|  | /* | 
|  | *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "modules/audio_processing/aecm/aecm_core.h" | 
|  |  | 
|  | #include <stddef.h> | 
|  | #include <stdlib.h> | 
|  |  | 
|  | extern "C" { | 
|  | #include "common_audio/ring_buffer.h" | 
|  | #include "common_audio/signal_processing/include/real_fft.h" | 
|  | } | 
|  | #include "modules/audio_processing/aecm/echo_control_mobile.h" | 
|  | #include "modules/audio_processing/utility/delay_estimator_wrapper.h" | 
|  | extern "C" { | 
|  | #include "system_wrappers/include/cpu_features_wrapper.h" | 
|  | } | 
|  |  | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/safe_conversions.h" | 
|  | #include "rtc_base/sanitizer.h" | 
|  | #include "typedefs.h"  // NOLINT(build/include) | 
|  |  | 
|  | // Square root of Hanning window in Q14. | 
|  | static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = { | 
|  | 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172, | 
|  | 3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224, | 
|  | 6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040, | 
|  | 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514, | 
|  | 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553, | 
|  | 13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079, | 
|  | 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034, | 
|  | 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384 | 
|  | }; | 
|  |  | 
|  | #ifdef AECM_WITH_ABS_APPROX | 
|  | //Q15 alpha = 0.99439986968132  const Factor for magnitude approximation | 
|  | static const uint16_t kAlpha1 = 32584; | 
|  | //Q15 beta = 0.12967166976970   const Factor for magnitude approximation | 
|  | static const uint16_t kBeta1 = 4249; | 
|  | //Q15 alpha = 0.94234827210087  const Factor for magnitude approximation | 
|  | static const uint16_t kAlpha2 = 30879; | 
|  | //Q15 beta = 0.33787806009150   const Factor for magnitude approximation | 
|  | static const uint16_t kBeta2 = 11072; | 
|  | //Q15 alpha = 0.82247698684306  const Factor for magnitude approximation | 
|  | static const uint16_t kAlpha3 = 26951; | 
|  | //Q15 beta = 0.57762063060713   const Factor for magnitude approximation | 
|  | static const uint16_t kBeta3 = 18927; | 
|  | #endif | 
|  |  | 
|  | static const int16_t kNoiseEstQDomain = 15; | 
|  | static const int16_t kNoiseEstIncCount = 5; | 
|  |  | 
|  | static void ComfortNoise(AecmCore* aecm, | 
|  | const uint16_t* dfa, | 
|  | ComplexInt16* out, | 
|  | const int16_t* lambda); | 
|  |  | 
|  | static void WindowAndFFT(AecmCore* aecm, | 
|  | int16_t* fft, | 
|  | const int16_t* time_signal, | 
|  | ComplexInt16* freq_signal, | 
|  | int time_signal_scaling) { | 
|  | int i = 0; | 
|  |  | 
|  | // FFT of signal | 
|  | for (i = 0; i < PART_LEN; i++) { | 
|  | // Window time domain signal and insert into real part of | 
|  | // transformation array |fft| | 
|  | int16_t scaled_time_signal = time_signal[i] << time_signal_scaling; | 
|  | fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14); | 
|  | scaled_time_signal = time_signal[i + PART_LEN] << time_signal_scaling; | 
|  | fft[PART_LEN + i] = (int16_t)(( | 
|  | scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14); | 
|  | } | 
|  |  | 
|  | // Do forward FFT, then take only the first PART_LEN complex samples, | 
|  | // and change signs of the imaginary parts. | 
|  | WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal); | 
|  | for (i = 0; i < PART_LEN; i++) { | 
|  | freq_signal[i].imag = -freq_signal[i].imag; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void InverseFFTAndWindow(AecmCore* aecm, | 
|  | int16_t* fft, | 
|  | ComplexInt16* efw, | 
|  | int16_t* output, | 
|  | const int16_t* nearendClean) { | 
|  | int i, j, outCFFT; | 
|  | int32_t tmp32no1; | 
|  | // Reuse |efw| for the inverse FFT output after transferring | 
|  | // the contents to |fft|. | 
|  | int16_t* ifft_out = (int16_t*)efw; | 
|  |  | 
|  | // Synthesis | 
|  | for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) { | 
|  | fft[j] = efw[i].real; | 
|  | fft[j + 1] = -efw[i].imag; | 
|  | } | 
|  | fft[0] = efw[0].real; | 
|  | fft[1] = -efw[0].imag; | 
|  |  | 
|  | fft[PART_LEN2] = efw[PART_LEN].real; | 
|  | fft[PART_LEN2 + 1] = -efw[PART_LEN].imag; | 
|  |  | 
|  | // Inverse FFT. Keep outCFFT to scale the samples in the next block. | 
|  | outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out); | 
|  | for (i = 0; i < PART_LEN; i++) { | 
|  | ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( | 
|  | ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14); | 
|  | tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i], | 
|  | outCFFT - aecm->dfaCleanQDomain); | 
|  | output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, | 
|  | tmp32no1 + aecm->outBuf[i], | 
|  | WEBRTC_SPL_WORD16_MIN); | 
|  |  | 
|  | tmp32no1 = (ifft_out[PART_LEN + i] * | 
|  | WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14; | 
|  | tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, | 
|  | outCFFT - aecm->dfaCleanQDomain); | 
|  | aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, | 
|  | tmp32no1, | 
|  | WEBRTC_SPL_WORD16_MIN); | 
|  | } | 
|  |  | 
|  | // Copy the current block to the old position | 
|  | // (aecm->outBuf is shifted elsewhere) | 
|  | memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN); | 
|  | memcpy(aecm->dBufNoisy, | 
|  | aecm->dBufNoisy + PART_LEN, | 
|  | sizeof(int16_t) * PART_LEN); | 
|  | if (nearendClean != NULL) | 
|  | { | 
|  | memcpy(aecm->dBufClean, | 
|  | aecm->dBufClean + PART_LEN, | 
|  | sizeof(int16_t) * PART_LEN); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transforms a time domain signal into the frequency domain, outputting the | 
|  | // complex valued signal, absolute value and sum of absolute values. | 
|  | // | 
|  | // time_signal          [in]    Pointer to time domain signal | 
|  | // freq_signal_real     [out]   Pointer to real part of frequency domain array | 
|  | // freq_signal_imag     [out]   Pointer to imaginary part of frequency domain | 
|  | //                              array | 
|  | // freq_signal_abs      [out]   Pointer to absolute value of frequency domain | 
|  | //                              array | 
|  | // freq_signal_sum_abs  [out]   Pointer to the sum of all absolute values in | 
|  | //                              the frequency domain array | 
|  | // return value                 The Q-domain of current frequency values | 
|  | // | 
|  | static int TimeToFrequencyDomain(AecmCore* aecm, | 
|  | const int16_t* time_signal, | 
|  | ComplexInt16* freq_signal, | 
|  | uint16_t* freq_signal_abs, | 
|  | uint32_t* freq_signal_sum_abs) { | 
|  | int i = 0; | 
|  | int time_signal_scaling = 0; | 
|  |  | 
|  | int32_t tmp32no1 = 0; | 
|  | int32_t tmp32no2 = 0; | 
|  |  | 
|  | // In fft_buf, +16 for 32-byte alignment. | 
|  | int16_t fft_buf[PART_LEN4 + 16]; | 
|  | int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31); | 
|  |  | 
|  | int16_t tmp16no1; | 
|  | #ifndef WEBRTC_ARCH_ARM_V7 | 
|  | int16_t tmp16no2; | 
|  | #endif | 
|  | #ifdef AECM_WITH_ABS_APPROX | 
|  | int16_t max_value = 0; | 
|  | int16_t min_value = 0; | 
|  | uint16_t alpha = 0; | 
|  | uint16_t beta = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef AECM_DYNAMIC_Q | 
|  | tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2); | 
|  | time_signal_scaling = WebRtcSpl_NormW16(tmp16no1); | 
|  | #endif | 
|  |  | 
|  | WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling); | 
|  |  | 
|  | // Extract imaginary and real part, calculate the magnitude for | 
|  | // all frequency bins | 
|  | freq_signal[0].imag = 0; | 
|  | freq_signal[PART_LEN].imag = 0; | 
|  | freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real); | 
|  | freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16( | 
|  | freq_signal[PART_LEN].real); | 
|  | (*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) + | 
|  | (uint32_t)(freq_signal_abs[PART_LEN]); | 
|  |  | 
|  | for (i = 1; i < PART_LEN; i++) | 
|  | { | 
|  | if (freq_signal[i].real == 0) | 
|  | { | 
|  | freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag); | 
|  | } | 
|  | else if (freq_signal[i].imag == 0) | 
|  | { | 
|  | freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real); | 
|  | } | 
|  | else | 
|  | { | 
|  | // Approximation for magnitude of complex fft output | 
|  | // magn = sqrt(real^2 + imag^2) | 
|  | // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|) | 
|  | // | 
|  | // The parameters alpha and beta are stored in Q15 | 
|  |  | 
|  | #ifdef AECM_WITH_ABS_APPROX | 
|  | tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real); | 
|  | tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag); | 
|  |  | 
|  | if(tmp16no1 > tmp16no2) | 
|  | { | 
|  | max_value = tmp16no1; | 
|  | min_value = tmp16no2; | 
|  | } else | 
|  | { | 
|  | max_value = tmp16no2; | 
|  | min_value = tmp16no1; | 
|  | } | 
|  |  | 
|  | // Magnitude in Q(-6) | 
|  | if ((max_value >> 2) > min_value) | 
|  | { | 
|  | alpha = kAlpha1; | 
|  | beta = kBeta1; | 
|  | } else if ((max_value >> 1) > min_value) | 
|  | { | 
|  | alpha = kAlpha2; | 
|  | beta = kBeta2; | 
|  | } else | 
|  | { | 
|  | alpha = kAlpha3; | 
|  | beta = kBeta3; | 
|  | } | 
|  | tmp16no1 = (int16_t)((max_value * alpha) >> 15); | 
|  | tmp16no2 = (int16_t)((min_value * beta) >> 15); | 
|  | freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2; | 
|  | #else | 
|  | #ifdef WEBRTC_ARCH_ARM_V7 | 
|  | __asm __volatile( | 
|  | "smulbb %[tmp32no1], %[real], %[real]\n\t" | 
|  | "smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t" | 
|  | :[tmp32no1]"+&r"(tmp32no1), | 
|  | [tmp32no2]"=r"(tmp32no2) | 
|  | :[real]"r"(freq_signal[i].real), | 
|  | [imag]"r"(freq_signal[i].imag) | 
|  | ); | 
|  | #else | 
|  | tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real); | 
|  | tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag); | 
|  | tmp32no1 = tmp16no1 * tmp16no1; | 
|  | tmp32no2 = tmp16no2 * tmp16no2; | 
|  | tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2); | 
|  | #endif // WEBRTC_ARCH_ARM_V7 | 
|  | tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2); | 
|  |  | 
|  | freq_signal_abs[i] = (uint16_t)tmp32no1; | 
|  | #endif // AECM_WITH_ABS_APPROX | 
|  | } | 
|  | (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i]; | 
|  | } | 
|  |  | 
|  | return time_signal_scaling; | 
|  | } | 
|  |  | 
|  | int RTC_NO_SANITIZE("signed-integer-overflow")  // bugs.webrtc.org/8200 | 
|  | WebRtcAecm_ProcessBlock(AecmCore* aecm, | 
|  | const int16_t* farend, | 
|  | const int16_t* nearendNoisy, | 
|  | const int16_t* nearendClean, | 
|  | int16_t* output) { | 
|  | int i; | 
|  |  | 
|  | uint32_t xfaSum; | 
|  | uint32_t dfaNoisySum; | 
|  | uint32_t dfaCleanSum; | 
|  | uint32_t echoEst32Gained; | 
|  | uint32_t tmpU32; | 
|  |  | 
|  | int32_t tmp32no1; | 
|  |  | 
|  | uint16_t xfa[PART_LEN1]; | 
|  | uint16_t dfaNoisy[PART_LEN1]; | 
|  | uint16_t dfaClean[PART_LEN1]; | 
|  | uint16_t* ptrDfaClean = dfaClean; | 
|  | const uint16_t* far_spectrum_ptr = NULL; | 
|  |  | 
|  | // 32 byte aligned buffers (with +8 or +16). | 
|  | // TODO(kma): define fft with ComplexInt16. | 
|  | int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe. | 
|  | int32_t echoEst32_buf[PART_LEN1 + 8]; | 
|  | int32_t dfw_buf[PART_LEN2 + 8]; | 
|  | int32_t efw_buf[PART_LEN2 + 8]; | 
|  |  | 
|  | int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31); | 
|  | int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31); | 
|  | ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31); | 
|  | ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31); | 
|  |  | 
|  | int16_t hnl[PART_LEN1]; | 
|  | int16_t numPosCoef = 0; | 
|  | int16_t nlpGain = ONE_Q14; | 
|  | int delay; | 
|  | int16_t tmp16no1; | 
|  | int16_t tmp16no2; | 
|  | int16_t mu; | 
|  | int16_t supGain; | 
|  | int16_t zeros32, zeros16; | 
|  | int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf; | 
|  | int far_q; | 
|  | int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff; | 
|  |  | 
|  | const int kMinPrefBand = 4; | 
|  | const int kMaxPrefBand = 24; | 
|  | int32_t avgHnl32 = 0; | 
|  |  | 
|  | // Determine startup state. There are three states: | 
|  | // (0) the first CONV_LEN blocks | 
|  | // (1) another CONV_LEN blocks | 
|  | // (2) the rest | 
|  |  | 
|  | if (aecm->startupState < 2) | 
|  | { | 
|  | aecm->startupState = (aecm->totCount >= CONV_LEN) + | 
|  | (aecm->totCount >= CONV_LEN2); | 
|  | } | 
|  | // END: Determine startup state | 
|  |  | 
|  | // Buffer near and far end signals | 
|  | memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN); | 
|  | memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN); | 
|  | if (nearendClean != NULL) | 
|  | { | 
|  | memcpy(aecm->dBufClean + PART_LEN, | 
|  | nearendClean, | 
|  | sizeof(int16_t) * PART_LEN); | 
|  | } | 
|  |  | 
|  | // Transform far end signal from time domain to frequency domain. | 
|  | far_q = TimeToFrequencyDomain(aecm, | 
|  | aecm->xBuf, | 
|  | dfw, | 
|  | xfa, | 
|  | &xfaSum); | 
|  |  | 
|  | // Transform noisy near end signal from time domain to frequency domain. | 
|  | zerosDBufNoisy = TimeToFrequencyDomain(aecm, | 
|  | aecm->dBufNoisy, | 
|  | dfw, | 
|  | dfaNoisy, | 
|  | &dfaNoisySum); | 
|  | aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain; | 
|  | aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy; | 
|  |  | 
|  |  | 
|  | if (nearendClean == NULL) | 
|  | { | 
|  | ptrDfaClean = dfaNoisy; | 
|  | aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld; | 
|  | aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain; | 
|  | dfaCleanSum = dfaNoisySum; | 
|  | } else | 
|  | { | 
|  | // Transform clean near end signal from time domain to frequency domain. | 
|  | zerosDBufClean = TimeToFrequencyDomain(aecm, | 
|  | aecm->dBufClean, | 
|  | dfw, | 
|  | dfaClean, | 
|  | &dfaCleanSum); | 
|  | aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain; | 
|  | aecm->dfaCleanQDomain = (int16_t)zerosDBufClean; | 
|  | } | 
|  |  | 
|  | // Get the delay | 
|  | // Save far-end history and estimate delay | 
|  | WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q); | 
|  | if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, | 
|  | xfa, | 
|  | PART_LEN1, | 
|  | far_q) == -1) { | 
|  | return -1; | 
|  | } | 
|  | delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator, | 
|  | dfaNoisy, | 
|  | PART_LEN1, | 
|  | zerosDBufNoisy); | 
|  | if (delay == -1) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  | else if (delay == -2) | 
|  | { | 
|  | // If the delay is unknown, we assume zero. | 
|  | // NOTE: this will have to be adjusted if we ever add lookahead. | 
|  | delay = 0; | 
|  | } | 
|  |  | 
|  | if (aecm->fixedDelay >= 0) | 
|  | { | 
|  | // Use fixed delay | 
|  | delay = aecm->fixedDelay; | 
|  | } | 
|  |  | 
|  | // Get aligned far end spectrum | 
|  | far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay); | 
|  | zerosXBuf = (int16_t) far_q; | 
|  | if (far_spectrum_ptr == NULL) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Calculate log(energy) and update energy threshold levels | 
|  | WebRtcAecm_CalcEnergies(aecm, | 
|  | far_spectrum_ptr, | 
|  | zerosXBuf, | 
|  | dfaNoisySum, | 
|  | echoEst32); | 
|  |  | 
|  | // Calculate stepsize | 
|  | mu = WebRtcAecm_CalcStepSize(aecm); | 
|  |  | 
|  | // Update counters | 
|  | aecm->totCount++; | 
|  |  | 
|  | // This is the channel estimation algorithm. | 
|  | // It is base on NLMS but has a variable step length, | 
|  | // which was calculated above. | 
|  | WebRtcAecm_UpdateChannel(aecm, | 
|  | far_spectrum_ptr, | 
|  | zerosXBuf, | 
|  | dfaNoisy, | 
|  | mu, | 
|  | echoEst32); | 
|  | supGain = WebRtcAecm_CalcSuppressionGain(aecm); | 
|  |  | 
|  |  | 
|  | // Calculate Wiener filter hnl[] | 
|  | for (i = 0; i < PART_LEN1; i++) | 
|  | { | 
|  | // Far end signal through channel estimate in Q8 | 
|  | // How much can we shift right to preserve resolution | 
|  | tmp32no1 = echoEst32[i] - aecm->echoFilt[i]; | 
|  | aecm->echoFilt[i] += | 
|  | rtc::dchecked_cast<int32_t>((int64_t{tmp32no1} * 50) >> 8); | 
|  |  | 
|  | zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1; | 
|  | zeros16 = WebRtcSpl_NormW16(supGain) + 1; | 
|  | if (zeros32 + zeros16 > 16) | 
|  | { | 
|  | // Multiplication is safe | 
|  | // Result in | 
|  | // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+ | 
|  | //   aecm->xfaQDomainBuf[diff]) | 
|  | echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], | 
|  | (uint16_t)supGain); | 
|  | resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN; | 
|  | resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf); | 
|  | } else | 
|  | { | 
|  | tmp16no1 = 17 - zeros32 - zeros16; | 
|  | resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 - | 
|  | RESOLUTION_SUPGAIN; | 
|  | resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf); | 
|  | if (zeros32 > tmp16no1) | 
|  | { | 
|  | echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], | 
|  | supGain >> tmp16no1); | 
|  | } else | 
|  | { | 
|  | // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16) | 
|  | echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain; | 
|  | } | 
|  | } | 
|  |  | 
|  | zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]); | 
|  | RTC_DCHECK_GE(zeros16, 0);  // |zeros16| is a norm, hence non-negative. | 
|  | dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld; | 
|  | if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) { | 
|  | tmp16no1 = aecm->nearFilt[i] << zeros16; | 
|  | qDomainDiff = zeros16 - dfa_clean_q_domain_diff; | 
|  | tmp16no2 = ptrDfaClean[i] >> -qDomainDiff; | 
|  | } else { | 
|  | tmp16no1 = dfa_clean_q_domain_diff < 0 | 
|  | ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff | 
|  | : aecm->nearFilt[i] << dfa_clean_q_domain_diff; | 
|  | qDomainDiff = 0; | 
|  | tmp16no2 = ptrDfaClean[i]; | 
|  | } | 
|  | tmp32no1 = (int32_t)(tmp16no2 - tmp16no1); | 
|  | tmp16no2 = (int16_t)(tmp32no1 >> 4); | 
|  | tmp16no2 += tmp16no1; | 
|  | zeros16 = WebRtcSpl_NormW16(tmp16no2); | 
|  | if ((tmp16no2) & (-qDomainDiff > zeros16)) { | 
|  | aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX; | 
|  | } else { | 
|  | aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 << -qDomainDiff | 
|  | : tmp16no2 >> qDomainDiff; | 
|  | } | 
|  |  | 
|  | // Wiener filter coefficients, resulting hnl in Q14 | 
|  | if (echoEst32Gained == 0) | 
|  | { | 
|  | hnl[i] = ONE_Q14; | 
|  | } else if (aecm->nearFilt[i] == 0) | 
|  | { | 
|  | hnl[i] = 0; | 
|  | } else | 
|  | { | 
|  | // Multiply the suppression gain | 
|  | // Rounding | 
|  | echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1); | 
|  | tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained, | 
|  | (uint16_t)aecm->nearFilt[i]); | 
|  |  | 
|  | // Current resolution is | 
|  | // Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32)) | 
|  | // Make sure we are in Q14 | 
|  | tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff); | 
|  | if (tmp32no1 > ONE_Q14) | 
|  | { | 
|  | hnl[i] = 0; | 
|  | } else if (tmp32no1 < 0) | 
|  | { | 
|  | hnl[i] = ONE_Q14; | 
|  | } else | 
|  | { | 
|  | // 1-echoEst/dfa | 
|  | hnl[i] = ONE_Q14 - (int16_t)tmp32no1; | 
|  | if (hnl[i] < 0) | 
|  | { | 
|  | hnl[i] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (hnl[i]) | 
|  | { | 
|  | numPosCoef++; | 
|  | } | 
|  | } | 
|  | // Only in wideband. Prevent the gain in upper band from being larger than | 
|  | // in lower band. | 
|  | if (aecm->mult == 2) | 
|  | { | 
|  | // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause | 
|  | //               speech distortion in double-talk. | 
|  | for (i = 0; i < PART_LEN1; i++) | 
|  | { | 
|  | hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14); | 
|  | } | 
|  |  | 
|  | for (i = kMinPrefBand; i <= kMaxPrefBand; i++) | 
|  | { | 
|  | avgHnl32 += (int32_t)hnl[i]; | 
|  | } | 
|  | RTC_DCHECK_GT(kMaxPrefBand - kMinPrefBand + 1, 0); | 
|  | avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1); | 
|  |  | 
|  | for (i = kMaxPrefBand; i < PART_LEN1; i++) | 
|  | { | 
|  | if (hnl[i] > (int16_t)avgHnl32) | 
|  | { | 
|  | hnl[i] = (int16_t)avgHnl32; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate NLP gain, result is in Q14 | 
|  | if (aecm->nlpFlag) | 
|  | { | 
|  | for (i = 0; i < PART_LEN1; i++) | 
|  | { | 
|  | // Truncate values close to zero and one. | 
|  | if (hnl[i] > NLP_COMP_HIGH) | 
|  | { | 
|  | hnl[i] = ONE_Q14; | 
|  | } else if (hnl[i] < NLP_COMP_LOW) | 
|  | { | 
|  | hnl[i] = 0; | 
|  | } | 
|  |  | 
|  | // Remove outliers | 
|  | if (numPosCoef < 3) | 
|  | { | 
|  | nlpGain = 0; | 
|  | } else | 
|  | { | 
|  | nlpGain = ONE_Q14; | 
|  | } | 
|  |  | 
|  | // NLP | 
|  | if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14)) | 
|  | { | 
|  | hnl[i] = ONE_Q14; | 
|  | } else | 
|  | { | 
|  | hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14); | 
|  | } | 
|  |  | 
|  | // multiply with Wiener coefficients | 
|  | efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, | 
|  | hnl[i], 14)); | 
|  | efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, | 
|  | hnl[i], 14)); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | // multiply with Wiener coefficients | 
|  | for (i = 0; i < PART_LEN1; i++) | 
|  | { | 
|  | efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, | 
|  | hnl[i], 14)); | 
|  | efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, | 
|  | hnl[i], 14)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (aecm->cngMode == AecmTrue) | 
|  | { | 
|  | ComfortNoise(aecm, ptrDfaClean, efw, hnl); | 
|  | } | 
|  |  | 
|  | InverseFFTAndWindow(aecm, fft, efw, output, nearendClean); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ComfortNoise(AecmCore* aecm, | 
|  | const uint16_t* dfa, | 
|  | ComplexInt16* out, | 
|  | const int16_t* lambda) { | 
|  | int16_t i; | 
|  | int16_t tmp16; | 
|  | int32_t tmp32; | 
|  |  | 
|  | int16_t randW16[PART_LEN]; | 
|  | int16_t uReal[PART_LEN1]; | 
|  | int16_t uImag[PART_LEN1]; | 
|  | int32_t outLShift32; | 
|  | int16_t noiseRShift16[PART_LEN1]; | 
|  |  | 
|  | int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain; | 
|  | int16_t minTrackShift; | 
|  |  | 
|  | RTC_DCHECK_GE(shiftFromNearToNoise, 0); | 
|  | RTC_DCHECK_LT(shiftFromNearToNoise, 16); | 
|  |  | 
|  | if (aecm->noiseEstCtr < 100) | 
|  | { | 
|  | // Track the minimum more quickly initially. | 
|  | aecm->noiseEstCtr++; | 
|  | minTrackShift = 6; | 
|  | } else | 
|  | { | 
|  | minTrackShift = 9; | 
|  | } | 
|  |  | 
|  | // Estimate noise power. | 
|  | for (i = 0; i < PART_LEN1; i++) | 
|  | { | 
|  | // Shift to the noise domain. | 
|  | tmp32 = (int32_t)dfa[i]; | 
|  | outLShift32 = tmp32 << shiftFromNearToNoise; | 
|  |  | 
|  | if (outLShift32 < aecm->noiseEst[i]) | 
|  | { | 
|  | // Reset "too low" counter | 
|  | aecm->noiseEstTooLowCtr[i] = 0; | 
|  | // Track the minimum. | 
|  | if (aecm->noiseEst[i] < (1 << minTrackShift)) | 
|  | { | 
|  | // For small values, decrease noiseEst[i] every | 
|  | // |kNoiseEstIncCount| block. The regular approach below can not | 
|  | // go further down due to truncation. | 
|  | aecm->noiseEstTooHighCtr[i]++; | 
|  | if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) | 
|  | { | 
|  | aecm->noiseEst[i]--; | 
|  | aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32) | 
|  | >> minTrackShift); | 
|  | } | 
|  | } else | 
|  | { | 
|  | // Reset "too high" counter | 
|  | aecm->noiseEstTooHighCtr[i] = 0; | 
|  | // Ramp slowly upwards until we hit the minimum again. | 
|  | if ((aecm->noiseEst[i] >> 19) > 0) | 
|  | { | 
|  | // Avoid overflow. | 
|  | // Multiplication with 2049 will cause wrap around. Scale | 
|  | // down first and then multiply | 
|  | aecm->noiseEst[i] >>= 11; | 
|  | aecm->noiseEst[i] *= 2049; | 
|  | } | 
|  | else if ((aecm->noiseEst[i] >> 11) > 0) | 
|  | { | 
|  | // Large enough for relative increase | 
|  | aecm->noiseEst[i] *= 2049; | 
|  | aecm->noiseEst[i] >>= 11; | 
|  | } | 
|  | else | 
|  | { | 
|  | // Make incremental increases based on size every | 
|  | // |kNoiseEstIncCount| block | 
|  | aecm->noiseEstTooLowCtr[i]++; | 
|  | if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) | 
|  | { | 
|  | aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1; | 
|  | aecm->noiseEstTooLowCtr[i] = 0; // Reset counter | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < PART_LEN1; i++) | 
|  | { | 
|  | tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise; | 
|  | if (tmp32 > 32767) | 
|  | { | 
|  | tmp32 = 32767; | 
|  | aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise; | 
|  | } | 
|  | noiseRShift16[i] = (int16_t)tmp32; | 
|  |  | 
|  | tmp16 = ONE_Q14 - lambda[i]; | 
|  | noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14); | 
|  | } | 
|  |  | 
|  | // Generate a uniform random array on [0 2^15-1]. | 
|  | WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed); | 
|  |  | 
|  | // Generate noise according to estimated energy. | 
|  | uReal[0] = 0; // Reject LF noise. | 
|  | uImag[0] = 0; | 
|  | for (i = 1; i < PART_LEN1; i++) | 
|  | { | 
|  | // Get a random index for the cos and sin tables over [0 359]. | 
|  | tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15); | 
|  |  | 
|  | // Tables are in Q13. | 
|  | uReal[i] = (int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >> | 
|  | 13); | 
|  | uImag[i] = (int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >> | 
|  | 13); | 
|  | } | 
|  | uImag[PART_LEN] = 0; | 
|  |  | 
|  | for (i = 0; i < PART_LEN1; i++) | 
|  | { | 
|  | out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]); | 
|  | out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]); | 
|  | } | 
|  | } |