| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <vector> |
| |
| #include "common_video/h264/h264_common.h" |
| #include "common_video/h264/sps_vui_rewriter.h" |
| #include "rtc_base/bitbuffer.h" |
| #include "rtc_base/buffer.h" |
| #include "rtc_base/logging.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| |
| enum SpsMode { |
| kNoRewriteRequired_PocCorrect, |
| kNoRewriteRequired_VuiOptimal, |
| kRewriteRequired_NoVui, |
| kRewriteRequired_NoBitstreamRestriction, |
| kRewriteRequired_VuiSuboptimal, |
| }; |
| |
| static const size_t kSpsBufferMaxSize = 256; |
| static const size_t kWidth = 640; |
| static const size_t kHeight = 480; |
| |
| // Generates a fake SPS with basically everything empty and with characteristics |
| // based off SpsMode. |
| // Pass in a buffer of at least kSpsBufferMaxSize. |
| // The fake SPS that this generates also always has at least one emulation byte |
| // at offset 2, since the first two bytes are always 0, and has a 0x3 as the |
| // level_idc, to make sure the parser doesn't eat all 0x3 bytes. |
| void GenerateFakeSps(SpsMode mode, rtc::Buffer* out_buffer) { |
| uint8_t rbsp[kSpsBufferMaxSize] = {0}; |
| rtc::BitBufferWriter writer(rbsp, kSpsBufferMaxSize); |
| // Profile byte. |
| writer.WriteUInt8(0); |
| // Constraint sets and reserved zero bits. |
| writer.WriteUInt8(0); |
| // level_idc. |
| writer.WriteUInt8(3); |
| // seq_paramter_set_id. |
| writer.WriteExponentialGolomb(0); |
| // Profile is not special, so we skip all the chroma format settings. |
| |
| // Now some bit magic. |
| // log2_max_frame_num_minus4: ue(v). 0 is fine. |
| writer.WriteExponentialGolomb(0); |
| // pic_order_cnt_type: ue(v). |
| // POC type 2 is the one that doesn't need to be rewritten. |
| if (mode == kNoRewriteRequired_PocCorrect) { |
| writer.WriteExponentialGolomb(2); |
| } else { |
| writer.WriteExponentialGolomb(0); |
| // log2_max_pic_order_cnt_lsb_minus4: ue(v). 0 is fine. |
| writer.WriteExponentialGolomb(0); |
| } |
| // max_num_ref_frames: ue(v). Use 1, to make optimal/suboptimal more obvious. |
| writer.WriteExponentialGolomb(1); |
| // gaps_in_frame_num_value_allowed_flag: u(1). |
| writer.WriteBits(0, 1); |
| // Next are width/height. First, calculate the mbs/map_units versions. |
| uint16_t width_in_mbs_minus1 = (kWidth + 15) / 16 - 1; |
| |
| // For the height, we're going to define frame_mbs_only_flag, so we need to |
| // divide by 2. See the parser for the full calculation. |
| uint16_t height_in_map_units_minus1 = ((kHeight + 15) / 16 - 1) / 2; |
| // Write each as ue(v). |
| writer.WriteExponentialGolomb(width_in_mbs_minus1); |
| writer.WriteExponentialGolomb(height_in_map_units_minus1); |
| // frame_mbs_only_flag: u(1). Needs to be false. |
| writer.WriteBits(0, 1); |
| // mb_adaptive_frame_field_flag: u(1). |
| writer.WriteBits(0, 1); |
| // direct_8x8_inferene_flag: u(1). |
| writer.WriteBits(0, 1); |
| // frame_cropping_flag: u(1). 1, so we can supply crop. |
| writer.WriteBits(1, 1); |
| // Now we write the left/right/top/bottom crop. For simplicity, we'll put all |
| // the crop at the left/top. |
| // We picked a 4:2:0 format, so the crops are 1/2 the pixel crop values. |
| // Left/right. |
| writer.WriteExponentialGolomb(((16 - (kWidth % 16)) % 16) / 2); |
| writer.WriteExponentialGolomb(0); |
| // Top/bottom. |
| writer.WriteExponentialGolomb(((16 - (kHeight % 16)) % 16) / 2); |
| writer.WriteExponentialGolomb(0); |
| |
| // Finally! The VUI. |
| // vui_parameters_present_flag: u(1) |
| if (mode == kNoRewriteRequired_PocCorrect || mode == kRewriteRequired_NoVui) { |
| writer.WriteBits(0, 1); |
| } else { |
| writer.WriteBits(1, 1); |
| // VUI time. 8 flags to ignore followed by the bitstream restriction flag. |
| writer.WriteBits(0, 8); |
| if (mode == kRewriteRequired_NoBitstreamRestriction) { |
| writer.WriteBits(0, 1); |
| } else { |
| writer.WriteBits(1, 1); |
| // Write some defaults. Shouldn't matter for parsing, though. |
| // motion_vectors_over_pic_boundaries_flag: u(1) |
| writer.WriteBits(1, 1); |
| // max_bytes_per_pic_denom: ue(v) |
| writer.WriteExponentialGolomb(2); |
| // max_bits_per_mb_denom: ue(v) |
| writer.WriteExponentialGolomb(1); |
| // log2_max_mv_length_horizontal: ue(v) |
| // log2_max_mv_length_vertical: ue(v) |
| writer.WriteExponentialGolomb(16); |
| writer.WriteExponentialGolomb(16); |
| |
| // Next are the limits we care about. |
| // max_num_reorder_frames: ue(v) |
| // max_dec_frame_buffering: ue(v) |
| if (mode == kRewriteRequired_VuiSuboptimal) { |
| writer.WriteExponentialGolomb(4); |
| writer.WriteExponentialGolomb(4); |
| } else if (kNoRewriteRequired_VuiOptimal) { |
| writer.WriteExponentialGolomb(0); |
| writer.WriteExponentialGolomb(1); |
| } |
| } |
| } |
| |
| // Get the number of bytes written (including the last partial byte). |
| size_t byte_count, bit_offset; |
| writer.GetCurrentOffset(&byte_count, &bit_offset); |
| if (bit_offset > 0) { |
| byte_count++; |
| } |
| |
| // Write the NALU header and type; {0 0 0 1} and 7 for the SPS header type. |
| uint8_t header[] = {0, 0, 0, 1, 7}; |
| out_buffer->AppendData(header, sizeof(header)); |
| |
| H264::WriteRbsp(rbsp, byte_count, out_buffer); |
| } |
| |
| void TestSps(SpsMode mode, SpsVuiRewriter::ParseResult expected_parse_result) { |
| rtc::LogMessage::LogToDebug(rtc::LS_VERBOSE); |
| rtc::Buffer buffer; |
| GenerateFakeSps(mode, &buffer); |
| std::vector<H264::NaluIndex> start_offsets = |
| H264::FindNaluIndices(buffer.data(), buffer.size()); |
| EXPECT_EQ(1u, start_offsets.size()); |
| H264::NaluIndex index = start_offsets[0]; |
| |
| H264::NaluType nal_type = |
| H264::ParseNaluType(buffer[index.payload_start_offset]); |
| EXPECT_EQ(H264::kSps, nal_type); |
| index.payload_start_offset += H264::kNaluTypeSize; |
| index.payload_size -= H264::kNaluTypeSize; |
| |
| rtc::Optional<SpsParser::SpsState> sps; |
| rtc::Buffer out_buffer; |
| SpsVuiRewriter::ParseResult result = |
| SpsVuiRewriter::ParseAndRewriteSps(&buffer[index.payload_start_offset], |
| index.payload_size, &sps, &out_buffer); |
| EXPECT_EQ(expected_parse_result, result); |
| } |
| |
| #define REWRITE_TEST(test_name, mode, expected_parse_result) \ |
| TEST(SpsVuiRewriterTest, test_name) { TestSps(mode, expected_parse_result); } |
| |
| REWRITE_TEST(PocCorrect, |
| kNoRewriteRequired_PocCorrect, |
| SpsVuiRewriter::ParseResult::kPocOk); |
| REWRITE_TEST(VuiAlreadyOptimal, |
| kNoRewriteRequired_VuiOptimal, |
| SpsVuiRewriter::ParseResult::kVuiOk); |
| REWRITE_TEST(RewriteFullVui, |
| kRewriteRequired_NoVui, |
| SpsVuiRewriter::ParseResult::kVuiRewritten); |
| REWRITE_TEST(AddBitstreamRestriction, |
| kRewriteRequired_NoBitstreamRestriction, |
| SpsVuiRewriter::ParseResult::kVuiRewritten); |
| REWRITE_TEST(RewriteSuboptimalVui, |
| kRewriteRequired_VuiSuboptimal, |
| SpsVuiRewriter::ParseResult::kVuiRewritten); |
| |
| } // namespace webrtc |