| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/congestion_controller/probe_bitrate_estimator.h" |
| |
| #include <algorithm> |
| |
| #include "webrtc/base/checks.h" |
| #include "webrtc/base/logging.h" |
| |
| namespace { |
| // The minumum number of probes we need for a valid cluster. |
| constexpr int kMinNumProbesValidCluster = 4; |
| |
| // The maximum (receive rate)/(send rate) ratio for a valid estimate. |
| constexpr float kValidRatio = 2.0f; |
| |
| // The maximum time period over which the cluster history is retained. |
| // This is also the maximum time period beyond which a probing burst is not |
| // expected to last. |
| constexpr int kMaxClusterHistoryMs = 1000; |
| |
| // The maximum time interval between first and the last probe on a cluster |
| // on the sender side as well as the receive side. |
| constexpr int kMaxProbeIntervalMs = 1000; |
| } // namespace |
| |
| namespace webrtc { |
| |
| ProbeBitrateEstimator::ProbeBitrateEstimator() {} |
| |
| int ProbeBitrateEstimator::HandleProbeAndEstimateBitrate( |
| const PacketInfo& packet_info) { |
| RTC_DCHECK_NE(packet_info.probe_cluster_id, PacketInfo::kNotAProbe); |
| |
| EraseOldClusters(packet_info.arrival_time_ms - kMaxClusterHistoryMs); |
| |
| int payload_size_bits = packet_info.payload_size * 8; |
| AggregatedCluster* cluster = &clusters_[packet_info.probe_cluster_id]; |
| |
| if (packet_info.send_time_ms < cluster->first_send_ms) { |
| cluster->first_send_ms = packet_info.send_time_ms; |
| } |
| if (packet_info.send_time_ms > cluster->last_send_ms) { |
| cluster->last_send_ms = packet_info.send_time_ms; |
| cluster->size_last_send = payload_size_bits; |
| } |
| if (packet_info.arrival_time_ms < cluster->first_receive_ms) { |
| cluster->first_receive_ms = packet_info.arrival_time_ms; |
| cluster->size_first_receive = payload_size_bits; |
| } |
| if (packet_info.arrival_time_ms > cluster->last_receive_ms) { |
| cluster->last_receive_ms = packet_info.arrival_time_ms; |
| } |
| cluster->size_total += payload_size_bits; |
| cluster->num_probes += 1; |
| |
| if (cluster->num_probes < kMinNumProbesValidCluster) |
| return -1; |
| |
| float send_interval_ms = cluster->last_send_ms - cluster->first_send_ms; |
| float receive_interval_ms = |
| cluster->last_receive_ms - cluster->first_receive_ms; |
| |
| if (send_interval_ms <= 0 || send_interval_ms > kMaxProbeIntervalMs || |
| receive_interval_ms <= 0 || receive_interval_ms > kMaxProbeIntervalMs) { |
| LOG(LS_INFO) << "Probing unsuccessful, invalid send/receive interval" |
| << " [cluster id: " << packet_info.probe_cluster_id |
| << "] [send interval: " << send_interval_ms << " ms]" |
| << " [receive interval: " << receive_interval_ms << " ms]"; |
| return -1; |
| } |
| // Since the |send_interval_ms| does not include the time it takes to actually |
| // send the last packet the size of the last sent packet should not be |
| // included when calculating the send bitrate. |
| RTC_DCHECK_GT(cluster->size_total, cluster->size_last_send); |
| float send_size = cluster->size_total - cluster->size_last_send; |
| float send_bps = send_size / send_interval_ms * 1000; |
| |
| // Since the |receive_interval_ms| does not include the time it takes to |
| // actually receive the first packet the size of the first received packet |
| // should not be included when calculating the receive bitrate. |
| RTC_DCHECK_GT(cluster->size_total, cluster->size_first_receive); |
| float receive_size = cluster->size_total - cluster->size_first_receive; |
| float receive_bps = receive_size / receive_interval_ms * 1000; |
| |
| float ratio = receive_bps / send_bps; |
| if (ratio > kValidRatio) { |
| LOG(LS_INFO) << "Probing unsuccessful, receive/send ratio too high" |
| << " [cluster id: " << packet_info.probe_cluster_id |
| << "] [send: " << send_size << " bytes / " << send_interval_ms |
| << " ms = " << send_bps / 1000 << " kb/s]" |
| << " [receive: " << receive_size << " bytes / " |
| << receive_interval_ms << " ms = " << receive_bps / 1000 |
| << " kb/s]" |
| << " [ratio: " << receive_bps / 1000 << " / " |
| << send_bps / 1000 << " = " << ratio << " > kValidRatio (" |
| << kValidRatio << ")]"; |
| return -1; |
| } |
| LOG(LS_INFO) << "Probing successful" |
| << " [cluster id: " << packet_info.probe_cluster_id |
| << "] [send: " << send_size << " bytes / " << send_interval_ms |
| << " ms = " << send_bps / 1000 << " kb/s]" |
| << " [receive: " << receive_size << " bytes / " |
| << receive_interval_ms << " ms = " << receive_bps / 1000 |
| << " kb/s]"; |
| return std::min(send_bps, receive_bps); |
| } |
| |
| void ProbeBitrateEstimator::EraseOldClusters(int64_t timestamp_ms) { |
| for (auto it = clusters_.begin(); it != clusters_.end();) { |
| if (it->second.last_receive_ms < timestamp_ms) { |
| it = clusters_.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| } |
| } // namespace webrtc |