blob: 5a7aef6fdf970e2b8cae8e779df6298b9552efa6 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/echo_cancellation_impl.h"
#include <assert.h>
#include <string.h>
#include "webrtc/modules/audio_processing/aec/aec_core.h"
#include "webrtc/modules/audio_processing/aec/echo_cancellation.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
namespace webrtc {
namespace {
int16_t MapSetting(EchoCancellation::SuppressionLevel level) {
switch (level) {
case EchoCancellation::kLowSuppression:
return kAecNlpConservative;
case EchoCancellation::kModerateSuppression:
return kAecNlpModerate;
case EchoCancellation::kHighSuppression:
return kAecNlpAggressive;
}
assert(false);
return -1;
}
AudioProcessing::Error MapError(int err) {
switch (err) {
case AEC_UNSUPPORTED_FUNCTION_ERROR:
return AudioProcessing::kUnsupportedFunctionError;
case AEC_BAD_PARAMETER_ERROR:
return AudioProcessing::kBadParameterError;
case AEC_BAD_PARAMETER_WARNING:
return AudioProcessing::kBadStreamParameterWarning;
default:
// AEC_UNSPECIFIED_ERROR
// AEC_UNINITIALIZED_ERROR
// AEC_NULL_POINTER_ERROR
return AudioProcessing::kUnspecifiedError;
}
}
// Maximum length that a frame of samples can have.
static const size_t kMaxAllowedValuesOfSamplesPerFrame = 160;
// Maximum number of frames to buffer in the render queue.
// TODO(peah): Decrease this once we properly handle hugely unbalanced
// reverse and forward call numbers.
static const size_t kMaxNumFramesToBuffer = 100;
} // namespace
struct EchoCancellationImpl::StreamProperties {
StreamProperties() = delete;
StreamProperties(int sample_rate_hz,
size_t num_reverse_channels,
size_t num_output_channels,
size_t num_proc_channels)
: sample_rate_hz(sample_rate_hz),
num_reverse_channels(num_reverse_channels),
num_output_channels(num_output_channels),
num_proc_channels(num_proc_channels) {}
const int sample_rate_hz;
const size_t num_reverse_channels;
const size_t num_output_channels;
const size_t num_proc_channels;
};
class EchoCancellationImpl::Canceller {
public:
Canceller() {
state_ = WebRtcAec_Create();
RTC_DCHECK(state_);
}
~Canceller() {
RTC_CHECK(state_);
WebRtcAec_Free(state_);
}
void* state() { return state_; }
void Initialize(int sample_rate_hz) {
// TODO(ajm): Drift compensation is disabled in practice. If restored, it
// should be managed internally and not depend on the hardware sample rate.
// For now, just hardcode a 48 kHz value.
const int error = WebRtcAec_Init(state_, sample_rate_hz, 48000);
RTC_DCHECK_EQ(0, error);
}
private:
void* state_;
};
EchoCancellationImpl::EchoCancellationImpl(rtc::CriticalSection* crit_render,
rtc::CriticalSection* crit_capture)
: crit_render_(crit_render),
crit_capture_(crit_capture),
drift_compensation_enabled_(false),
metrics_enabled_(false),
suppression_level_(kModerateSuppression),
stream_drift_samples_(0),
was_stream_drift_set_(false),
stream_has_echo_(false),
delay_logging_enabled_(false),
extended_filter_enabled_(false),
delay_agnostic_enabled_(false),
aec3_enabled_(false),
render_queue_element_max_size_(0) {
RTC_DCHECK(crit_render);
RTC_DCHECK(crit_capture);
}
EchoCancellationImpl::~EchoCancellationImpl() {}
int EchoCancellationImpl::ProcessRenderAudio(const AudioBuffer* audio) {
rtc::CritScope cs_render(crit_render_);
if (!enabled_) {
return AudioProcessing::kNoError;
}
RTC_DCHECK(stream_properties_);
RTC_DCHECK_GE(160u, audio->num_frames_per_band());
RTC_DCHECK_EQ(audio->num_channels(),
stream_properties_->num_reverse_channels);
RTC_DCHECK_GE(cancellers_.size(), stream_properties_->num_output_channels *
audio->num_channels());
int err = AudioProcessing::kNoError;
// The ordering convention must be followed to pass to the correct AEC.
size_t handle_index = 0;
render_queue_buffer_.clear();
for (size_t i = 0; i < stream_properties_->num_output_channels; i++) {
for (size_t j = 0; j < audio->num_channels(); j++) {
// Retrieve any error code produced by the buffering of the farend
// signal.
err = WebRtcAec_GetBufferFarendError(
cancellers_[handle_index++]->state(),
audio->split_bands_const_f(j)[kBand0To8kHz],
audio->num_frames_per_band());
if (err != AudioProcessing::kNoError) {
return MapError(err); // TODO(ajm): warning possible?
}
// Buffer the samples in the render queue.
render_queue_buffer_.insert(render_queue_buffer_.end(),
audio->split_bands_const_f(j)[kBand0To8kHz],
(audio->split_bands_const_f(j)[kBand0To8kHz] +
audio->num_frames_per_band()));
}
}
// Insert the samples into the queue.
if (!render_signal_queue_->Insert(&render_queue_buffer_)) {
// The data queue is full and needs to be emptied.
ReadQueuedRenderData();
// Retry the insert (should always work).
RTC_DCHECK_EQ(render_signal_queue_->Insert(&render_queue_buffer_), true);
}
return AudioProcessing::kNoError;
}
// Read chunks of data that were received and queued on the render side from
// a queue. All the data chunks are buffered into the farend signal of the AEC.
void EchoCancellationImpl::ReadQueuedRenderData() {
rtc::CritScope cs_capture(crit_capture_);
if (!enabled_) {
return;
}
RTC_DCHECK(stream_properties_);
while (render_signal_queue_->Remove(&capture_queue_buffer_)) {
size_t handle_index = 0;
size_t buffer_index = 0;
const size_t num_frames_per_band =
capture_queue_buffer_.size() /
(stream_properties_->num_output_channels *
stream_properties_->num_reverse_channels);
for (size_t i = 0; i < stream_properties_->num_output_channels; i++) {
for (size_t j = 0; j < stream_properties_->num_reverse_channels; j++) {
WebRtcAec_BufferFarend(cancellers_[handle_index++]->state(),
&capture_queue_buffer_[buffer_index],
num_frames_per_band);
buffer_index += num_frames_per_band;
}
}
}
}
int EchoCancellationImpl::ProcessCaptureAudio(AudioBuffer* audio,
int stream_delay_ms) {
rtc::CritScope cs_capture(crit_capture_);
if (!enabled_) {
return AudioProcessing::kNoError;
}
if (drift_compensation_enabled_ && !was_stream_drift_set_) {
return AudioProcessing::kStreamParameterNotSetError;
}
RTC_DCHECK(stream_properties_);
RTC_DCHECK_GE(160u, audio->num_frames_per_band());
RTC_DCHECK_EQ(audio->num_channels(), stream_properties_->num_proc_channels);
int err = AudioProcessing::kNoError;
// The ordering convention must be followed to pass to the correct AEC.
size_t handle_index = 0;
stream_has_echo_ = false;
for (size_t i = 0; i < audio->num_channels(); i++) {
for (size_t j = 0; j < stream_properties_->num_reverse_channels; j++) {
err = WebRtcAec_Process(
cancellers_[handle_index]->state(), audio->split_bands_const_f(i),
audio->num_bands(), audio->split_bands_f(i),
audio->num_frames_per_band(), stream_delay_ms, stream_drift_samples_);
if (err != AudioProcessing::kNoError) {
err = MapError(err);
// TODO(ajm): Figure out how to return warnings properly.
if (err != AudioProcessing::kBadStreamParameterWarning) {
return err;
}
}
int status = 0;
err = WebRtcAec_get_echo_status(cancellers_[handle_index]->state(),
&status);
if (err != AudioProcessing::kNoError) {
return MapError(err);
}
if (status == 1) {
stream_has_echo_ = true;
}
handle_index++;
}
}
was_stream_drift_set_ = false;
return AudioProcessing::kNoError;
}
int EchoCancellationImpl::Enable(bool enable) {
// Run in a single-threaded manner.
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
if (enable && !enabled_) {
enabled_ = enable; // Must be set before Initialize() is called.
// TODO(peah): Simplify once the Enable function has been removed from
// the public APM API.
RTC_DCHECK(stream_properties_);
Initialize(stream_properties_->sample_rate_hz,
stream_properties_->num_reverse_channels,
stream_properties_->num_output_channels,
stream_properties_->num_proc_channels);
} else {
enabled_ = enable;
}
return AudioProcessing::kNoError;
}
bool EchoCancellationImpl::is_enabled_render_side_query() const {
// TODO(peah): Add threadchecker.
rtc::CritScope cs_render(crit_render_);
return enabled_;
}
bool EchoCancellationImpl::is_enabled() const {
rtc::CritScope cs(crit_capture_);
return enabled_;
}
int EchoCancellationImpl::set_suppression_level(SuppressionLevel level) {
{
if (MapSetting(level) == -1) {
return AudioProcessing::kBadParameterError;
}
rtc::CritScope cs(crit_capture_);
suppression_level_ = level;
}
return Configure();
}
EchoCancellation::SuppressionLevel EchoCancellationImpl::suppression_level()
const {
rtc::CritScope cs(crit_capture_);
return suppression_level_;
}
int EchoCancellationImpl::enable_drift_compensation(bool enable) {
{
rtc::CritScope cs(crit_capture_);
drift_compensation_enabled_ = enable;
}
return Configure();
}
bool EchoCancellationImpl::is_drift_compensation_enabled() const {
rtc::CritScope cs(crit_capture_);
return drift_compensation_enabled_;
}
void EchoCancellationImpl::set_stream_drift_samples(int drift) {
rtc::CritScope cs(crit_capture_);
was_stream_drift_set_ = true;
stream_drift_samples_ = drift;
}
int EchoCancellationImpl::stream_drift_samples() const {
rtc::CritScope cs(crit_capture_);
return stream_drift_samples_;
}
int EchoCancellationImpl::enable_metrics(bool enable) {
{
rtc::CritScope cs(crit_capture_);
metrics_enabled_ = enable;
}
return Configure();
}
bool EchoCancellationImpl::are_metrics_enabled() const {
rtc::CritScope cs(crit_capture_);
return metrics_enabled_;
}
// TODO(ajm): we currently just use the metrics from the first AEC. Think more
// aboue the best way to extend this to multi-channel.
int EchoCancellationImpl::GetMetrics(Metrics* metrics) {
rtc::CritScope cs(crit_capture_);
if (metrics == NULL) {
return AudioProcessing::kNullPointerError;
}
if (!enabled_ || !metrics_enabled_) {
return AudioProcessing::kNotEnabledError;
}
AecMetrics my_metrics;
memset(&my_metrics, 0, sizeof(my_metrics));
memset(metrics, 0, sizeof(Metrics));
const int err = WebRtcAec_GetMetrics(cancellers_[0]->state(), &my_metrics);
if (err != AudioProcessing::kNoError) {
return MapError(err);
}
metrics->residual_echo_return_loss.instant = my_metrics.rerl.instant;
metrics->residual_echo_return_loss.average = my_metrics.rerl.average;
metrics->residual_echo_return_loss.maximum = my_metrics.rerl.max;
metrics->residual_echo_return_loss.minimum = my_metrics.rerl.min;
metrics->echo_return_loss.instant = my_metrics.erl.instant;
metrics->echo_return_loss.average = my_metrics.erl.average;
metrics->echo_return_loss.maximum = my_metrics.erl.max;
metrics->echo_return_loss.minimum = my_metrics.erl.min;
metrics->echo_return_loss_enhancement.instant = my_metrics.erle.instant;
metrics->echo_return_loss_enhancement.average = my_metrics.erle.average;
metrics->echo_return_loss_enhancement.maximum = my_metrics.erle.max;
metrics->echo_return_loss_enhancement.minimum = my_metrics.erle.min;
metrics->a_nlp.instant = my_metrics.aNlp.instant;
metrics->a_nlp.average = my_metrics.aNlp.average;
metrics->a_nlp.maximum = my_metrics.aNlp.max;
metrics->a_nlp.minimum = my_metrics.aNlp.min;
metrics->divergent_filter_fraction = my_metrics.divergent_filter_fraction;
return AudioProcessing::kNoError;
}
bool EchoCancellationImpl::stream_has_echo() const {
rtc::CritScope cs(crit_capture_);
return stream_has_echo_;
}
int EchoCancellationImpl::enable_delay_logging(bool enable) {
{
rtc::CritScope cs(crit_capture_);
delay_logging_enabled_ = enable;
}
return Configure();
}
bool EchoCancellationImpl::is_delay_logging_enabled() const {
rtc::CritScope cs(crit_capture_);
return delay_logging_enabled_;
}
bool EchoCancellationImpl::is_delay_agnostic_enabled() const {
rtc::CritScope cs(crit_capture_);
return delay_agnostic_enabled_;
}
bool EchoCancellationImpl::is_aec3_enabled() const {
rtc::CritScope cs(crit_capture_);
return aec3_enabled_;
}
std::string EchoCancellationImpl::GetExperimentsDescription() {
rtc::CritScope cs(crit_capture_);
std::string description = (aec3_enabled_ ? "AEC3;" : "");
if (refined_adaptive_filter_enabled_) {
description += "RefinedAdaptiveFilter;";
}
return description;
}
bool EchoCancellationImpl::is_refined_adaptive_filter_enabled() const {
rtc::CritScope cs(crit_capture_);
return refined_adaptive_filter_enabled_;
}
bool EchoCancellationImpl::is_extended_filter_enabled() const {
rtc::CritScope cs(crit_capture_);
return extended_filter_enabled_;
}
// TODO(bjornv): How should we handle the multi-channel case?
int EchoCancellationImpl::GetDelayMetrics(int* median, int* std) {
rtc::CritScope cs(crit_capture_);
float fraction_poor_delays = 0;
return GetDelayMetrics(median, std, &fraction_poor_delays);
}
int EchoCancellationImpl::GetDelayMetrics(int* median, int* std,
float* fraction_poor_delays) {
rtc::CritScope cs(crit_capture_);
if (median == NULL) {
return AudioProcessing::kNullPointerError;
}
if (std == NULL) {
return AudioProcessing::kNullPointerError;
}
if (!enabled_ || !delay_logging_enabled_) {
return AudioProcessing::kNotEnabledError;
}
const int err = WebRtcAec_GetDelayMetrics(cancellers_[0]->state(), median,
std, fraction_poor_delays);
if (err != AudioProcessing::kNoError) {
return MapError(err);
}
return AudioProcessing::kNoError;
}
struct AecCore* EchoCancellationImpl::aec_core() const {
rtc::CritScope cs(crit_capture_);
if (!enabled_) {
return NULL;
}
return WebRtcAec_aec_core(cancellers_[0]->state());
}
void EchoCancellationImpl::Initialize(int sample_rate_hz,
size_t num_reverse_channels,
size_t num_output_channels,
size_t num_proc_channels) {
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
stream_properties_.reset(
new StreamProperties(sample_rate_hz, num_reverse_channels,
num_output_channels, num_proc_channels));
if (!enabled_) {
return;
}
if (NumCancellersRequired() > cancellers_.size()) {
const size_t cancellers_old_size = cancellers_.size();
cancellers_.resize(NumCancellersRequired());
for (size_t i = cancellers_old_size; i < cancellers_.size(); ++i) {
cancellers_[i].reset(new Canceller());
}
}
for (auto& canceller : cancellers_) {
canceller->Initialize(sample_rate_hz);
}
Configure();
AllocateRenderQueue();
}
int EchoCancellationImpl::GetSystemDelayInSamples() const {
rtc::CritScope cs(crit_capture_);
RTC_DCHECK(enabled_);
// Report the delay for the first AEC component.
return WebRtcAec_system_delay(
WebRtcAec_aec_core(cancellers_[0]->state()));
}
void EchoCancellationImpl::AllocateRenderQueue() {
const size_t new_render_queue_element_max_size = std::max<size_t>(
static_cast<size_t>(1),
kMaxAllowedValuesOfSamplesPerFrame * NumCancellersRequired());
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
// Reallocate the queue if the queue item size is too small to fit the
// data to put in the queue.
if (render_queue_element_max_size_ < new_render_queue_element_max_size) {
render_queue_element_max_size_ = new_render_queue_element_max_size;
std::vector<float> template_queue_element(render_queue_element_max_size_);
render_signal_queue_.reset(
new SwapQueue<std::vector<float>, RenderQueueItemVerifier<float>>(
kMaxNumFramesToBuffer, template_queue_element,
RenderQueueItemVerifier<float>(render_queue_element_max_size_)));
render_queue_buffer_.resize(render_queue_element_max_size_);
capture_queue_buffer_.resize(render_queue_element_max_size_);
} else {
render_signal_queue_->Clear();
}
}
void EchoCancellationImpl::SetExtraOptions(const Config& config) {
{
rtc::CritScope cs(crit_capture_);
extended_filter_enabled_ = config.Get<ExtendedFilter>().enabled;
delay_agnostic_enabled_ = config.Get<DelayAgnostic>().enabled;
refined_adaptive_filter_enabled_ =
config.Get<RefinedAdaptiveFilter>().enabled;
aec3_enabled_ = config.Get<EchoCanceller3>().enabled;
}
Configure();
}
int EchoCancellationImpl::Configure() {
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
AecConfig config;
config.metricsMode = metrics_enabled_;
config.nlpMode = MapSetting(suppression_level_);
config.skewMode = drift_compensation_enabled_;
config.delay_logging = delay_logging_enabled_;
int error = AudioProcessing::kNoError;
for (auto& canceller : cancellers_) {
WebRtcAec_enable_extended_filter(WebRtcAec_aec_core(canceller->state()),
extended_filter_enabled_ ? 1 : 0);
WebRtcAec_enable_delay_agnostic(WebRtcAec_aec_core(canceller->state()),
delay_agnostic_enabled_ ? 1 : 0);
WebRtcAec_enable_aec3(WebRtcAec_aec_core(canceller->state()),
aec3_enabled_ ? 1 : 0);
WebRtcAec_enable_refined_adaptive_filter(
WebRtcAec_aec_core(canceller->state()),
refined_adaptive_filter_enabled_);
const int handle_error = WebRtcAec_set_config(canceller->state(), config);
if (handle_error != AudioProcessing::kNoError) {
error = AudioProcessing::kNoError;
}
}
return error;
}
size_t EchoCancellationImpl::NumCancellersRequired() const {
RTC_DCHECK(stream_properties_);
return stream_properties_->num_output_channels *
stream_properties_->num_reverse_channels;
}
} // namespace webrtc