| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "common_video/h264/sps_parser.h" |
| |
| #include <memory> |
| #include <vector> |
| |
| #include "common_video/h264/h264_common.h" |
| #include "rtc_base/bitbuffer.h" |
| #include "rtc_base/logging.h" |
| |
| typedef rtc::Optional<webrtc::SpsParser::SpsState> OptionalSps; |
| |
| #define RETURN_EMPTY_ON_FAIL(x) \ |
| if (!(x)) { \ |
| return OptionalSps(); \ |
| } |
| |
| namespace webrtc { |
| |
| // General note: this is based off the 02/2014 version of the H.264 standard. |
| // You can find it on this page: |
| // http://www.itu.int/rec/T-REC-H.264 |
| |
| // Unpack RBSP and parse SPS state from the supplied buffer. |
| rtc::Optional<SpsParser::SpsState> SpsParser::ParseSps(const uint8_t* data, |
| size_t length) { |
| std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length); |
| rtc::BitBuffer bit_buffer(unpacked_buffer.data(), unpacked_buffer.size()); |
| return ParseSpsUpToVui(&bit_buffer); |
| } |
| |
| rtc::Optional<SpsParser::SpsState> SpsParser::ParseSpsUpToVui( |
| rtc::BitBuffer* buffer) { |
| // Now, we need to use a bit buffer to parse through the actual AVC SPS |
| // format. See Section 7.3.2.1.1 ("Sequence parameter set data syntax") of the |
| // H.264 standard for a complete description. |
| // Since we only care about resolution, we ignore the majority of fields, but |
| // we still have to actively parse through a lot of the data, since many of |
| // the fields have variable size. |
| // We're particularly interested in: |
| // chroma_format_idc -> affects crop units |
| // pic_{width,height}_* -> resolution of the frame in macroblocks (16x16). |
| // frame_crop_*_offset -> crop information |
| |
| SpsState sps; |
| |
| // The golomb values we have to read, not just consume. |
| uint32_t golomb_ignored; |
| |
| // chroma_format_idc will be ChromaArrayType if separate_colour_plane_flag is |
| // 0. It defaults to 1, when not specified. |
| uint32_t chroma_format_idc = 1; |
| |
| // profile_idc: u(8). We need it to determine if we need to read/skip chroma |
| // formats. |
| uint8_t profile_idc; |
| RETURN_EMPTY_ON_FAIL(buffer->ReadUInt8(&profile_idc)); |
| // constraint_set0_flag through constraint_set5_flag + reserved_zero_2bits |
| // 1 bit each for the flags + 2 bits = 8 bits = 1 byte. |
| RETURN_EMPTY_ON_FAIL(buffer->ConsumeBytes(1)); |
| // level_idc: u(8) |
| RETURN_EMPTY_ON_FAIL(buffer->ConsumeBytes(1)); |
| // seq_parameter_set_id: ue(v) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&sps.id)); |
| sps.separate_colour_plane_flag = 0; |
| // See if profile_idc has chroma format information. |
| if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 || |
| profile_idc == 244 || profile_idc == 44 || profile_idc == 83 || |
| profile_idc == 86 || profile_idc == 118 || profile_idc == 128 || |
| profile_idc == 138 || profile_idc == 139 || profile_idc == 134) { |
| // chroma_format_idc: ue(v) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&chroma_format_idc)); |
| if (chroma_format_idc == 3) { |
| // separate_colour_plane_flag: u(1) |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadBits(&sps.separate_colour_plane_flag, 1)); |
| } |
| // bit_depth_luma_minus8: ue(v) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored)); |
| // bit_depth_chroma_minus8: ue(v) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored)); |
| // qpprime_y_zero_transform_bypass_flag: u(1) |
| RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1)); |
| // seq_scaling_matrix_present_flag: u(1) |
| uint32_t seq_scaling_matrix_present_flag; |
| RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&seq_scaling_matrix_present_flag, 1)); |
| if (seq_scaling_matrix_present_flag) { |
| // Process the scaling lists just enough to be able to properly |
| // skip over them, so we can still read the resolution on streams |
| // where this is included. |
| int scaling_list_count = (chroma_format_idc == 3 ? 12 : 8); |
| for (int i = 0; i < scaling_list_count; ++i) { |
| // seq_scaling_list_present_flag[i] : u(1) |
| uint32_t seq_scaling_list_present_flags; |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadBits(&seq_scaling_list_present_flags, 1)); |
| if (seq_scaling_list_present_flags != 0) { |
| int last_scale = 8; |
| int next_scale = 8; |
| int size_of_scaling_list = i < 6 ? 16 : 64; |
| for (int j = 0; j < size_of_scaling_list; j++) { |
| if (next_scale != 0) { |
| int32_t delta_scale; |
| // delta_scale: se(v) |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadSignedExponentialGolomb(&delta_scale)); |
| next_scale = (last_scale + delta_scale + 256) % 256; |
| } |
| if (next_scale != 0) |
| last_scale = next_scale; |
| } |
| } |
| } |
| } |
| } |
| // log2_max_frame_num_minus4: ue(v) |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadExponentialGolomb(&sps.log2_max_frame_num_minus4)); |
| // pic_order_cnt_type: ue(v) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&sps.pic_order_cnt_type)); |
| if (sps.pic_order_cnt_type == 0) { |
| // log2_max_pic_order_cnt_lsb_minus4: ue(v) |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadExponentialGolomb(&sps.log2_max_pic_order_cnt_lsb_minus4)); |
| } else if (sps.pic_order_cnt_type == 1) { |
| // delta_pic_order_always_zero_flag: u(1) |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadBits(&sps.delta_pic_order_always_zero_flag, 1)); |
| // offset_for_non_ref_pic: se(v) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored)); |
| // offset_for_top_to_bottom_field: se(v) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored)); |
| // num_ref_frames_in_pic_order_cnt_cycle: ue(v) |
| uint32_t num_ref_frames_in_pic_order_cnt_cycle; |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadExponentialGolomb(&num_ref_frames_in_pic_order_cnt_cycle)); |
| for (size_t i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; ++i) { |
| // offset_for_ref_frame[i]: se(v) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored)); |
| } |
| } |
| // max_num_ref_frames: ue(v) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&sps.max_num_ref_frames)); |
| // gaps_in_frame_num_value_allowed_flag: u(1) |
| RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1)); |
| // |
| // IMPORTANT ONES! Now we're getting to resolution. First we read the pic |
| // width/height in macroblocks (16x16), which gives us the base resolution, |
| // and then we continue on until we hit the frame crop offsets, which are used |
| // to signify resolutions that aren't multiples of 16. |
| // |
| // pic_width_in_mbs_minus1: ue(v) |
| uint32_t pic_width_in_mbs_minus1; |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&pic_width_in_mbs_minus1)); |
| // pic_height_in_map_units_minus1: ue(v) |
| uint32_t pic_height_in_map_units_minus1; |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadExponentialGolomb(&pic_height_in_map_units_minus1)); |
| // frame_mbs_only_flag: u(1) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&sps.frame_mbs_only_flag, 1)); |
| if (!sps.frame_mbs_only_flag) { |
| // mb_adaptive_frame_field_flag: u(1) |
| RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1)); |
| } |
| // direct_8x8_inference_flag: u(1) |
| RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1)); |
| // |
| // MORE IMPORTANT ONES! Now we're at the frame crop information. |
| // |
| // frame_cropping_flag: u(1) |
| uint32_t frame_cropping_flag; |
| uint32_t frame_crop_left_offset = 0; |
| uint32_t frame_crop_right_offset = 0; |
| uint32_t frame_crop_top_offset = 0; |
| uint32_t frame_crop_bottom_offset = 0; |
| RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&frame_cropping_flag, 1)); |
| if (frame_cropping_flag) { |
| // frame_crop_{left, right, top, bottom}_offset: ue(v) |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadExponentialGolomb(&frame_crop_left_offset)); |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadExponentialGolomb(&frame_crop_right_offset)); |
| RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&frame_crop_top_offset)); |
| RETURN_EMPTY_ON_FAIL( |
| buffer->ReadExponentialGolomb(&frame_crop_bottom_offset)); |
| } |
| // vui_parameters_present_flag: u(1) |
| RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&sps.vui_params_present, 1)); |
| |
| // Far enough! We don't use the rest of the SPS. |
| |
| // Start with the resolution determined by the pic_width/pic_height fields. |
| sps.width = 16 * (pic_width_in_mbs_minus1 + 1); |
| sps.height = |
| 16 * (2 - sps.frame_mbs_only_flag) * (pic_height_in_map_units_minus1 + 1); |
| |
| // Figure out the crop units in pixels. That's based on the chroma format's |
| // sampling, which is indicated by chroma_format_idc. |
| if (sps.separate_colour_plane_flag || chroma_format_idc == 0) { |
| frame_crop_bottom_offset *= (2 - sps.frame_mbs_only_flag); |
| frame_crop_top_offset *= (2 - sps.frame_mbs_only_flag); |
| } else if (!sps.separate_colour_plane_flag && chroma_format_idc > 0) { |
| // Width multipliers for formats 1 (4:2:0) and 2 (4:2:2). |
| if (chroma_format_idc == 1 || chroma_format_idc == 2) { |
| frame_crop_left_offset *= 2; |
| frame_crop_right_offset *= 2; |
| } |
| // Height multipliers for format 1 (4:2:0). |
| if (chroma_format_idc == 1) { |
| frame_crop_top_offset *= 2; |
| frame_crop_bottom_offset *= 2; |
| } |
| } |
| // Subtract the crop for each dimension. |
| sps.width -= (frame_crop_left_offset + frame_crop_right_offset); |
| sps.height -= (frame_crop_top_offset + frame_crop_bottom_offset); |
| |
| return OptionalSps(sps); |
| } |
| |
| } // namespace webrtc |