| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef WEBRTC_MODULES_INCLUDE_MODULE_COMMON_TYPES_H_ |
| #define WEBRTC_MODULES_INCLUDE_MODULE_COMMON_TYPES_H_ |
| |
| #include <assert.h> |
| #include <string.h> // memcpy |
| |
| #include <algorithm> |
| #include <limits> |
| |
| #include "webrtc/base/constructormagic.h" |
| #include "webrtc/common_types.h" |
| #include "webrtc/common_video/rotation.h" |
| #include "webrtc/typedefs.h" |
| |
| namespace webrtc { |
| |
| struct RTPAudioHeader { |
| uint8_t numEnergy; // number of valid entries in arrOfEnergy |
| uint8_t arrOfEnergy[kRtpCsrcSize]; // one energy byte (0-9) per channel |
| bool isCNG; // is this CNG |
| size_t channel; // number of channels 2 = stereo |
| }; |
| |
| const int16_t kNoPictureId = -1; |
| const int16_t kMaxOneBytePictureId = 0x7F; // 7 bits |
| const int16_t kMaxTwoBytePictureId = 0x7FFF; // 15 bits |
| const int16_t kNoTl0PicIdx = -1; |
| const uint8_t kNoTemporalIdx = 0xFF; |
| const uint8_t kNoSpatialIdx = 0xFF; |
| const uint8_t kNoGofIdx = 0xFF; |
| const uint8_t kNumVp9Buffers = 8; |
| const size_t kMaxVp9RefPics = 3; |
| const size_t kMaxVp9FramesInGof = 0xFF; // 8 bits |
| const size_t kMaxVp9NumberOfSpatialLayers = 8; |
| const int kNoKeyIdx = -1; |
| |
| struct RTPVideoHeaderVP8 { |
| void InitRTPVideoHeaderVP8() { |
| nonReference = false; |
| pictureId = kNoPictureId; |
| tl0PicIdx = kNoTl0PicIdx; |
| temporalIdx = kNoTemporalIdx; |
| layerSync = false; |
| keyIdx = kNoKeyIdx; |
| partitionId = 0; |
| beginningOfPartition = false; |
| } |
| |
| bool nonReference; // Frame is discardable. |
| int16_t pictureId; // Picture ID index, 15 bits; |
| // kNoPictureId if PictureID does not exist. |
| int16_t tl0PicIdx; // TL0PIC_IDX, 8 bits; |
| // kNoTl0PicIdx means no value provided. |
| uint8_t temporalIdx; // Temporal layer index, or kNoTemporalIdx. |
| bool layerSync; // This frame is a layer sync frame. |
| // Disabled if temporalIdx == kNoTemporalIdx. |
| int keyIdx; // 5 bits; kNoKeyIdx means not used. |
| int partitionId; // VP8 partition ID |
| bool beginningOfPartition; // True if this packet is the first |
| // in a VP8 partition. Otherwise false |
| }; |
| |
| enum TemporalStructureMode { |
| kTemporalStructureMode1, // 1 temporal layer structure - i.e., IPPP... |
| kTemporalStructureMode2, // 2 temporal layers 01... |
| kTemporalStructureMode3, // 3 temporal layers 0212... |
| kTemporalStructureMode4 // 3 temporal layers 02120212... |
| }; |
| |
| struct GofInfoVP9 { |
| void SetGofInfoVP9(TemporalStructureMode tm) { |
| switch (tm) { |
| case kTemporalStructureMode1: |
| num_frames_in_gof = 1; |
| temporal_idx[0] = 0; |
| temporal_up_switch[0] = false; |
| num_ref_pics[0] = 1; |
| pid_diff[0][0] = 1; |
| break; |
| case kTemporalStructureMode2: |
| num_frames_in_gof = 2; |
| temporal_idx[0] = 0; |
| temporal_up_switch[0] = false; |
| num_ref_pics[0] = 1; |
| pid_diff[0][0] = 2; |
| |
| temporal_idx[1] = 1; |
| temporal_up_switch[1] = true; |
| num_ref_pics[1] = 1; |
| pid_diff[1][0] = 1; |
| break; |
| case kTemporalStructureMode3: |
| num_frames_in_gof = 4; |
| temporal_idx[0] = 0; |
| temporal_up_switch[0] = false; |
| num_ref_pics[0] = 1; |
| pid_diff[0][0] = 4; |
| |
| temporal_idx[1] = 2; |
| temporal_up_switch[1] = true; |
| num_ref_pics[1] = 1; |
| pid_diff[1][0] = 1; |
| |
| temporal_idx[2] = 1; |
| temporal_up_switch[2] = true; |
| num_ref_pics[2] = 1; |
| pid_diff[2][0] = 2; |
| |
| temporal_idx[3] = 2; |
| temporal_up_switch[3] = false; |
| num_ref_pics[3] = 2; |
| pid_diff[3][0] = 1; |
| pid_diff[3][1] = 2; |
| break; |
| case kTemporalStructureMode4: |
| num_frames_in_gof = 8; |
| temporal_idx[0] = 0; |
| temporal_up_switch[0] = false; |
| num_ref_pics[0] = 1; |
| pid_diff[0][0] = 4; |
| |
| temporal_idx[1] = 2; |
| temporal_up_switch[1] = true; |
| num_ref_pics[1] = 1; |
| pid_diff[1][0] = 1; |
| |
| temporal_idx[2] = 1; |
| temporal_up_switch[2] = true; |
| num_ref_pics[2] = 1; |
| pid_diff[2][0] = 2; |
| |
| temporal_idx[3] = 2; |
| temporal_up_switch[3] = false; |
| num_ref_pics[3] = 2; |
| pid_diff[3][0] = 1; |
| pid_diff[3][1] = 2; |
| |
| temporal_idx[4] = 0; |
| temporal_up_switch[0] = false; |
| num_ref_pics[4] = 1; |
| pid_diff[4][0] = 4; |
| |
| temporal_idx[5] = 2; |
| temporal_up_switch[1] = false; |
| num_ref_pics[5] = 2; |
| pid_diff[5][0] = 1; |
| pid_diff[5][1] = 2; |
| |
| temporal_idx[6] = 1; |
| temporal_up_switch[2] = false; |
| num_ref_pics[6] = 2; |
| pid_diff[6][0] = 2; |
| pid_diff[6][1] = 4; |
| |
| temporal_idx[7] = 2; |
| temporal_up_switch[3] = false; |
| num_ref_pics[7] = 2; |
| pid_diff[7][0] = 1; |
| pid_diff[7][1] = 2; |
| break; |
| default: |
| assert(false); |
| } |
| } |
| |
| void CopyGofInfoVP9(const GofInfoVP9& src) { |
| num_frames_in_gof = src.num_frames_in_gof; |
| for (size_t i = 0; i < num_frames_in_gof; ++i) { |
| temporal_idx[i] = src.temporal_idx[i]; |
| temporal_up_switch[i] = src.temporal_up_switch[i]; |
| num_ref_pics[i] = src.num_ref_pics[i]; |
| for (uint8_t r = 0; r < num_ref_pics[i]; ++r) { |
| pid_diff[i][r] = src.pid_diff[i][r]; |
| } |
| } |
| } |
| |
| size_t num_frames_in_gof; |
| uint8_t temporal_idx[kMaxVp9FramesInGof]; |
| bool temporal_up_switch[kMaxVp9FramesInGof]; |
| uint8_t num_ref_pics[kMaxVp9FramesInGof]; |
| uint8_t pid_diff[kMaxVp9FramesInGof][kMaxVp9RefPics]; |
| uint16_t pid_start; |
| }; |
| |
| struct RTPVideoHeaderVP9 { |
| void InitRTPVideoHeaderVP9() { |
| inter_pic_predicted = false; |
| flexible_mode = false; |
| beginning_of_frame = false; |
| end_of_frame = false; |
| ss_data_available = false; |
| picture_id = kNoPictureId; |
| max_picture_id = kMaxTwoBytePictureId; |
| tl0_pic_idx = kNoTl0PicIdx; |
| temporal_idx = kNoTemporalIdx; |
| spatial_idx = kNoSpatialIdx; |
| temporal_up_switch = false; |
| inter_layer_predicted = false; |
| gof_idx = kNoGofIdx; |
| num_ref_pics = 0; |
| num_spatial_layers = 1; |
| } |
| |
| bool inter_pic_predicted; // This layer frame is dependent on previously |
| // coded frame(s). |
| bool flexible_mode; // This frame is in flexible mode. |
| bool beginning_of_frame; // True if this packet is the first in a VP9 layer |
| // frame. |
| bool end_of_frame; // True if this packet is the last in a VP9 layer frame. |
| bool ss_data_available; // True if SS data is available in this payload |
| // descriptor. |
| int16_t picture_id; // PictureID index, 15 bits; |
| // kNoPictureId if PictureID does not exist. |
| int16_t max_picture_id; // Maximum picture ID index; either 0x7F or 0x7FFF; |
| int16_t tl0_pic_idx; // TL0PIC_IDX, 8 bits; |
| // kNoTl0PicIdx means no value provided. |
| uint8_t temporal_idx; // Temporal layer index, or kNoTemporalIdx. |
| uint8_t spatial_idx; // Spatial layer index, or kNoSpatialIdx. |
| bool temporal_up_switch; // True if upswitch to higher frame rate is possible |
| // starting from this frame. |
| bool inter_layer_predicted; // Frame is dependent on directly lower spatial |
| // layer frame. |
| |
| uint8_t gof_idx; // Index to predefined temporal frame info in SS data. |
| |
| uint8_t num_ref_pics; // Number of reference pictures used by this layer |
| // frame. |
| uint8_t pid_diff[kMaxVp9RefPics]; // P_DIFF signaled to derive the PictureID |
| // of the reference pictures. |
| int16_t ref_picture_id[kMaxVp9RefPics]; // PictureID of reference pictures. |
| |
| // SS data. |
| size_t num_spatial_layers; // Always populated. |
| bool spatial_layer_resolution_present; |
| uint16_t width[kMaxVp9NumberOfSpatialLayers]; |
| uint16_t height[kMaxVp9NumberOfSpatialLayers]; |
| GofInfoVP9 gof; |
| }; |
| |
| // The packetization types that we support: single, aggregated, and fragmented. |
| enum H264PacketizationTypes { |
| kH264SingleNalu, // This packet contains a single NAL unit. |
| kH264StapA, // This packet contains STAP-A (single time |
| // aggregation) packets. If this packet has an |
| // associated NAL unit type, it'll be for the |
| // first such aggregated packet. |
| kH264FuA, // This packet contains a FU-A (fragmentation |
| // unit) packet, meaning it is a part of a frame |
| // that was too large to fit into a single packet. |
| }; |
| |
| struct NaluInfo { |
| uint8_t type; |
| int sps_id; |
| int pps_id; |
| }; |
| |
| const size_t kMaxNalusPerPacket = 10; |
| |
| struct RTPVideoHeaderH264 { |
| uint8_t nalu_type; // The NAL unit type. If this is a header for a |
| // fragmented packet, it's the NAL unit type of |
| // the original data. If this is the header for an |
| // aggregated packet, it's the NAL unit type of |
| // the first NAL unit in the packet. |
| H264PacketizationTypes packetization_type; |
| NaluInfo nalus[kMaxNalusPerPacket]; |
| size_t nalus_length; |
| }; |
| |
| union RTPVideoTypeHeader { |
| RTPVideoHeaderVP8 VP8; |
| RTPVideoHeaderVP9 VP9; |
| RTPVideoHeaderH264 H264; |
| }; |
| |
| enum RtpVideoCodecTypes { |
| kRtpVideoNone, |
| kRtpVideoGeneric, |
| kRtpVideoVp8, |
| kRtpVideoVp9, |
| kRtpVideoH264 |
| }; |
| // Since RTPVideoHeader is used as a member of a union, it can't have a |
| // non-trivial default constructor. |
| struct RTPVideoHeader { |
| uint16_t width; // size |
| uint16_t height; |
| VideoRotation rotation; |
| |
| PlayoutDelay playout_delay; |
| |
| bool isFirstPacket; // first packet in frame |
| uint8_t simulcastIdx; // Index if the simulcast encoder creating |
| // this frame, 0 if not using simulcast. |
| RtpVideoCodecTypes codec; |
| RTPVideoTypeHeader codecHeader; |
| }; |
| union RTPTypeHeader { |
| RTPAudioHeader Audio; |
| RTPVideoHeader Video; |
| }; |
| |
| struct WebRtcRTPHeader { |
| RTPHeader header; |
| FrameType frameType; |
| RTPTypeHeader type; |
| // NTP time of the capture time in local timebase in milliseconds. |
| int64_t ntp_time_ms; |
| }; |
| |
| class RTPFragmentationHeader { |
| public: |
| RTPFragmentationHeader() |
| : fragmentationVectorSize(0), |
| fragmentationOffset(NULL), |
| fragmentationLength(NULL), |
| fragmentationTimeDiff(NULL), |
| fragmentationPlType(NULL) {}; |
| |
| ~RTPFragmentationHeader() { |
| delete[] fragmentationOffset; |
| delete[] fragmentationLength; |
| delete[] fragmentationTimeDiff; |
| delete[] fragmentationPlType; |
| } |
| |
| void CopyFrom(const RTPFragmentationHeader& src) { |
| if (this == &src) { |
| return; |
| } |
| |
| if (src.fragmentationVectorSize != fragmentationVectorSize) { |
| // new size of vectors |
| |
| // delete old |
| delete[] fragmentationOffset; |
| fragmentationOffset = NULL; |
| delete[] fragmentationLength; |
| fragmentationLength = NULL; |
| delete[] fragmentationTimeDiff; |
| fragmentationTimeDiff = NULL; |
| delete[] fragmentationPlType; |
| fragmentationPlType = NULL; |
| |
| if (src.fragmentationVectorSize > 0) { |
| // allocate new |
| if (src.fragmentationOffset) { |
| fragmentationOffset = new size_t[src.fragmentationVectorSize]; |
| } |
| if (src.fragmentationLength) { |
| fragmentationLength = new size_t[src.fragmentationVectorSize]; |
| } |
| if (src.fragmentationTimeDiff) { |
| fragmentationTimeDiff = new uint16_t[src.fragmentationVectorSize]; |
| } |
| if (src.fragmentationPlType) { |
| fragmentationPlType = new uint8_t[src.fragmentationVectorSize]; |
| } |
| } |
| // set new size |
| fragmentationVectorSize = src.fragmentationVectorSize; |
| } |
| |
| if (src.fragmentationVectorSize > 0) { |
| // copy values |
| if (src.fragmentationOffset) { |
| memcpy(fragmentationOffset, src.fragmentationOffset, |
| src.fragmentationVectorSize * sizeof(size_t)); |
| } |
| if (src.fragmentationLength) { |
| memcpy(fragmentationLength, src.fragmentationLength, |
| src.fragmentationVectorSize * sizeof(size_t)); |
| } |
| if (src.fragmentationTimeDiff) { |
| memcpy(fragmentationTimeDiff, src.fragmentationTimeDiff, |
| src.fragmentationVectorSize * sizeof(uint16_t)); |
| } |
| if (src.fragmentationPlType) { |
| memcpy(fragmentationPlType, src.fragmentationPlType, |
| src.fragmentationVectorSize * sizeof(uint8_t)); |
| } |
| } |
| } |
| |
| void VerifyAndAllocateFragmentationHeader(const size_t size) { |
| assert(size <= std::numeric_limits<uint16_t>::max()); |
| const uint16_t size16 = static_cast<uint16_t>(size); |
| if (fragmentationVectorSize < size16) { |
| uint16_t oldVectorSize = fragmentationVectorSize; |
| { |
| // offset |
| size_t* oldOffsets = fragmentationOffset; |
| fragmentationOffset = new size_t[size16]; |
| memset(fragmentationOffset + oldVectorSize, 0, |
| sizeof(size_t) * (size16 - oldVectorSize)); |
| // copy old values |
| memcpy(fragmentationOffset, oldOffsets, |
| sizeof(size_t) * oldVectorSize); |
| delete[] oldOffsets; |
| } |
| // length |
| { |
| size_t* oldLengths = fragmentationLength; |
| fragmentationLength = new size_t[size16]; |
| memset(fragmentationLength + oldVectorSize, 0, |
| sizeof(size_t) * (size16 - oldVectorSize)); |
| memcpy(fragmentationLength, oldLengths, |
| sizeof(size_t) * oldVectorSize); |
| delete[] oldLengths; |
| } |
| // time diff |
| { |
| uint16_t* oldTimeDiffs = fragmentationTimeDiff; |
| fragmentationTimeDiff = new uint16_t[size16]; |
| memset(fragmentationTimeDiff + oldVectorSize, 0, |
| sizeof(uint16_t) * (size16 - oldVectorSize)); |
| memcpy(fragmentationTimeDiff, oldTimeDiffs, |
| sizeof(uint16_t) * oldVectorSize); |
| delete[] oldTimeDiffs; |
| } |
| // payload type |
| { |
| uint8_t* oldTimePlTypes = fragmentationPlType; |
| fragmentationPlType = new uint8_t[size16]; |
| memset(fragmentationPlType + oldVectorSize, 0, |
| sizeof(uint8_t) * (size16 - oldVectorSize)); |
| memcpy(fragmentationPlType, oldTimePlTypes, |
| sizeof(uint8_t) * oldVectorSize); |
| delete[] oldTimePlTypes; |
| } |
| fragmentationVectorSize = size16; |
| } |
| } |
| |
| uint16_t fragmentationVectorSize; // Number of fragmentations |
| size_t* fragmentationOffset; // Offset of pointer to data for each |
| // fragmentation |
| size_t* fragmentationLength; // Data size for each fragmentation |
| uint16_t* fragmentationTimeDiff; // Timestamp difference relative "now" for |
| // each fragmentation |
| uint8_t* fragmentationPlType; // Payload type of each fragmentation |
| |
| private: |
| RTC_DISALLOW_COPY_AND_ASSIGN(RTPFragmentationHeader); |
| }; |
| |
| struct RTCPVoIPMetric { |
| // RFC 3611 4.7 |
| uint8_t lossRate; |
| uint8_t discardRate; |
| uint8_t burstDensity; |
| uint8_t gapDensity; |
| uint16_t burstDuration; |
| uint16_t gapDuration; |
| uint16_t roundTripDelay; |
| uint16_t endSystemDelay; |
| uint8_t signalLevel; |
| uint8_t noiseLevel; |
| uint8_t RERL; |
| uint8_t Gmin; |
| uint8_t Rfactor; |
| uint8_t extRfactor; |
| uint8_t MOSLQ; |
| uint8_t MOSCQ; |
| uint8_t RXconfig; |
| uint16_t JBnominal; |
| uint16_t JBmax; |
| uint16_t JBabsMax; |
| }; |
| |
| // Types for the FEC packet masks. The type |kFecMaskRandom| is based on a |
| // random loss model. The type |kFecMaskBursty| is based on a bursty/consecutive |
| // loss model. The packet masks are defined in |
| // modules/rtp_rtcp/fec_private_tables_random(bursty).h |
| enum FecMaskType { |
| kFecMaskRandom, |
| kFecMaskBursty, |
| }; |
| |
| // Struct containing forward error correction settings. |
| struct FecProtectionParams { |
| int fec_rate; |
| int max_fec_frames; |
| FecMaskType fec_mask_type; |
| }; |
| |
| // Interface used by the CallStats class to distribute call statistics. |
| // Callbacks will be triggered as soon as the class has been registered to a |
| // CallStats object using RegisterStatsObserver. |
| class CallStatsObserver { |
| public: |
| virtual void OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms) = 0; |
| |
| virtual ~CallStatsObserver() {} |
| }; |
| |
| /* This class holds up to 60 ms of super-wideband (32 kHz) stereo audio. It |
| * allows for adding and subtracting frames while keeping track of the resulting |
| * states. |
| * |
| * Notes |
| * - The total number of samples in |data_| is |
| * samples_per_channel_ * num_channels_ |
| * |
| * - Stereo data is interleaved starting with the left channel. |
| * |
| * - The +operator assume that you would never add exactly opposite frames when |
| * deciding the resulting state. To do this use the -operator. |
| */ |
| class AudioFrame { |
| public: |
| // Stereo, 32 kHz, 60 ms (2 * 32 * 60) |
| enum : size_t { |
| kMaxDataSizeSamples = 3840 |
| }; |
| |
| enum VADActivity { |
| kVadActive = 0, |
| kVadPassive = 1, |
| kVadUnknown = 2 |
| }; |
| enum SpeechType { |
| kNormalSpeech = 0, |
| kPLC = 1, |
| kCNG = 2, |
| kPLCCNG = 3, |
| kUndefined = 4 |
| }; |
| |
| AudioFrame(); |
| |
| // Resets all members to their default state (except does not modify the |
| // contents of |data_|). |
| void Reset(); |
| |
| void UpdateFrame(int id, uint32_t timestamp, const int16_t* data, |
| size_t samples_per_channel, int sample_rate_hz, |
| SpeechType speech_type, VADActivity vad_activity, |
| size_t num_channels = 1); |
| |
| void CopyFrom(const AudioFrame& src); |
| |
| void Mute(); |
| |
| AudioFrame& operator>>=(const int rhs); |
| AudioFrame& operator+=(const AudioFrame& rhs); |
| |
| int id_; |
| // RTP timestamp of the first sample in the AudioFrame. |
| uint32_t timestamp_; |
| // Time since the first frame in milliseconds. |
| // -1 represents an uninitialized value. |
| int64_t elapsed_time_ms_; |
| // NTP time of the estimated capture time in local timebase in milliseconds. |
| // -1 represents an uninitialized value. |
| int64_t ntp_time_ms_; |
| int16_t data_[kMaxDataSizeSamples]; |
| size_t samples_per_channel_; |
| int sample_rate_hz_; |
| size_t num_channels_; |
| SpeechType speech_type_; |
| VADActivity vad_activity_; |
| |
| private: |
| RTC_DISALLOW_COPY_AND_ASSIGN(AudioFrame); |
| }; |
| |
| // TODO(henrik.lundin) Can we remove the call to data_()? |
| // See https://bugs.chromium.org/p/webrtc/issues/detail?id=5647. |
| inline AudioFrame::AudioFrame() |
| : data_() { |
| Reset(); |
| } |
| |
| inline void AudioFrame::Reset() { |
| id_ = -1; |
| // TODO(wu): Zero is a valid value for |timestamp_|. We should initialize |
| // to an invalid value, or add a new member to indicate invalidity. |
| timestamp_ = 0; |
| elapsed_time_ms_ = -1; |
| ntp_time_ms_ = -1; |
| samples_per_channel_ = 0; |
| sample_rate_hz_ = 0; |
| num_channels_ = 0; |
| speech_type_ = kUndefined; |
| vad_activity_ = kVadUnknown; |
| } |
| |
| inline void AudioFrame::UpdateFrame(int id, |
| uint32_t timestamp, |
| const int16_t* data, |
| size_t samples_per_channel, |
| int sample_rate_hz, |
| SpeechType speech_type, |
| VADActivity vad_activity, |
| size_t num_channels) { |
| id_ = id; |
| timestamp_ = timestamp; |
| samples_per_channel_ = samples_per_channel; |
| sample_rate_hz_ = sample_rate_hz; |
| speech_type_ = speech_type; |
| vad_activity_ = vad_activity; |
| num_channels_ = num_channels; |
| |
| const size_t length = samples_per_channel * num_channels; |
| assert(length <= kMaxDataSizeSamples); |
| if (data != NULL) { |
| memcpy(data_, data, sizeof(int16_t) * length); |
| } else { |
| memset(data_, 0, sizeof(int16_t) * length); |
| } |
| } |
| |
| inline void AudioFrame::CopyFrom(const AudioFrame& src) { |
| if (this == &src) return; |
| |
| id_ = src.id_; |
| timestamp_ = src.timestamp_; |
| elapsed_time_ms_ = src.elapsed_time_ms_; |
| ntp_time_ms_ = src.ntp_time_ms_; |
| samples_per_channel_ = src.samples_per_channel_; |
| sample_rate_hz_ = src.sample_rate_hz_; |
| speech_type_ = src.speech_type_; |
| vad_activity_ = src.vad_activity_; |
| num_channels_ = src.num_channels_; |
| |
| const size_t length = samples_per_channel_ * num_channels_; |
| assert(length <= kMaxDataSizeSamples); |
| memcpy(data_, src.data_, sizeof(int16_t) * length); |
| } |
| |
| inline void AudioFrame::Mute() { |
| memset(data_, 0, samples_per_channel_ * num_channels_ * sizeof(int16_t)); |
| } |
| |
| inline AudioFrame& AudioFrame::operator>>=(const int rhs) { |
| assert((num_channels_ > 0) && (num_channels_ < 3)); |
| if ((num_channels_ > 2) || (num_channels_ < 1)) return *this; |
| |
| for (size_t i = 0; i < samples_per_channel_ * num_channels_; i++) { |
| data_[i] = static_cast<int16_t>(data_[i] >> rhs); |
| } |
| return *this; |
| } |
| |
| namespace { |
| inline int16_t ClampToInt16(int32_t input) { |
| if (input < -0x00008000) { |
| return -0x8000; |
| } else if (input > 0x00007FFF) { |
| return 0x7FFF; |
| } else { |
| return static_cast<int16_t>(input); |
| } |
| } |
| } |
| |
| inline AudioFrame& AudioFrame::operator+=(const AudioFrame& rhs) { |
| // Sanity check |
| assert((num_channels_ > 0) && (num_channels_ < 3)); |
| if ((num_channels_ > 2) || (num_channels_ < 1)) return *this; |
| if (num_channels_ != rhs.num_channels_) return *this; |
| |
| bool noPrevData = false; |
| if (samples_per_channel_ != rhs.samples_per_channel_) { |
| if (samples_per_channel_ == 0) { |
| // special case we have no data to start with |
| samples_per_channel_ = rhs.samples_per_channel_; |
| noPrevData = true; |
| } else { |
| return *this; |
| } |
| } |
| |
| if ((vad_activity_ == kVadActive) || rhs.vad_activity_ == kVadActive) { |
| vad_activity_ = kVadActive; |
| } else if (vad_activity_ == kVadUnknown || rhs.vad_activity_ == kVadUnknown) { |
| vad_activity_ = kVadUnknown; |
| } |
| |
| if (speech_type_ != rhs.speech_type_) speech_type_ = kUndefined; |
| |
| if (noPrevData) { |
| memcpy(data_, rhs.data_, |
| sizeof(int16_t) * rhs.samples_per_channel_ * num_channels_); |
| } else { |
| // IMPROVEMENT this can be done very fast in assembly |
| for (size_t i = 0; i < samples_per_channel_ * num_channels_; i++) { |
| int32_t wrap_guard = |
| static_cast<int32_t>(data_[i]) + static_cast<int32_t>(rhs.data_[i]); |
| data_[i] = ClampToInt16(wrap_guard); |
| } |
| } |
| return *this; |
| } |
| |
| inline bool IsNewerSequenceNumber(uint16_t sequence_number, |
| uint16_t prev_sequence_number) { |
| // Distinguish between elements that are exactly 0x8000 apart. |
| // If s1>s2 and |s1-s2| = 0x8000: IsNewer(s1,s2)=true, IsNewer(s2,s1)=false |
| // rather than having IsNewer(s1,s2) = IsNewer(s2,s1) = false. |
| if (static_cast<uint16_t>(sequence_number - prev_sequence_number) == 0x8000) { |
| return sequence_number > prev_sequence_number; |
| } |
| return sequence_number != prev_sequence_number && |
| static_cast<uint16_t>(sequence_number - prev_sequence_number) < 0x8000; |
| } |
| |
| inline bool IsNewerTimestamp(uint32_t timestamp, uint32_t prev_timestamp) { |
| // Distinguish between elements that are exactly 0x80000000 apart. |
| // If t1>t2 and |t1-t2| = 0x80000000: IsNewer(t1,t2)=true, |
| // IsNewer(t2,t1)=false |
| // rather than having IsNewer(t1,t2) = IsNewer(t2,t1) = false. |
| if (static_cast<uint32_t>(timestamp - prev_timestamp) == 0x80000000) { |
| return timestamp > prev_timestamp; |
| } |
| return timestamp != prev_timestamp && |
| static_cast<uint32_t>(timestamp - prev_timestamp) < 0x80000000; |
| } |
| |
| inline uint16_t LatestSequenceNumber(uint16_t sequence_number1, |
| uint16_t sequence_number2) { |
| return IsNewerSequenceNumber(sequence_number1, sequence_number2) |
| ? sequence_number1 |
| : sequence_number2; |
| } |
| |
| inline uint32_t LatestTimestamp(uint32_t timestamp1, uint32_t timestamp2) { |
| return IsNewerTimestamp(timestamp1, timestamp2) ? timestamp1 : timestamp2; |
| } |
| |
| // Utility class to unwrap a sequence number to a larger type, for easier |
| // handling large ranges. Note that sequence numbers will never be unwrapped |
| // to a negative value. |
| class SequenceNumberUnwrapper { |
| public: |
| SequenceNumberUnwrapper() : last_seq_(-1) {} |
| |
| // Get the unwrapped sequence, but don't update the internal state. |
| int64_t UnwrapWithoutUpdate(uint16_t sequence_number) { |
| if (last_seq_ == -1) |
| return sequence_number; |
| |
| uint16_t cropped_last = static_cast<uint16_t>(last_seq_); |
| int64_t delta = sequence_number - cropped_last; |
| if (IsNewerSequenceNumber(sequence_number, cropped_last)) { |
| if (delta < 0) |
| delta += (1 << 16); // Wrap forwards. |
| } else if (delta > 0 && (last_seq_ + delta - (1 << 16)) >= 0) { |
| // If sequence_number is older but delta is positive, this is a backwards |
| // wrap-around. However, don't wrap backwards past 0 (unwrapped). |
| delta -= (1 << 16); |
| } |
| |
| return last_seq_ + delta; |
| } |
| |
| // Only update the internal state to the specified last (unwrapped) sequence. |
| void UpdateLast(int64_t last_sequence) { last_seq_ = last_sequence; } |
| |
| // Unwrap the sequence number and update the internal state. |
| int64_t Unwrap(uint16_t sequence_number) { |
| int64_t unwrapped = UnwrapWithoutUpdate(sequence_number); |
| UpdateLast(unwrapped); |
| return unwrapped; |
| } |
| |
| private: |
| int64_t last_seq_; |
| }; |
| |
| } // namespace webrtc |
| |
| #endif // WEBRTC_MODULES_INCLUDE_MODULE_COMMON_TYPES_H_ |