| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/rtp_rtcp/source/time_util.h" |
| |
| #include <algorithm> |
| |
| #include "rtc_base/timeutils.h" |
| |
| namespace webrtc { |
| namespace { |
| // TODO(danilchap): Make generic, optimize and move to base. |
| inline int64_t DivideRoundToNearest(int64_t x, uint32_t y) { |
| // Callers ensure x is positive and x + y / 2 doesn't overflow. |
| return (x + y / 2) / y; |
| } |
| |
| int64_t NtpOffsetUs() { |
| constexpr int64_t kNtpJan1970Sec = 2208988800; |
| int64_t clock_time = rtc::TimeMicros(); |
| int64_t utc_time = rtc::TimeUTCMicros(); |
| return utc_time - clock_time + kNtpJan1970Sec * rtc::kNumMicrosecsPerSec; |
| } |
| |
| } // namespace |
| |
| NtpTime TimeMicrosToNtp(int64_t time_us) { |
| // Calculate the offset once. |
| static int64_t ntp_offset_us = NtpOffsetUs(); |
| |
| int64_t time_ntp_us = time_us + ntp_offset_us; |
| RTC_DCHECK_GE(time_ntp_us, 0); // Time before year 1900 is unsupported. |
| |
| // TODO(danilchap): Convert both seconds and fraction together using int128 |
| // when that type is easily available. |
| // Currently conversion is done separetly for seconds and fraction of a second |
| // to avoid overflow. |
| |
| // Convert seconds to uint32 through uint64 for well-defined cast. |
| // Wrap around (will happen in 2036) is expected for ntp time. |
| uint32_t ntp_seconds = |
| static_cast<uint64_t>(time_ntp_us / rtc::kNumMicrosecsPerSec); |
| |
| // Scale fractions of the second to ntp resolution. |
| constexpr int64_t kNtpInSecond = 1LL << 32; |
| int64_t us_fractions = time_ntp_us % rtc::kNumMicrosecsPerSec; |
| uint32_t ntp_fractions = |
| us_fractions * kNtpInSecond / rtc::kNumMicrosecsPerSec; |
| return NtpTime(ntp_seconds, ntp_fractions); |
| } |
| |
| uint32_t SaturatedUsToCompactNtp(int64_t us) { |
| constexpr uint32_t kMaxCompactNtp = 0xFFFFFFFF; |
| constexpr int kCompactNtpInSecond = 0x10000; |
| if (us <= 0) |
| return 0; |
| if (us >= kMaxCompactNtp * rtc::kNumMicrosecsPerSec / kCompactNtpInSecond) |
| return kMaxCompactNtp; |
| // To convert to compact ntp need to divide by 1e6 to get seconds, |
| // then multiply by 0x10000 to get the final result. |
| // To avoid float operations, multiplication and division swapped. |
| return DivideRoundToNearest(us * kCompactNtpInSecond, |
| rtc::kNumMicrosecsPerSec); |
| } |
| |
| int64_t CompactNtpRttToMs(uint32_t compact_ntp_interval) { |
| // Interval to convert expected to be positive, e.g. rtt or delay. |
| // Because interval can be derived from non-monotonic ntp clock, |
| // it might become negative that is indistinguishable from very large values. |
| // Since very large rtt/delay are less likely than non-monotonic ntp clock, |
| // those values consider to be negative and convert to minimum value of 1ms. |
| if (compact_ntp_interval > 0x80000000) |
| return 1; |
| // Convert to 64bit value to avoid multiplication overflow. |
| int64_t value = static_cast<int64_t>(compact_ntp_interval); |
| // To convert to milliseconds need to divide by 2^16 to get seconds, |
| // then multiply by 1000 to get milliseconds. To avoid float operations, |
| // multiplication and division swapped. |
| int64_t ms = DivideRoundToNearest(value * 1000, 1 << 16); |
| // Rtt value 0 considered too good to be true and increases to 1. |
| return std::max<int64_t>(ms, 1); |
| } |
| } // namespace webrtc |