|  | /* | 
|  | *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "modules/audio_processing/aec3/aec_state.h" | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include <numeric> | 
|  | #include <vector> | 
|  |  | 
|  | #include "api/array_view.h" | 
|  | #include "modules/audio_processing/logging/apm_data_dumper.h" | 
|  | #include "rtc_base/atomicops.h" | 
|  | #include "rtc_base/checks.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  |  | 
|  | // Computes delay of the adaptive filter. | 
|  | int EstimateFilterDelay( | 
|  | const std::vector<std::array<float, kFftLengthBy2Plus1>>& | 
|  | adaptive_filter_frequency_response) { | 
|  | const auto& H2 = adaptive_filter_frequency_response; | 
|  | constexpr size_t kUpperBin = kFftLengthBy2 - 5; | 
|  | RTC_DCHECK_GE(kAdaptiveFilterLength, H2.size()); | 
|  | std::array<int, kAdaptiveFilterLength> delays; | 
|  | delays.fill(0); | 
|  | for (size_t k = 1; k < kUpperBin; ++k) { | 
|  | // Find the maximum of H2[j]. | 
|  | size_t peak = 0; | 
|  | for (size_t j = 0; j < H2.size(); ++j) { | 
|  | if (H2[j][k] > H2[peak][k]) { | 
|  | peak = j; | 
|  | } | 
|  | } | 
|  | ++delays[peak]; | 
|  | } | 
|  |  | 
|  | return std::distance(delays.begin(), | 
|  | std::max_element(delays.begin(), delays.end())); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | int AecState::instance_count_ = 0; | 
|  |  | 
|  | AecState::AecState(const EchoCanceller3Config& config) | 
|  | : data_dumper_( | 
|  | new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))), | 
|  | erle_estimator_(config.erle.min, config.erle.max_l, config.erle.max_h), | 
|  | config_(config), | 
|  | reverb_decay_(config_.ep_strength.default_len) { | 
|  | max_render_.fill(0.f); | 
|  | } | 
|  |  | 
|  | AecState::~AecState() = default; | 
|  |  | 
|  | void AecState::HandleEchoPathChange( | 
|  | const EchoPathVariability& echo_path_variability) { | 
|  | if (echo_path_variability.AudioPathChanged()) { | 
|  | blocks_since_last_saturation_ = kUnknownDelayRenderWindowSize + 1; | 
|  | usable_linear_estimate_ = false; | 
|  | echo_leakage_detected_ = false; | 
|  | capture_signal_saturation_ = false; | 
|  | echo_saturation_ = false; | 
|  | max_render_.fill(0.f); | 
|  |  | 
|  | if (echo_path_variability.delay_change) { | 
|  | force_zero_gain_counter_ = 0; | 
|  | blocks_with_filter_adaptation_ = 0; | 
|  | blocks_with_strong_render_ = 0; | 
|  | initial_state_ = true; | 
|  | linear_echo_estimate_ = false; | 
|  | sufficient_filter_updates_ = false; | 
|  | render_received_ = false; | 
|  | force_zero_gain_ = true; | 
|  | capture_block_counter_ = 0; | 
|  | } | 
|  | if (echo_path_variability.gain_change) { | 
|  | capture_block_counter_ = kNumBlocksPerSecond; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void AecState::Update(const std::vector<std::array<float, kFftLengthBy2Plus1>>& | 
|  | adaptive_filter_frequency_response, | 
|  | const std::array<float, kAdaptiveFilterTimeDomainLength>& | 
|  | adaptive_filter_impulse_response, | 
|  | bool converged_filter, | 
|  | const rtc::Optional<size_t>& external_delay_samples, | 
|  | const RenderBuffer& render_buffer, | 
|  | const std::array<float, kFftLengthBy2Plus1>& E2_main, | 
|  | const std::array<float, kFftLengthBy2Plus1>& Y2, | 
|  | rtc::ArrayView<const float> x, | 
|  | const std::array<float, kBlockSize>& s, | 
|  | bool echo_leakage_detected) { | 
|  | // Store input parameters. | 
|  | echo_leakage_detected_ = echo_leakage_detected; | 
|  |  | 
|  | // Update counters. | 
|  | ++capture_block_counter_; | 
|  |  | 
|  | // Force zero echo suppression gain after an echo path change to allow at | 
|  | // least some render data to be collected in order to avoid an initial echo | 
|  | // burst. | 
|  | force_zero_gain_ = (++force_zero_gain_counter_) < kNumBlocksPerSecond / 5; | 
|  |  | 
|  | // Estimate delays. | 
|  | filter_delay_ = rtc::Optional<size_t>( | 
|  | EstimateFilterDelay(adaptive_filter_frequency_response)); | 
|  | external_delay_ = | 
|  | external_delay_samples | 
|  | ? rtc::Optional<size_t>(*external_delay_samples / kBlockSize) | 
|  | : rtc::Optional<size_t>(); | 
|  |  | 
|  | // Update the ERL and ERLE measures. | 
|  | if (converged_filter && capture_block_counter_ >= 2 * kNumBlocksPerSecond) { | 
|  | const auto& X2 = render_buffer.Spectrum(*filter_delay_); | 
|  | erle_estimator_.Update(X2, Y2, E2_main); | 
|  | erl_estimator_.Update(X2, Y2); | 
|  | } | 
|  |  | 
|  | // Update the echo audibility evaluator. | 
|  | echo_audibility_.Update(x, s, converged_filter); | 
|  |  | 
|  |  | 
|  | if (config_.ep_strength.echo_can_saturate) { | 
|  | // Detect and flag echo saturation. | 
|  | RTC_DCHECK_LT(0, x.size()); | 
|  | // Store the render values in a circular buffer. | 
|  | max_render_index_ = (max_render_index_ + 1) % max_render_.size(); | 
|  | auto x_max_result = std::minmax_element(x.begin(), x.end()); | 
|  | max_render_[max_render_index_] = | 
|  | std::max(fabs(*x_max_result.first), fabs(*x_max_result.second)); | 
|  |  | 
|  | bool saturated_echo = false; | 
|  | // Check for whether a saturated frame potentially could consist of | 
|  | // saturated echo. | 
|  | if (SaturatedCapture()) { | 
|  | if (converged_filter) { | 
|  | RTC_DCHECK(filter_delay_); | 
|  | const size_t index = | 
|  | (max_render_index_ + max_render_.size() - *filter_delay_) % | 
|  | max_render_.size(); | 
|  | saturated_echo = max_render_[index] > 200.f; | 
|  | } else { | 
|  | saturated_echo = | 
|  | *std::max_element(max_render_.begin(), max_render_.end()) > 200.f; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set flag for potential presence of saturated echo | 
|  | blocks_since_last_saturation_ = | 
|  | saturated_echo ? 0 : blocks_since_last_saturation_ + 1; | 
|  | if (converged_filter) { | 
|  | echo_saturation_ = | 
|  | blocks_since_last_saturation_ < kAdaptiveFilterLength + 1; | 
|  | } else { | 
|  | echo_saturation_ = | 
|  | blocks_since_last_saturation_ < kUnknownDelayRenderWindowSize + 1; | 
|  | } | 
|  |  | 
|  | // Set flag for whether the echo path is generally strong enough to saturate | 
|  | // the echo. | 
|  | if (converged_filter) { | 
|  | // Base detection on predicted echo sample. | 
|  | auto s_max_result = std::minmax_element(s.begin(), s.end()); | 
|  | const float s_max_abs = | 
|  | std::max(fabs(*s_max_result.first), fabs(*s_max_result.second)); | 
|  |  | 
|  | const bool saturated_echo_sample = | 
|  | s_max_abs >= 10000.f && SaturatedCapture(); | 
|  | saturating_echo_path_counter_ = saturated_echo_sample | 
|  | ? 10 * kNumBlocksPerSecond | 
|  | : saturating_echo_path_counter_ - 1; | 
|  | } else { | 
|  | // Base detection on detected potentially echo. | 
|  | saturating_echo_path_counter_ = saturated_echo | 
|  | ? 10 * kNumBlocksPerSecond | 
|  | : saturating_echo_path_counter_ - 1; | 
|  | } | 
|  | saturating_echo_path_counter_ = std::max(0, saturating_echo_path_counter_); | 
|  | saturating_echo_path_ = saturating_echo_path_counter_ > 0; | 
|  | } else { | 
|  | echo_saturation_ = false; | 
|  | saturating_echo_path_ = false; | 
|  | saturating_echo_path_counter_ = 0; | 
|  | } | 
|  |  | 
|  | // Compute render energies. | 
|  | const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f); | 
|  | const bool active_render_block = | 
|  | x_energy > (config_.render_levels.active_render_limit * | 
|  | config_.render_levels.active_render_limit) * | 
|  | kFftLengthBy2; | 
|  | const bool strong_render_block = x_energy > 1000 * 1000 * kFftLengthBy2; | 
|  |  | 
|  | if (active_render_block) { | 
|  | render_received_ = true; | 
|  | } | 
|  |  | 
|  | // Update counters. | 
|  | blocks_with_filter_adaptation_ += | 
|  | (active_render_block && (!SaturatedCapture()) ? 1 : 0); | 
|  |  | 
|  | blocks_with_strong_render_ += | 
|  | (strong_render_block && (!SaturatedCapture()) ? 1 : 0); | 
|  |  | 
|  | // After an amount of active render samples for which an echo should have been | 
|  | // detected in the capture signal if the ERL was not infinite, flag that a | 
|  | // transparent mode should be entered. | 
|  | if (SaturatingEchoPath()) { | 
|  | transparent_mode_ = !converged_filter && | 
|  | (!render_received_ || blocks_with_strong_render_ >= | 
|  | 15 * kNumBlocksPerSecond); | 
|  | } else { | 
|  | transparent_mode_ = !converged_filter && | 
|  | (!render_received_ || | 
|  | blocks_with_strong_render_ >= 5 * kNumBlocksPerSecond); | 
|  | } | 
|  |  | 
|  | // Update flag for whether the adaptation is in the initial state. | 
|  | if (SaturatingEchoPath()) { | 
|  | initial_state_ = capture_block_counter_ < 6 * kNumBlocksPerSecond; | 
|  | } else { | 
|  | initial_state_ = capture_block_counter_ < 3 * kNumBlocksPerSecond; | 
|  | } | 
|  |  | 
|  | // Detect whether the linear filter is usable. | 
|  | if (SaturatingEchoPath()) { | 
|  | usable_linear_estimate_ = | 
|  | (!echo_saturation_) && | 
|  | (converged_filter && SufficientFilterUpdates()) && | 
|  | capture_block_counter_ >= 5 * kNumBlocksPerSecond && external_delay_; | 
|  | } else { | 
|  | usable_linear_estimate_ = | 
|  | (!echo_saturation_) && | 
|  | (converged_filter || SufficientFilterUpdates()) && | 
|  | capture_block_counter_ >= 2 * kNumBlocksPerSecond && external_delay_; | 
|  | } | 
|  |  | 
|  | // Flag whether the linear echo estimate should be used. | 
|  | linear_echo_estimate_ = usable_linear_estimate_ && !TransparentMode(); | 
|  |  | 
|  | // Flag whether a sufficient number of filter updates has been done for the | 
|  | // filter to perform well. | 
|  | if (SaturatingEchoPath()) { | 
|  | sufficient_filter_updates_ = | 
|  | blocks_with_filter_adaptation_ >= 2 * kEchoPathChangeConvergenceBlocks; | 
|  | } else { | 
|  | sufficient_filter_updates_ = | 
|  | blocks_with_filter_adaptation_ >= kEchoPathChangeConvergenceBlocks; | 
|  | } | 
|  |  | 
|  | // Update the room reverb estimate. | 
|  | UpdateReverb(adaptive_filter_impulse_response); | 
|  | } | 
|  |  | 
|  | void AecState::UpdateReverb( | 
|  | const std::array<float, kAdaptiveFilterTimeDomainLength>& | 
|  | impulse_response) { | 
|  | if ((!(filter_delay_ && usable_linear_estimate_)) || | 
|  | (*filter_delay_ > kAdaptiveFilterLength - 4)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Form the data to match against by squaring the impulse response | 
|  | // coefficients. | 
|  | std::array<float, kAdaptiveFilterTimeDomainLength> matching_data; | 
|  | std::transform(impulse_response.begin(), impulse_response.end(), | 
|  | matching_data.begin(), [](float a) { return a * a; }); | 
|  |  | 
|  | // Avoid matching against noise in the model by subtracting an estimate of the | 
|  | // model noise power. | 
|  | constexpr size_t kTailLength = 64; | 
|  | constexpr size_t tail_index = kAdaptiveFilterTimeDomainLength - kTailLength; | 
|  | const float tail_power = *std::max_element(matching_data.begin() + tail_index, | 
|  | matching_data.end()); | 
|  | std::for_each(matching_data.begin(), matching_data.begin() + tail_index, | 
|  | [tail_power](float& a) { a = std::max(0.f, a - tail_power); }); | 
|  |  | 
|  | // Identify the peak index of the impulse response. | 
|  | const size_t peak_index = *std::max_element( | 
|  | matching_data.begin(), matching_data.begin() + tail_index); | 
|  |  | 
|  | if (peak_index + 128 < tail_index) { | 
|  | size_t start_index = peak_index + 64; | 
|  | // Compute the matching residual error for the current candidate to match. | 
|  | float residual_sqr_sum = 0.f; | 
|  | float d_k = reverb_decay_to_test_; | 
|  | for (size_t k = start_index; k < tail_index; ++k) { | 
|  | if (matching_data[start_index + 1] == 0.f) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | float residual = matching_data[k] - matching_data[peak_index] * d_k; | 
|  | residual_sqr_sum += residual * residual; | 
|  | d_k *= reverb_decay_to_test_; | 
|  | } | 
|  |  | 
|  | // If needed, update the best candidate for the reverb decay. | 
|  | if (reverb_decay_candidate_residual_ < 0.f || | 
|  | residual_sqr_sum < reverb_decay_candidate_residual_) { | 
|  | reverb_decay_candidate_residual_ = residual_sqr_sum; | 
|  | reverb_decay_candidate_ = reverb_decay_to_test_; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the next reverb candidate to evaluate such that all candidates will | 
|  | // be evaluated within one second. | 
|  | reverb_decay_to_test_ += (0.9965f - 0.9f) / (5 * kNumBlocksPerSecond); | 
|  |  | 
|  | // If all reverb candidates have been evaluated, choose the best one as the | 
|  | // reverb decay. | 
|  | if (reverb_decay_to_test_ >= 0.9965f) { | 
|  | if (reverb_decay_candidate_residual_ < 0.f) { | 
|  | // Transform the decay to be in the unit of blocks. | 
|  | reverb_decay_ = powf(reverb_decay_candidate_, kFftLengthBy2); | 
|  |  | 
|  | // Limit the estimated reverb_decay_ to the maximum one needed in practice | 
|  | // to minimize the impact of incorrect estimates. | 
|  | reverb_decay_ = std::min(config_.ep_strength.default_len, reverb_decay_); | 
|  | } | 
|  | reverb_decay_to_test_ = 0.9f; | 
|  | reverb_decay_candidate_residual_ = -1.f; | 
|  | } | 
|  |  | 
|  | // For noisy impulse responses, assume a fixed tail length. | 
|  | if (tail_power > 0.0005f) { | 
|  | reverb_decay_ = config_.ep_strength.default_len; | 
|  | } | 
|  | data_dumper_->DumpRaw("aec3_reverb_decay", reverb_decay_); | 
|  | data_dumper_->DumpRaw("aec3_tail_power", tail_power); | 
|  | } | 
|  |  | 
|  | void AecState::EchoAudibility::Update(rtc::ArrayView<const float> x, | 
|  | const std::array<float, kBlockSize>& s, | 
|  | bool converged_filter) { | 
|  | auto result_x = std::minmax_element(x.begin(), x.end()); | 
|  | auto result_s = std::minmax_element(s.begin(), s.end()); | 
|  | const float x_abs = | 
|  | std::max(fabsf(*result_x.first), fabsf(*result_x.second)); | 
|  | const float s_abs = | 
|  | std::max(fabsf(*result_s.first), fabsf(*result_s.second)); | 
|  |  | 
|  | if (converged_filter) { | 
|  | if (x_abs < 20.f) { | 
|  | ++low_farend_counter_; | 
|  | } else { | 
|  | low_farend_counter_ = 0; | 
|  | } | 
|  | } else { | 
|  | if (x_abs < 100.f) { | 
|  | ++low_farend_counter_; | 
|  | } else { | 
|  | low_farend_counter_ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The echo is deemed as not audible if the echo estimate is on the level of | 
|  | // the quantization noise in the FFTs and the nearend level is sufficiently | 
|  | // strong to mask that by ensuring that the playout and AGC gains do not boost | 
|  | // any residual echo that is below the quantization noise level. Furthermore, | 
|  | // cases where the render signal is very close to zero are also identified as | 
|  | // not producing audible echo. | 
|  | inaudible_echo_ = (max_nearend_ > 500 && s_abs < 30.f) || | 
|  | (!converged_filter && x_abs < 500); | 
|  | inaudible_echo_ = inaudible_echo_ || low_farend_counter_ > 20; | 
|  | } | 
|  |  | 
|  | void AecState::EchoAudibility::UpdateWithOutput(rtc::ArrayView<const float> e) { | 
|  | const float e_max = *std::max_element(e.begin(), e.end()); | 
|  | const float e_min = *std::min_element(e.begin(), e.end()); | 
|  | const float e_abs = std::max(fabsf(e_max), fabsf(e_min)); | 
|  |  | 
|  | if (max_nearend_ < e_abs) { | 
|  | max_nearend_ = e_abs; | 
|  | max_nearend_counter_ = 0; | 
|  | } else { | 
|  | if (++max_nearend_counter_ > 5 * kNumBlocksPerSecond) { | 
|  | max_nearend_ *= 0.995f; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |