| /* |
| * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* |
| * The core AEC algorithm, neon version of speed-critical functions. |
| * |
| * Based on aec_core_sse2.c. |
| */ |
| |
| #include <arm_neon.h> |
| #include <math.h> |
| #include <string.h> // memset |
| |
| extern "C" { |
| #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" |
| } |
| #include "webrtc/modules/audio_processing/aec/aec_common.h" |
| #include "webrtc/modules/audio_processing/aec/aec_core_optimized_methods.h" |
| #include "webrtc/modules/audio_processing/aec/aec_rdft.h" |
| |
| namespace webrtc { |
| |
| enum { kShiftExponentIntoTopMantissa = 8 }; |
| enum { kFloatExponentShift = 23 }; |
| |
| __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) { |
| return aRe * bRe - aIm * bIm; |
| } |
| |
| __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) { |
| return aRe * bIm + aIm * bRe; |
| } |
| |
| static void FilterFarNEON(int num_partitions, |
| int x_fft_buf_block_pos, |
| float x_fft_buf[2] |
| [kExtendedNumPartitions * PART_LEN1], |
| float h_fft_buf[2] |
| [kExtendedNumPartitions * PART_LEN1], |
| float y_fft[2][PART_LEN1]) { |
| int i; |
| for (i = 0; i < num_partitions; i++) { |
| int j; |
| int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; |
| int pos = i * PART_LEN1; |
| // Check for wrap |
| if (i + x_fft_buf_block_pos >= num_partitions) { |
| xPos -= num_partitions * PART_LEN1; |
| } |
| |
| // vectorized code (four at once) |
| for (j = 0; j + 3 < PART_LEN1; j += 4) { |
| const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]); |
| const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]); |
| const float32x4_t h_fft_buf_re = vld1q_f32(&h_fft_buf[0][pos + j]); |
| const float32x4_t h_fft_buf_im = vld1q_f32(&h_fft_buf[1][pos + j]); |
| const float32x4_t y_fft_re = vld1q_f32(&y_fft[0][j]); |
| const float32x4_t y_fft_im = vld1q_f32(&y_fft[1][j]); |
| const float32x4_t a = vmulq_f32(x_fft_buf_re, h_fft_buf_re); |
| const float32x4_t e = vmlsq_f32(a, x_fft_buf_im, h_fft_buf_im); |
| const float32x4_t c = vmulq_f32(x_fft_buf_re, h_fft_buf_im); |
| const float32x4_t f = vmlaq_f32(c, x_fft_buf_im, h_fft_buf_re); |
| const float32x4_t g = vaddq_f32(y_fft_re, e); |
| const float32x4_t h = vaddq_f32(y_fft_im, f); |
| vst1q_f32(&y_fft[0][j], g); |
| vst1q_f32(&y_fft[1][j], h); |
| } |
| // scalar code for the remaining items. |
| for (; j < PART_LEN1; j++) { |
| y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], |
| h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); |
| y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], |
| h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); |
| } |
| } |
| } |
| |
| // ARM64's arm_neon.h has already defined vdivq_f32 vsqrtq_f32. |
| #if !defined(WEBRTC_ARCH_ARM64) |
| static float32x4_t vdivq_f32(float32x4_t a, float32x4_t b) { |
| int i; |
| float32x4_t x = vrecpeq_f32(b); |
| // from arm documentation |
| // The Newton-Raphson iteration: |
| // x[n+1] = x[n] * (2 - d * x[n]) |
| // converges to (1/d) if x0 is the result of VRECPE applied to d. |
| // |
| // Note: The precision did not improve after 2 iterations. |
| for (i = 0; i < 2; i++) { |
| x = vmulq_f32(vrecpsq_f32(b, x), x); |
| } |
| // a/b = a*(1/b) |
| return vmulq_f32(a, x); |
| } |
| |
| static float32x4_t vsqrtq_f32(float32x4_t s) { |
| int i; |
| float32x4_t x = vrsqrteq_f32(s); |
| |
| // Code to handle sqrt(0). |
| // If the input to sqrtf() is zero, a zero will be returned. |
| // If the input to vrsqrteq_f32() is zero, positive infinity is returned. |
| const uint32x4_t vec_p_inf = vdupq_n_u32(0x7F800000); |
| // check for divide by zero |
| const uint32x4_t div_by_zero = vceqq_u32(vec_p_inf, vreinterpretq_u32_f32(x)); |
| // zero out the positive infinity results |
| x = vreinterpretq_f32_u32( |
| vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(x))); |
| // from arm documentation |
| // The Newton-Raphson iteration: |
| // x[n+1] = x[n] * (3 - d * (x[n] * x[n])) / 2) |
| // converges to (1/√d) if x0 is the result of VRSQRTE applied to d. |
| // |
| // Note: The precision did not improve after 2 iterations. |
| for (i = 0; i < 2; i++) { |
| x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x); |
| } |
| // sqrt(s) = s * 1/sqrt(s) |
| return vmulq_f32(s, x); |
| } |
| #endif // WEBRTC_ARCH_ARM64 |
| |
| static void ScaleErrorSignalNEON(float mu, |
| float error_threshold, |
| float x_pow[PART_LEN1], |
| float ef[2][PART_LEN1]) { |
| const float32x4_t k1e_10f = vdupq_n_f32(1e-10f); |
| const float32x4_t kMu = vmovq_n_f32(mu); |
| const float32x4_t kThresh = vmovq_n_f32(error_threshold); |
| int i; |
| // vectorized code (four at once) |
| for (i = 0; i + 3 < PART_LEN1; i += 4) { |
| const float32x4_t x_pow_local = vld1q_f32(&x_pow[i]); |
| const float32x4_t ef_re_base = vld1q_f32(&ef[0][i]); |
| const float32x4_t ef_im_base = vld1q_f32(&ef[1][i]); |
| const float32x4_t xPowPlus = vaddq_f32(x_pow_local, k1e_10f); |
| float32x4_t ef_re = vdivq_f32(ef_re_base, xPowPlus); |
| float32x4_t ef_im = vdivq_f32(ef_im_base, xPowPlus); |
| const float32x4_t ef_re2 = vmulq_f32(ef_re, ef_re); |
| const float32x4_t ef_sum2 = vmlaq_f32(ef_re2, ef_im, ef_im); |
| const float32x4_t absEf = vsqrtq_f32(ef_sum2); |
| const uint32x4_t bigger = vcgtq_f32(absEf, kThresh); |
| const float32x4_t absEfPlus = vaddq_f32(absEf, k1e_10f); |
| const float32x4_t absEfInv = vdivq_f32(kThresh, absEfPlus); |
| uint32x4_t ef_re_if = vreinterpretq_u32_f32(vmulq_f32(ef_re, absEfInv)); |
| uint32x4_t ef_im_if = vreinterpretq_u32_f32(vmulq_f32(ef_im, absEfInv)); |
| uint32x4_t ef_re_u32 = |
| vandq_u32(vmvnq_u32(bigger), vreinterpretq_u32_f32(ef_re)); |
| uint32x4_t ef_im_u32 = |
| vandq_u32(vmvnq_u32(bigger), vreinterpretq_u32_f32(ef_im)); |
| ef_re_if = vandq_u32(bigger, ef_re_if); |
| ef_im_if = vandq_u32(bigger, ef_im_if); |
| ef_re_u32 = vorrq_u32(ef_re_u32, ef_re_if); |
| ef_im_u32 = vorrq_u32(ef_im_u32, ef_im_if); |
| ef_re = vmulq_f32(vreinterpretq_f32_u32(ef_re_u32), kMu); |
| ef_im = vmulq_f32(vreinterpretq_f32_u32(ef_im_u32), kMu); |
| vst1q_f32(&ef[0][i], ef_re); |
| vst1q_f32(&ef[1][i], ef_im); |
| } |
| // scalar code for the remaining items. |
| for (; i < PART_LEN1; i++) { |
| float abs_ef; |
| ef[0][i] /= (x_pow[i] + 1e-10f); |
| ef[1][i] /= (x_pow[i] + 1e-10f); |
| abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); |
| |
| if (abs_ef > error_threshold) { |
| abs_ef = error_threshold / (abs_ef + 1e-10f); |
| ef[0][i] *= abs_ef; |
| ef[1][i] *= abs_ef; |
| } |
| |
| // Stepsize factor |
| ef[0][i] *= mu; |
| ef[1][i] *= mu; |
| } |
| } |
| |
| static void FilterAdaptationNEON( |
| int num_partitions, |
| int x_fft_buf_block_pos, |
| float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], |
| float e_fft[2][PART_LEN1], |
| float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) { |
| float fft[PART_LEN2]; |
| int i; |
| for (i = 0; i < num_partitions; i++) { |
| int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; |
| int pos = i * PART_LEN1; |
| int j; |
| // Check for wrap |
| if (i + x_fft_buf_block_pos >= num_partitions) { |
| xPos -= num_partitions * PART_LEN1; |
| } |
| |
| // Process the whole array... |
| for (j = 0; j < PART_LEN; j += 4) { |
| // Load x_fft_buf and e_fft. |
| const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]); |
| const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]); |
| const float32x4_t e_fft_re = vld1q_f32(&e_fft[0][j]); |
| const float32x4_t e_fft_im = vld1q_f32(&e_fft[1][j]); |
| // Calculate the product of conjugate(x_fft_buf) by e_fft. |
| // re(conjugate(a) * b) = aRe * bRe + aIm * bIm |
| // im(conjugate(a) * b)= aRe * bIm - aIm * bRe |
| const float32x4_t a = vmulq_f32(x_fft_buf_re, e_fft_re); |
| const float32x4_t e = vmlaq_f32(a, x_fft_buf_im, e_fft_im); |
| const float32x4_t c = vmulq_f32(x_fft_buf_re, e_fft_im); |
| const float32x4_t f = vmlsq_f32(c, x_fft_buf_im, e_fft_re); |
| // Interleave real and imaginary parts. |
| const float32x4x2_t g_n_h = vzipq_f32(e, f); |
| // Store |
| vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]); |
| vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]); |
| } |
| // ... and fixup the first imaginary entry. |
| fft[1] = |
| MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN], |
| e_fft[0][PART_LEN], e_fft[1][PART_LEN]); |
| |
| aec_rdft_inverse_128(fft); |
| memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); |
| |
| // fft scaling |
| { |
| const float scale = 2.0f / PART_LEN2; |
| const float32x4_t scale_ps = vmovq_n_f32(scale); |
| for (j = 0; j < PART_LEN; j += 4) { |
| const float32x4_t fft_ps = vld1q_f32(&fft[j]); |
| const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps); |
| vst1q_f32(&fft[j], fft_scale); |
| } |
| } |
| aec_rdft_forward_128(fft); |
| |
| { |
| const float wt1 = h_fft_buf[1][pos]; |
| h_fft_buf[0][pos + PART_LEN] += fft[1]; |
| for (j = 0; j < PART_LEN; j += 4) { |
| float32x4_t wtBuf_re = vld1q_f32(&h_fft_buf[0][pos + j]); |
| float32x4_t wtBuf_im = vld1q_f32(&h_fft_buf[1][pos + j]); |
| const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]); |
| const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]); |
| const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4); |
| wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]); |
| wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]); |
| |
| vst1q_f32(&h_fft_buf[0][pos + j], wtBuf_re); |
| vst1q_f32(&h_fft_buf[1][pos + j], wtBuf_im); |
| } |
| h_fft_buf[1][pos] = wt1; |
| } |
| } |
| } |
| |
| static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) { |
| // a^b = exp2(b * log2(a)) |
| // exp2(x) and log2(x) are calculated using polynomial approximations. |
| float32x4_t log2_a, b_log2_a, a_exp_b; |
| |
| // Calculate log2(x), x = a. |
| { |
| // To calculate log2(x), we decompose x like this: |
| // x = y * 2^n |
| // n is an integer |
| // y is in the [1.0, 2.0) range |
| // |
| // log2(x) = log2(y) + n |
| // n can be evaluated by playing with float representation. |
| // log2(y) in a small range can be approximated, this code uses an order |
| // five polynomial approximation. The coefficients have been |
| // estimated with the Remez algorithm and the resulting |
| // polynomial has a maximum relative error of 0.00086%. |
| |
| // Compute n. |
| // This is done by masking the exponent, shifting it into the top bit of |
| // the mantissa, putting eight into the biased exponent (to shift/ |
| // compensate the fact that the exponent has been shifted in the top/ |
| // fractional part and finally getting rid of the implicit leading one |
| // from the mantissa by substracting it out. |
| const uint32x4_t vec_float_exponent_mask = vdupq_n_u32(0x7F800000); |
| const uint32x4_t vec_eight_biased_exponent = vdupq_n_u32(0x43800000); |
| const uint32x4_t vec_implicit_leading_one = vdupq_n_u32(0x43BF8000); |
| const uint32x4_t two_n = |
| vandq_u32(vreinterpretq_u32_f32(a), vec_float_exponent_mask); |
| const uint32x4_t n_1 = vshrq_n_u32(two_n, kShiftExponentIntoTopMantissa); |
| const uint32x4_t n_0 = vorrq_u32(n_1, vec_eight_biased_exponent); |
| const float32x4_t n = |
| vsubq_f32(vreinterpretq_f32_u32(n_0), |
| vreinterpretq_f32_u32(vec_implicit_leading_one)); |
| // Compute y. |
| const uint32x4_t vec_mantissa_mask = vdupq_n_u32(0x007FFFFF); |
| const uint32x4_t vec_zero_biased_exponent_is_one = vdupq_n_u32(0x3F800000); |
| const uint32x4_t mantissa = |
| vandq_u32(vreinterpretq_u32_f32(a), vec_mantissa_mask); |
| const float32x4_t y = vreinterpretq_f32_u32( |
| vorrq_u32(mantissa, vec_zero_biased_exponent_is_one)); |
| // Approximate log2(y) ~= (y - 1) * pol5(y). |
| // pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0 |
| const float32x4_t C5 = vdupq_n_f32(-3.4436006e-2f); |
| const float32x4_t C4 = vdupq_n_f32(3.1821337e-1f); |
| const float32x4_t C3 = vdupq_n_f32(-1.2315303f); |
| const float32x4_t C2 = vdupq_n_f32(2.5988452f); |
| const float32x4_t C1 = vdupq_n_f32(-3.3241990f); |
| const float32x4_t C0 = vdupq_n_f32(3.1157899f); |
| float32x4_t pol5_y = C5; |
| pol5_y = vmlaq_f32(C4, y, pol5_y); |
| pol5_y = vmlaq_f32(C3, y, pol5_y); |
| pol5_y = vmlaq_f32(C2, y, pol5_y); |
| pol5_y = vmlaq_f32(C1, y, pol5_y); |
| pol5_y = vmlaq_f32(C0, y, pol5_y); |
| const float32x4_t y_minus_one = |
| vsubq_f32(y, vreinterpretq_f32_u32(vec_zero_biased_exponent_is_one)); |
| const float32x4_t log2_y = vmulq_f32(y_minus_one, pol5_y); |
| |
| // Combine parts. |
| log2_a = vaddq_f32(n, log2_y); |
| } |
| |
| // b * log2(a) |
| b_log2_a = vmulq_f32(b, log2_a); |
| |
| // Calculate exp2(x), x = b * log2(a). |
| { |
| // To calculate 2^x, we decompose x like this: |
| // x = n + y |
| // n is an integer, the value of x - 0.5 rounded down, therefore |
| // y is in the [0.5, 1.5) range |
| // |
| // 2^x = 2^n * 2^y |
| // 2^n can be evaluated by playing with float representation. |
| // 2^y in a small range can be approximated, this code uses an order two |
| // polynomial approximation. The coefficients have been estimated |
| // with the Remez algorithm and the resulting polynomial has a |
| // maximum relative error of 0.17%. |
| // To avoid over/underflow, we reduce the range of input to ]-127, 129]. |
| const float32x4_t max_input = vdupq_n_f32(129.f); |
| const float32x4_t min_input = vdupq_n_f32(-126.99999f); |
| const float32x4_t x_min = vminq_f32(b_log2_a, max_input); |
| const float32x4_t x_max = vmaxq_f32(x_min, min_input); |
| // Compute n. |
| const float32x4_t half = vdupq_n_f32(0.5f); |
| const float32x4_t x_minus_half = vsubq_f32(x_max, half); |
| const int32x4_t x_minus_half_floor = vcvtq_s32_f32(x_minus_half); |
| |
| // Compute 2^n. |
| const int32x4_t float_exponent_bias = vdupq_n_s32(127); |
| const int32x4_t two_n_exponent = |
| vaddq_s32(x_minus_half_floor, float_exponent_bias); |
| const float32x4_t two_n = |
| vreinterpretq_f32_s32(vshlq_n_s32(two_n_exponent, kFloatExponentShift)); |
| // Compute y. |
| const float32x4_t y = vsubq_f32(x_max, vcvtq_f32_s32(x_minus_half_floor)); |
| |
| // Approximate 2^y ~= C2 * y^2 + C1 * y + C0. |
| const float32x4_t C2 = vdupq_n_f32(3.3718944e-1f); |
| const float32x4_t C1 = vdupq_n_f32(6.5763628e-1f); |
| const float32x4_t C0 = vdupq_n_f32(1.0017247f); |
| float32x4_t exp2_y = C2; |
| exp2_y = vmlaq_f32(C1, y, exp2_y); |
| exp2_y = vmlaq_f32(C0, y, exp2_y); |
| |
| // Combine parts. |
| a_exp_b = vmulq_f32(exp2_y, two_n); |
| } |
| |
| return a_exp_b; |
| } |
| |
| static void OverdriveNEON(float overdrive_scaling, |
| float hNlFb, |
| float hNl[PART_LEN1]) { |
| int i; |
| const float32x4_t vec_hNlFb = vmovq_n_f32(hNlFb); |
| const float32x4_t vec_one = vdupq_n_f32(1.0f); |
| const float32x4_t vec_overdrive_scaling = vmovq_n_f32(overdrive_scaling); |
| |
| // vectorized code (four at once) |
| for (i = 0; i + 3 < PART_LEN1; i += 4) { |
| // Weight subbands |
| float32x4_t vec_hNl = vld1q_f32(&hNl[i]); |
| const float32x4_t vec_weightCurve = vld1q_f32(&WebRtcAec_weightCurve[i]); |
| const uint32x4_t bigger = vcgtq_f32(vec_hNl, vec_hNlFb); |
| const float32x4_t vec_weightCurve_hNlFb = |
| vmulq_f32(vec_weightCurve, vec_hNlFb); |
| const float32x4_t vec_one_weightCurve = vsubq_f32(vec_one, vec_weightCurve); |
| const float32x4_t vec_one_weightCurve_hNl = |
| vmulq_f32(vec_one_weightCurve, vec_hNl); |
| const uint32x4_t vec_if0 = |
| vandq_u32(vmvnq_u32(bigger), vreinterpretq_u32_f32(vec_hNl)); |
| const float32x4_t vec_one_weightCurve_add = |
| vaddq_f32(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl); |
| const uint32x4_t vec_if1 = |
| vandq_u32(bigger, vreinterpretq_u32_f32(vec_one_weightCurve_add)); |
| |
| vec_hNl = vreinterpretq_f32_u32(vorrq_u32(vec_if0, vec_if1)); |
| |
| const float32x4_t vec_overDriveCurve = |
| vld1q_f32(&WebRtcAec_overDriveCurve[i]); |
| const float32x4_t vec_overDriveSm_overDriveCurve = |
| vmulq_f32(vec_overdrive_scaling, vec_overDriveCurve); |
| vec_hNl = vpowq_f32(vec_hNl, vec_overDriveSm_overDriveCurve); |
| vst1q_f32(&hNl[i], vec_hNl); |
| } |
| |
| // scalar code for the remaining items. |
| for (; i < PART_LEN1; i++) { |
| // Weight subbands |
| if (hNl[i] > hNlFb) { |
| hNl[i] = WebRtcAec_weightCurve[i] * hNlFb + |
| (1 - WebRtcAec_weightCurve[i]) * hNl[i]; |
| } |
| |
| hNl[i] = powf(hNl[i], overdrive_scaling * WebRtcAec_overDriveCurve[i]); |
| } |
| } |
| |
| static void SuppressNEON(const float hNl[PART_LEN1], float efw[2][PART_LEN1]) { |
| int i; |
| const float32x4_t vec_minus_one = vdupq_n_f32(-1.0f); |
| // vectorized code (four at once) |
| for (i = 0; i + 3 < PART_LEN1; i += 4) { |
| float32x4_t vec_hNl = vld1q_f32(&hNl[i]); |
| float32x4_t vec_efw_re = vld1q_f32(&efw[0][i]); |
| float32x4_t vec_efw_im = vld1q_f32(&efw[1][i]); |
| vec_efw_re = vmulq_f32(vec_efw_re, vec_hNl); |
| vec_efw_im = vmulq_f32(vec_efw_im, vec_hNl); |
| |
| // Ooura fft returns incorrect sign on imaginary component. It matters |
| // here because we are making an additive change with comfort noise. |
| vec_efw_im = vmulq_f32(vec_efw_im, vec_minus_one); |
| vst1q_f32(&efw[0][i], vec_efw_re); |
| vst1q_f32(&efw[1][i], vec_efw_im); |
| } |
| |
| // scalar code for the remaining items. |
| for (; i < PART_LEN1; i++) { |
| efw[0][i] *= hNl[i]; |
| efw[1][i] *= hNl[i]; |
| |
| // Ooura fft returns incorrect sign on imaginary component. It matters |
| // here because we are making an additive change with comfort noise. |
| efw[1][i] *= -1; |
| } |
| } |
| |
| static int PartitionDelayNEON( |
| int num_partitions, |
| float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) { |
| // Measures the energy in each filter partition and returns the partition with |
| // highest energy. |
| // TODO(bjornv): Spread computational cost by computing one partition per |
| // block? |
| float wfEnMax = 0; |
| int i; |
| int delay = 0; |
| |
| for (i = 0; i < num_partitions; i++) { |
| int j; |
| int pos = i * PART_LEN1; |
| float wfEn = 0; |
| float32x4_t vec_wfEn = vdupq_n_f32(0.0f); |
| // vectorized code (four at once) |
| for (j = 0; j + 3 < PART_LEN1; j += 4) { |
| const float32x4_t vec_wfBuf0 = vld1q_f32(&h_fft_buf[0][pos + j]); |
| const float32x4_t vec_wfBuf1 = vld1q_f32(&h_fft_buf[1][pos + j]); |
| vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf0, vec_wfBuf0); |
| vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf1, vec_wfBuf1); |
| } |
| { |
| float32x2_t vec_total; |
| // A B C D |
| vec_total = vpadd_f32(vget_low_f32(vec_wfEn), vget_high_f32(vec_wfEn)); |
| // A+B C+D |
| vec_total = vpadd_f32(vec_total, vec_total); |
| // A+B+C+D A+B+C+D |
| wfEn = vget_lane_f32(vec_total, 0); |
| } |
| |
| // scalar code for the remaining items. |
| for (; j < PART_LEN1; j++) { |
| wfEn += h_fft_buf[0][pos + j] * h_fft_buf[0][pos + j] + |
| h_fft_buf[1][pos + j] * h_fft_buf[1][pos + j]; |
| } |
| |
| if (wfEn > wfEnMax) { |
| wfEnMax = wfEn; |
| delay = i; |
| } |
| } |
| return delay; |
| } |
| |
| // Updates the following smoothed Power Spectral Densities (PSD): |
| // - sd : near-end |
| // - se : residual echo |
| // - sx : far-end |
| // - sde : cross-PSD of near-end and residual echo |
| // - sxd : cross-PSD of near-end and far-end |
| // |
| // In addition to updating the PSDs, also the filter diverge state is determined |
| // upon actions are taken. |
| static void UpdateCoherenceSpectraNEON(int mult, |
| bool extended_filter_enabled, |
| float efw[2][PART_LEN1], |
| float dfw[2][PART_LEN1], |
| float xfw[2][PART_LEN1], |
| CoherenceState* coherence_state, |
| short* filter_divergence_state, |
| int* extreme_filter_divergence) { |
| // Power estimate smoothing coefficients. |
| const float* ptrGCoh = |
| extended_filter_enabled |
| ? WebRtcAec_kExtendedSmoothingCoefficients[mult - 1] |
| : WebRtcAec_kNormalSmoothingCoefficients[mult - 1]; |
| int i; |
| float sdSum = 0, seSum = 0; |
| const float32x4_t vec_15 = vdupq_n_f32(WebRtcAec_kMinFarendPSD); |
| float32x4_t vec_sdSum = vdupq_n_f32(0.0f); |
| float32x4_t vec_seSum = vdupq_n_f32(0.0f); |
| |
| for (i = 0; i + 3 < PART_LEN1; i += 4) { |
| const float32x4_t vec_dfw0 = vld1q_f32(&dfw[0][i]); |
| const float32x4_t vec_dfw1 = vld1q_f32(&dfw[1][i]); |
| const float32x4_t vec_efw0 = vld1q_f32(&efw[0][i]); |
| const float32x4_t vec_efw1 = vld1q_f32(&efw[1][i]); |
| const float32x4_t vec_xfw0 = vld1q_f32(&xfw[0][i]); |
| const float32x4_t vec_xfw1 = vld1q_f32(&xfw[1][i]); |
| float32x4_t vec_sd = |
| vmulq_n_f32(vld1q_f32(&coherence_state->sd[i]), ptrGCoh[0]); |
| float32x4_t vec_se = |
| vmulq_n_f32(vld1q_f32(&coherence_state->se[i]), ptrGCoh[0]); |
| float32x4_t vec_sx = |
| vmulq_n_f32(vld1q_f32(&coherence_state->sx[i]), ptrGCoh[0]); |
| float32x4_t vec_dfw_sumsq = vmulq_f32(vec_dfw0, vec_dfw0); |
| float32x4_t vec_efw_sumsq = vmulq_f32(vec_efw0, vec_efw0); |
| float32x4_t vec_xfw_sumsq = vmulq_f32(vec_xfw0, vec_xfw0); |
| |
| vec_dfw_sumsq = vmlaq_f32(vec_dfw_sumsq, vec_dfw1, vec_dfw1); |
| vec_efw_sumsq = vmlaq_f32(vec_efw_sumsq, vec_efw1, vec_efw1); |
| vec_xfw_sumsq = vmlaq_f32(vec_xfw_sumsq, vec_xfw1, vec_xfw1); |
| vec_xfw_sumsq = vmaxq_f32(vec_xfw_sumsq, vec_15); |
| vec_sd = vmlaq_n_f32(vec_sd, vec_dfw_sumsq, ptrGCoh[1]); |
| vec_se = vmlaq_n_f32(vec_se, vec_efw_sumsq, ptrGCoh[1]); |
| vec_sx = vmlaq_n_f32(vec_sx, vec_xfw_sumsq, ptrGCoh[1]); |
| |
| vst1q_f32(&coherence_state->sd[i], vec_sd); |
| vst1q_f32(&coherence_state->se[i], vec_se); |
| vst1q_f32(&coherence_state->sx[i], vec_sx); |
| |
| { |
| float32x4x2_t vec_sde = vld2q_f32(&coherence_state->sde[i][0]); |
| float32x4_t vec_dfwefw0011 = vmulq_f32(vec_dfw0, vec_efw0); |
| float32x4_t vec_dfwefw0110 = vmulq_f32(vec_dfw0, vec_efw1); |
| vec_sde.val[0] = vmulq_n_f32(vec_sde.val[0], ptrGCoh[0]); |
| vec_sde.val[1] = vmulq_n_f32(vec_sde.val[1], ptrGCoh[0]); |
| vec_dfwefw0011 = vmlaq_f32(vec_dfwefw0011, vec_dfw1, vec_efw1); |
| vec_dfwefw0110 = vmlsq_f32(vec_dfwefw0110, vec_dfw1, vec_efw0); |
| vec_sde.val[0] = vmlaq_n_f32(vec_sde.val[0], vec_dfwefw0011, ptrGCoh[1]); |
| vec_sde.val[1] = vmlaq_n_f32(vec_sde.val[1], vec_dfwefw0110, ptrGCoh[1]); |
| vst2q_f32(&coherence_state->sde[i][0], vec_sde); |
| } |
| |
| { |
| float32x4x2_t vec_sxd = vld2q_f32(&coherence_state->sxd[i][0]); |
| float32x4_t vec_dfwxfw0011 = vmulq_f32(vec_dfw0, vec_xfw0); |
| float32x4_t vec_dfwxfw0110 = vmulq_f32(vec_dfw0, vec_xfw1); |
| vec_sxd.val[0] = vmulq_n_f32(vec_sxd.val[0], ptrGCoh[0]); |
| vec_sxd.val[1] = vmulq_n_f32(vec_sxd.val[1], ptrGCoh[0]); |
| vec_dfwxfw0011 = vmlaq_f32(vec_dfwxfw0011, vec_dfw1, vec_xfw1); |
| vec_dfwxfw0110 = vmlsq_f32(vec_dfwxfw0110, vec_dfw1, vec_xfw0); |
| vec_sxd.val[0] = vmlaq_n_f32(vec_sxd.val[0], vec_dfwxfw0011, ptrGCoh[1]); |
| vec_sxd.val[1] = vmlaq_n_f32(vec_sxd.val[1], vec_dfwxfw0110, ptrGCoh[1]); |
| vst2q_f32(&coherence_state->sxd[i][0], vec_sxd); |
| } |
| |
| vec_sdSum = vaddq_f32(vec_sdSum, vec_sd); |
| vec_seSum = vaddq_f32(vec_seSum, vec_se); |
| } |
| { |
| float32x2_t vec_sdSum_total; |
| float32x2_t vec_seSum_total; |
| // A B C D |
| vec_sdSum_total = |
| vpadd_f32(vget_low_f32(vec_sdSum), vget_high_f32(vec_sdSum)); |
| vec_seSum_total = |
| vpadd_f32(vget_low_f32(vec_seSum), vget_high_f32(vec_seSum)); |
| // A+B C+D |
| vec_sdSum_total = vpadd_f32(vec_sdSum_total, vec_sdSum_total); |
| vec_seSum_total = vpadd_f32(vec_seSum_total, vec_seSum_total); |
| // A+B+C+D A+B+C+D |
| sdSum = vget_lane_f32(vec_sdSum_total, 0); |
| seSum = vget_lane_f32(vec_seSum_total, 0); |
| } |
| |
| // scalar code for the remaining items. |
| for (; i < PART_LEN1; i++) { |
| coherence_state->sd[i] = |
| ptrGCoh[0] * coherence_state->sd[i] + |
| ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]); |
| coherence_state->se[i] = |
| ptrGCoh[0] * coherence_state->se[i] + |
| ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]); |
| // We threshold here to protect against the ill-effects of a zero farend. |
| // The threshold is not arbitrarily chosen, but balances protection and |
| // adverse interaction with the algorithm's tuning. |
| // TODO(bjornv): investigate further why this is so sensitive. |
| coherence_state->sx[i] = |
| ptrGCoh[0] * coherence_state->sx[i] + |
| ptrGCoh[1] * |
| WEBRTC_SPL_MAX(xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i], |
| WebRtcAec_kMinFarendPSD); |
| |
| coherence_state->sde[i][0] = |
| ptrGCoh[0] * coherence_state->sde[i][0] + |
| ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]); |
| coherence_state->sde[i][1] = |
| ptrGCoh[0] * coherence_state->sde[i][1] + |
| ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]); |
| |
| coherence_state->sxd[i][0] = |
| ptrGCoh[0] * coherence_state->sxd[i][0] + |
| ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]); |
| coherence_state->sxd[i][1] = |
| ptrGCoh[0] * coherence_state->sxd[i][1] + |
| ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]); |
| |
| sdSum += coherence_state->sd[i]; |
| seSum += coherence_state->se[i]; |
| } |
| |
| // Divergent filter safeguard update. |
| *filter_divergence_state = |
| (*filter_divergence_state ? 1.05f : 1.0f) * seSum > sdSum; |
| |
| // Signal extreme filter divergence if the error is significantly larger |
| // than the nearend (13 dB). |
| *extreme_filter_divergence = (seSum > (19.95f * sdSum)); |
| } |
| |
| // Window time domain data to be used by the fft. |
| static void WindowDataNEON(float* x_windowed, const float* x) { |
| int i; |
| for (i = 0; i < PART_LEN; i += 4) { |
| const float32x4_t vec_Buf1 = vld1q_f32(&x[i]); |
| const float32x4_t vec_Buf2 = vld1q_f32(&x[PART_LEN + i]); |
| const float32x4_t vec_sqrtHanning = vld1q_f32(&WebRtcAec_sqrtHanning[i]); |
| // A B C D |
| float32x4_t vec_sqrtHanning_rev = |
| vld1q_f32(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]); |
| // B A D C |
| vec_sqrtHanning_rev = vrev64q_f32(vec_sqrtHanning_rev); |
| // D C B A |
| vec_sqrtHanning_rev = vcombine_f32(vget_high_f32(vec_sqrtHanning_rev), |
| vget_low_f32(vec_sqrtHanning_rev)); |
| vst1q_f32(&x_windowed[i], vmulq_f32(vec_Buf1, vec_sqrtHanning)); |
| vst1q_f32(&x_windowed[PART_LEN + i], |
| vmulq_f32(vec_Buf2, vec_sqrtHanning_rev)); |
| } |
| } |
| |
| // Puts fft output data into a complex valued array. |
| static void StoreAsComplexNEON(const float* data, |
| float data_complex[2][PART_LEN1]) { |
| int i; |
| for (i = 0; i < PART_LEN; i += 4) { |
| const float32x4x2_t vec_data = vld2q_f32(&data[2 * i]); |
| vst1q_f32(&data_complex[0][i], vec_data.val[0]); |
| vst1q_f32(&data_complex[1][i], vec_data.val[1]); |
| } |
| // fix beginning/end values |
| data_complex[1][0] = 0; |
| data_complex[1][PART_LEN] = 0; |
| data_complex[0][0] = data[0]; |
| data_complex[0][PART_LEN] = data[1]; |
| } |
| |
| static void ComputeCoherenceNEON(const CoherenceState* coherence_state, |
| float* cohde, |
| float* cohxd) { |
| int i; |
| |
| { |
| const float32x4_t vec_1eminus10 = vdupq_n_f32(1e-10f); |
| |
| // Subband coherence |
| for (i = 0; i + 3 < PART_LEN1; i += 4) { |
| const float32x4_t vec_sd = vld1q_f32(&coherence_state->sd[i]); |
| const float32x4_t vec_se = vld1q_f32(&coherence_state->se[i]); |
| const float32x4_t vec_sx = vld1q_f32(&coherence_state->sx[i]); |
| const float32x4_t vec_sdse = vmlaq_f32(vec_1eminus10, vec_sd, vec_se); |
| const float32x4_t vec_sdsx = vmlaq_f32(vec_1eminus10, vec_sd, vec_sx); |
| float32x4x2_t vec_sde = vld2q_f32(&coherence_state->sde[i][0]); |
| float32x4x2_t vec_sxd = vld2q_f32(&coherence_state->sxd[i][0]); |
| float32x4_t vec_cohde = vmulq_f32(vec_sde.val[0], vec_sde.val[0]); |
| float32x4_t vec_cohxd = vmulq_f32(vec_sxd.val[0], vec_sxd.val[0]); |
| vec_cohde = vmlaq_f32(vec_cohde, vec_sde.val[1], vec_sde.val[1]); |
| vec_cohde = vdivq_f32(vec_cohde, vec_sdse); |
| vec_cohxd = vmlaq_f32(vec_cohxd, vec_sxd.val[1], vec_sxd.val[1]); |
| vec_cohxd = vdivq_f32(vec_cohxd, vec_sdsx); |
| |
| vst1q_f32(&cohde[i], vec_cohde); |
| vst1q_f32(&cohxd[i], vec_cohxd); |
| } |
| } |
| // scalar code for the remaining items. |
| for (; i < PART_LEN1; i++) { |
| cohde[i] = (coherence_state->sde[i][0] * coherence_state->sde[i][0] + |
| coherence_state->sde[i][1] * coherence_state->sde[i][1]) / |
| (coherence_state->sd[i] * coherence_state->se[i] + 1e-10f); |
| cohxd[i] = (coherence_state->sxd[i][0] * coherence_state->sxd[i][0] + |
| coherence_state->sxd[i][1] * coherence_state->sxd[i][1]) / |
| (coherence_state->sx[i] * coherence_state->sd[i] + 1e-10f); |
| } |
| } |
| |
| void WebRtcAec_InitAec_neon(void) { |
| WebRtcAec_FilterFar = FilterFarNEON; |
| WebRtcAec_ScaleErrorSignal = ScaleErrorSignalNEON; |
| WebRtcAec_FilterAdaptation = FilterAdaptationNEON; |
| WebRtcAec_Overdrive = OverdriveNEON; |
| WebRtcAec_Suppress = SuppressNEON; |
| WebRtcAec_ComputeCoherence = ComputeCoherenceNEON; |
| WebRtcAec_UpdateCoherenceSpectra = UpdateCoherenceSpectraNEON; |
| WebRtcAec_StoreAsComplex = StoreAsComplexNEON; |
| WebRtcAec_PartitionDelay = PartitionDelayNEON; |
| WebRtcAec_WindowData = WindowDataNEON; |
| } |
| } // namespace webrtc |