | #include "common_audio/resampler/push_sinc_resampler.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | typedef std::unique_ptr<ChannelBuffer<float>> ScopedBuffer; | 
|  |  | 
|  | // Sets the signal value to increase by `data` with every sample. | 
|  | ScopedBuffer CreateBuffer(const std::vector<float>& data, size_t frames) { | 
|  | const size_t num_channels = data.size(); | 
|  | ScopedBuffer sb(new ChannelBuffer<float>(frames, num_channels)); | 
|  | for (size_t i = 0; i < num_channels; ++i) | 
|  | for (size_t j = 0; j < frames; ++j) | 
|  | sb->channels()[i][j] = data[i] * j; | 
|  | return sb; | 
|  | } | 
|  |  | 
|  | void VerifyParams(const ChannelBuffer<float>& ref, | 
|  | const ChannelBuffer<float>& test) { | 
|  | EXPECT_EQ(ref.num_channels(), test.num_channels()); | 
|  | EXPECT_EQ(ref.num_frames(), test.num_frames()); | 
|  | } | 
|  |  | 
|  | // Computes the best SNR based on the error between `ref_frame` and | 
|  | // `test_frame`. It searches around `expected_delay` in samples between the | 
|  | // signals to compensate for the resampling delay. | 
|  | float ComputeSNR(const ChannelBuffer<float>& ref, | 
|  | const ChannelBuffer<float>& test, | 
|  | size_t expected_delay) { | 
|  | VerifyParams(ref, test); | 
|  | float best_snr = 0; | 
|  | size_t best_delay = 0; | 
|  |  | 
|  | // Search within one sample of the expected delay. | 
|  | for (size_t delay = std::max(expected_delay, static_cast<size_t>(1)) - 1; | 
|  | delay <= std::min(expected_delay + 1, ref.num_frames()); ++delay) { | 
|  | float mse = 0; | 
|  | float variance = 0; | 
|  | float mean = 0; | 
|  | for (size_t i = 0; i < ref.num_channels(); ++i) { | 
|  | for (size_t j = 0; j < ref.num_frames() - delay; ++j) { | 
|  | float error = ref.channels()[i][j] - test.channels()[i][j + delay]; | 
|  | mse += error * error; | 
|  | variance += ref.channels()[i][j] * ref.channels()[i][j]; | 
|  | mean += ref.channels()[i][j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | const size_t length = ref.num_channels() * (ref.num_frames() - delay); | 
|  | mse /= length; | 
|  | variance /= length; | 
|  | mean /= length; | 
|  | variance -= mean * mean; | 
|  | float snr = 100;  // We assign 100 dB to the zero-error case. | 
|  | if (mse > 0) | 
|  | snr = 10 * std::log10(variance / mse); | 
|  | if (snr > best_snr) { | 
|  | best_snr = snr; | 
|  | best_delay = delay; | 
|  | } | 
|  | } | 
|  | printf("SNR=%.1f dB at delay=%zu\n", best_snr, best_delay); | 
|  | return best_snr; | 
|  | } | 
|  |  | 
|  | // Sets the source to a linearly increasing signal for which we can easily | 
|  | // generate a reference. Runs the AudioConverter and ensures the output has | 
|  | // sufficiently high SNR relative to the reference. | 
|  | void RunAudioConverterTest(size_t src_channels, | 
|  | int src_sample_rate_hz, | 
|  | size_t dst_channels, | 
|  | int dst_sample_rate_hz) { | 
|  | const float kSrcLeft = 0.0002f; | 
|  | const float kSrcRight = 0.0001f; | 
|  | const float resampling_factor = | 
|  | (1.f * src_sample_rate_hz) / dst_sample_rate_hz; | 
|  | const float dst_left = resampling_factor * kSrcLeft; | 
|  | const float dst_right = resampling_factor * kSrcRight; | 
|  | const float dst_mono = (dst_left + dst_right) / 2; | 
|  | const size_t src_frames = static_cast<size_t>(src_sample_rate_hz / 100); | 
|  | const size_t dst_frames = static_cast<size_t>(dst_sample_rate_hz / 100); | 
|  |  | 
|  | std::vector<float> src_data(1, kSrcLeft); | 
|  | if (src_channels == 2) | 
|  | src_data.push_back(kSrcRight); | 
|  | ScopedBuffer src_buffer = CreateBuffer(src_data, src_frames); | 
|  |  | 
|  | std::vector<float> dst_data(1, 0); | 
|  | std::vector<float> ref_data; | 
|  | if (dst_channels == 1) { | 
|  | if (src_channels == 1) | 
|  | ref_data.push_back(dst_left); | 
|  | else | 
|  | ref_data.push_back(dst_mono); | 
|  | } else { | 
|  | dst_data.push_back(0); | 
|  | ref_data.push_back(dst_left); | 
|  | if (src_channels == 1) | 
|  | ref_data.push_back(dst_left); | 
|  | else | 
|  | ref_data.push_back(dst_right); | 
|  | } | 
|  | ScopedBuffer dst_buffer = CreateBuffer(dst_data, dst_frames); | 
|  | ScopedBuffer ref_buffer = CreateBuffer(ref_data, dst_frames); | 
|  |  | 
|  | // The sinc resampler has a known delay, which we compute here. | 
|  | const size_t delay_frames = | 
|  | src_sample_rate_hz == dst_sample_rate_hz | 
|  | ? 0 | 
|  | : static_cast<size_t>( | 
|  | PushSincResampler::AlgorithmicDelaySeconds(src_sample_rate_hz) * | 
|  | dst_sample_rate_hz); | 
|  | // SNR reported on the same line later. | 
|  | printf("(%zu, %d Hz) -> (%zu, %d Hz) ", src_channels, src_sample_rate_hz, | 
|  | dst_channels, dst_sample_rate_hz); | 
|  |  | 
|  | std::unique_ptr<AudioConverter> converter = AudioConverter::Create( | 
|  | src_channels, src_frames, dst_channels, dst_frames); | 
|  | converter->Convert(src_buffer->channels(), src_buffer->size(), | 
|  | dst_buffer->channels(), dst_buffer->size()); | 
|  |  | 
|  | EXPECT_LT(43.f, | 
|  | ComputeSNR(*ref_buffer.get(), *dst_buffer.get(), delay_frames)); | 
|  | } | 
|  |  | 
|  | TEST(AudioConverterTest, ConversionsPassSNRThreshold) { | 
|  | const int kSampleRates[] = {8000, 11025, 16000, 22050, 32000, 44100, 48000}; | 
|  | const int kChannels[] = {1, 2}; | 
|  | for (int src_rate : kSampleRates) { | 
|  | for (int dst_rate : kSampleRates) { | 
|  | for (size_t src_channels : kChannels) { | 
|  | for (size_t dst_channels : kChannels) { | 
|  | RunAudioConverterTest(src_channels, src_rate, dst_channels, dst_rate); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |