blob: 4e431105966e22448c5c94b20a896e14221abe77 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_INCLUDE_MODULE_COMMON_TYPES_H_
#define WEBRTC_MODULES_INCLUDE_MODULE_COMMON_TYPES_H_
#include <assert.h>
#include <string.h> // memcpy
#include <algorithm>
#include <limits>
#include "webrtc/base/constructormagic.h"
#include "webrtc/common_types.h"
#include "webrtc/common_video/rotation.h"
#include "webrtc/typedefs.h"
namespace webrtc {
struct RTPAudioHeader {
uint8_t numEnergy; // number of valid entries in arrOfEnergy
uint8_t arrOfEnergy[kRtpCsrcSize]; // one energy byte (0-9) per channel
bool isCNG; // is this CNG
size_t channel; // number of channels 2 = stereo
};
const int16_t kNoPictureId = -1;
const int16_t kMaxOneBytePictureId = 0x7F; // 7 bits
const int16_t kMaxTwoBytePictureId = 0x7FFF; // 15 bits
const int16_t kNoTl0PicIdx = -1;
const uint8_t kNoTemporalIdx = 0xFF;
const uint8_t kNoSpatialIdx = 0xFF;
const uint8_t kNoGofIdx = 0xFF;
const uint8_t kNumVp9Buffers = 8;
const size_t kMaxVp9RefPics = 3;
const size_t kMaxVp9FramesInGof = 0xFF; // 8 bits
const size_t kMaxVp9NumberOfSpatialLayers = 8;
const int kNoKeyIdx = -1;
struct RTPVideoHeaderVP8 {
void InitRTPVideoHeaderVP8() {
nonReference = false;
pictureId = kNoPictureId;
tl0PicIdx = kNoTl0PicIdx;
temporalIdx = kNoTemporalIdx;
layerSync = false;
keyIdx = kNoKeyIdx;
partitionId = 0;
beginningOfPartition = false;
}
bool nonReference; // Frame is discardable.
int16_t pictureId; // Picture ID index, 15 bits;
// kNoPictureId if PictureID does not exist.
int16_t tl0PicIdx; // TL0PIC_IDX, 8 bits;
// kNoTl0PicIdx means no value provided.
uint8_t temporalIdx; // Temporal layer index, or kNoTemporalIdx.
bool layerSync; // This frame is a layer sync frame.
// Disabled if temporalIdx == kNoTemporalIdx.
int keyIdx; // 5 bits; kNoKeyIdx means not used.
int partitionId; // VP8 partition ID
bool beginningOfPartition; // True if this packet is the first
// in a VP8 partition. Otherwise false
};
enum TemporalStructureMode {
kTemporalStructureMode1, // 1 temporal layer structure - i.e., IPPP...
kTemporalStructureMode2, // 2 temporal layers 01...
kTemporalStructureMode3, // 3 temporal layers 0212...
kTemporalStructureMode4 // 3 temporal layers 02120212...
};
struct GofInfoVP9 {
void SetGofInfoVP9(TemporalStructureMode tm) {
switch (tm) {
case kTemporalStructureMode1:
num_frames_in_gof = 1;
temporal_idx[0] = 0;
temporal_up_switch[0] = false;
num_ref_pics[0] = 1;
pid_diff[0][0] = 1;
break;
case kTemporalStructureMode2:
num_frames_in_gof = 2;
temporal_idx[0] = 0;
temporal_up_switch[0] = false;
num_ref_pics[0] = 1;
pid_diff[0][0] = 2;
temporal_idx[1] = 1;
temporal_up_switch[1] = true;
num_ref_pics[1] = 1;
pid_diff[1][0] = 1;
break;
case kTemporalStructureMode3:
num_frames_in_gof = 4;
temporal_idx[0] = 0;
temporal_up_switch[0] = false;
num_ref_pics[0] = 1;
pid_diff[0][0] = 4;
temporal_idx[1] = 2;
temporal_up_switch[1] = true;
num_ref_pics[1] = 1;
pid_diff[1][0] = 1;
temporal_idx[2] = 1;
temporal_up_switch[2] = true;
num_ref_pics[2] = 1;
pid_diff[2][0] = 2;
temporal_idx[3] = 2;
temporal_up_switch[3] = false;
num_ref_pics[3] = 2;
pid_diff[3][0] = 1;
pid_diff[3][1] = 2;
break;
case kTemporalStructureMode4:
num_frames_in_gof = 8;
temporal_idx[0] = 0;
temporal_up_switch[0] = false;
num_ref_pics[0] = 1;
pid_diff[0][0] = 4;
temporal_idx[1] = 2;
temporal_up_switch[1] = true;
num_ref_pics[1] = 1;
pid_diff[1][0] = 1;
temporal_idx[2] = 1;
temporal_up_switch[2] = true;
num_ref_pics[2] = 1;
pid_diff[2][0] = 2;
temporal_idx[3] = 2;
temporal_up_switch[3] = false;
num_ref_pics[3] = 2;
pid_diff[3][0] = 1;
pid_diff[3][1] = 2;
temporal_idx[4] = 0;
temporal_up_switch[0] = false;
num_ref_pics[4] = 1;
pid_diff[4][0] = 4;
temporal_idx[5] = 2;
temporal_up_switch[1] = false;
num_ref_pics[5] = 2;
pid_diff[5][0] = 1;
pid_diff[5][1] = 2;
temporal_idx[6] = 1;
temporal_up_switch[2] = false;
num_ref_pics[6] = 2;
pid_diff[6][0] = 2;
pid_diff[6][1] = 4;
temporal_idx[7] = 2;
temporal_up_switch[3] = false;
num_ref_pics[7] = 2;
pid_diff[7][0] = 1;
pid_diff[7][1] = 2;
break;
default:
assert(false);
}
}
void CopyGofInfoVP9(const GofInfoVP9& src) {
num_frames_in_gof = src.num_frames_in_gof;
for (size_t i = 0; i < num_frames_in_gof; ++i) {
temporal_idx[i] = src.temporal_idx[i];
temporal_up_switch[i] = src.temporal_up_switch[i];
num_ref_pics[i] = src.num_ref_pics[i];
for (uint8_t r = 0; r < num_ref_pics[i]; ++r) {
pid_diff[i][r] = src.pid_diff[i][r];
}
}
}
size_t num_frames_in_gof;
uint8_t temporal_idx[kMaxVp9FramesInGof];
bool temporal_up_switch[kMaxVp9FramesInGof];
uint8_t num_ref_pics[kMaxVp9FramesInGof];
uint8_t pid_diff[kMaxVp9FramesInGof][kMaxVp9RefPics];
uint16_t pid_start;
};
struct RTPVideoHeaderVP9 {
void InitRTPVideoHeaderVP9() {
inter_pic_predicted = false;
flexible_mode = false;
beginning_of_frame = false;
end_of_frame = false;
ss_data_available = false;
picture_id = kNoPictureId;
max_picture_id = kMaxTwoBytePictureId;
tl0_pic_idx = kNoTl0PicIdx;
temporal_idx = kNoTemporalIdx;
spatial_idx = kNoSpatialIdx;
temporal_up_switch = false;
inter_layer_predicted = false;
gof_idx = kNoGofIdx;
num_ref_pics = 0;
num_spatial_layers = 1;
}
bool inter_pic_predicted; // This layer frame is dependent on previously
// coded frame(s).
bool flexible_mode; // This frame is in flexible mode.
bool beginning_of_frame; // True if this packet is the first in a VP9 layer
// frame.
bool end_of_frame; // True if this packet is the last in a VP9 layer frame.
bool ss_data_available; // True if SS data is available in this payload
// descriptor.
int16_t picture_id; // PictureID index, 15 bits;
// kNoPictureId if PictureID does not exist.
int16_t max_picture_id; // Maximum picture ID index; either 0x7F or 0x7FFF;
int16_t tl0_pic_idx; // TL0PIC_IDX, 8 bits;
// kNoTl0PicIdx means no value provided.
uint8_t temporal_idx; // Temporal layer index, or kNoTemporalIdx.
uint8_t spatial_idx; // Spatial layer index, or kNoSpatialIdx.
bool temporal_up_switch; // True if upswitch to higher frame rate is possible
// starting from this frame.
bool inter_layer_predicted; // Frame is dependent on directly lower spatial
// layer frame.
uint8_t gof_idx; // Index to predefined temporal frame info in SS data.
uint8_t num_ref_pics; // Number of reference pictures used by this layer
// frame.
uint8_t pid_diff[kMaxVp9RefPics]; // P_DIFF signaled to derive the PictureID
// of the reference pictures.
int16_t ref_picture_id[kMaxVp9RefPics]; // PictureID of reference pictures.
// SS data.
size_t num_spatial_layers; // Always populated.
bool spatial_layer_resolution_present;
uint16_t width[kMaxVp9NumberOfSpatialLayers];
uint16_t height[kMaxVp9NumberOfSpatialLayers];
GofInfoVP9 gof;
};
// The packetization types that we support: single, aggregated, and fragmented.
enum H264PacketizationTypes {
kH264SingleNalu, // This packet contains a single NAL unit.
kH264StapA, // This packet contains STAP-A (single time
// aggregation) packets. If this packet has an
// associated NAL unit type, it'll be for the
// first such aggregated packet.
kH264FuA, // This packet contains a FU-A (fragmentation
// unit) packet, meaning it is a part of a frame
// that was too large to fit into a single packet.
};
struct NaluInfo {
uint8_t type;
int sps_id;
int pps_id;
};
const size_t kMaxNalusPerPacket = 10;
struct RTPVideoHeaderH264 {
uint8_t nalu_type; // The NAL unit type. If this is a header for a
// fragmented packet, it's the NAL unit type of
// the original data. If this is the header for an
// aggregated packet, it's the NAL unit type of
// the first NAL unit in the packet.
H264PacketizationTypes packetization_type;
NaluInfo nalus[kMaxNalusPerPacket];
size_t nalus_length;
};
union RTPVideoTypeHeader {
RTPVideoHeaderVP8 VP8;
RTPVideoHeaderVP9 VP9;
RTPVideoHeaderH264 H264;
};
enum RtpVideoCodecTypes {
kRtpVideoNone,
kRtpVideoGeneric,
kRtpVideoVp8,
kRtpVideoVp9,
kRtpVideoH264
};
// Since RTPVideoHeader is used as a member of a union, it can't have a
// non-trivial default constructor.
struct RTPVideoHeader {
uint16_t width; // size
uint16_t height;
VideoRotation rotation;
PlayoutDelay playout_delay;
bool isFirstPacket; // first packet in frame
uint8_t simulcastIdx; // Index if the simulcast encoder creating
// this frame, 0 if not using simulcast.
RtpVideoCodecTypes codec;
RTPVideoTypeHeader codecHeader;
};
union RTPTypeHeader {
RTPAudioHeader Audio;
RTPVideoHeader Video;
};
struct WebRtcRTPHeader {
RTPHeader header;
FrameType frameType;
RTPTypeHeader type;
// NTP time of the capture time in local timebase in milliseconds.
int64_t ntp_time_ms;
};
class RTPFragmentationHeader {
public:
RTPFragmentationHeader()
: fragmentationVectorSize(0),
fragmentationOffset(NULL),
fragmentationLength(NULL),
fragmentationTimeDiff(NULL),
fragmentationPlType(NULL) {};
~RTPFragmentationHeader() {
delete[] fragmentationOffset;
delete[] fragmentationLength;
delete[] fragmentationTimeDiff;
delete[] fragmentationPlType;
}
void CopyFrom(const RTPFragmentationHeader& src) {
if (this == &src) {
return;
}
if (src.fragmentationVectorSize != fragmentationVectorSize) {
// new size of vectors
// delete old
delete[] fragmentationOffset;
fragmentationOffset = NULL;
delete[] fragmentationLength;
fragmentationLength = NULL;
delete[] fragmentationTimeDiff;
fragmentationTimeDiff = NULL;
delete[] fragmentationPlType;
fragmentationPlType = NULL;
if (src.fragmentationVectorSize > 0) {
// allocate new
if (src.fragmentationOffset) {
fragmentationOffset = new size_t[src.fragmentationVectorSize];
}
if (src.fragmentationLength) {
fragmentationLength = new size_t[src.fragmentationVectorSize];
}
if (src.fragmentationTimeDiff) {
fragmentationTimeDiff = new uint16_t[src.fragmentationVectorSize];
}
if (src.fragmentationPlType) {
fragmentationPlType = new uint8_t[src.fragmentationVectorSize];
}
}
// set new size
fragmentationVectorSize = src.fragmentationVectorSize;
}
if (src.fragmentationVectorSize > 0) {
// copy values
if (src.fragmentationOffset) {
memcpy(fragmentationOffset, src.fragmentationOffset,
src.fragmentationVectorSize * sizeof(size_t));
}
if (src.fragmentationLength) {
memcpy(fragmentationLength, src.fragmentationLength,
src.fragmentationVectorSize * sizeof(size_t));
}
if (src.fragmentationTimeDiff) {
memcpy(fragmentationTimeDiff, src.fragmentationTimeDiff,
src.fragmentationVectorSize * sizeof(uint16_t));
}
if (src.fragmentationPlType) {
memcpy(fragmentationPlType, src.fragmentationPlType,
src.fragmentationVectorSize * sizeof(uint8_t));
}
}
}
void VerifyAndAllocateFragmentationHeader(const size_t size) {
assert(size <= std::numeric_limits<uint16_t>::max());
const uint16_t size16 = static_cast<uint16_t>(size);
if (fragmentationVectorSize < size16) {
uint16_t oldVectorSize = fragmentationVectorSize;
{
// offset
size_t* oldOffsets = fragmentationOffset;
fragmentationOffset = new size_t[size16];
memset(fragmentationOffset + oldVectorSize, 0,
sizeof(size_t) * (size16 - oldVectorSize));
// copy old values
memcpy(fragmentationOffset, oldOffsets,
sizeof(size_t) * oldVectorSize);
delete[] oldOffsets;
}
// length
{
size_t* oldLengths = fragmentationLength;
fragmentationLength = new size_t[size16];
memset(fragmentationLength + oldVectorSize, 0,
sizeof(size_t) * (size16 - oldVectorSize));
memcpy(fragmentationLength, oldLengths,
sizeof(size_t) * oldVectorSize);
delete[] oldLengths;
}
// time diff
{
uint16_t* oldTimeDiffs = fragmentationTimeDiff;
fragmentationTimeDiff = new uint16_t[size16];
memset(fragmentationTimeDiff + oldVectorSize, 0,
sizeof(uint16_t) * (size16 - oldVectorSize));
memcpy(fragmentationTimeDiff, oldTimeDiffs,
sizeof(uint16_t) * oldVectorSize);
delete[] oldTimeDiffs;
}
// payload type
{
uint8_t* oldTimePlTypes = fragmentationPlType;
fragmentationPlType = new uint8_t[size16];
memset(fragmentationPlType + oldVectorSize, 0,
sizeof(uint8_t) * (size16 - oldVectorSize));
memcpy(fragmentationPlType, oldTimePlTypes,
sizeof(uint8_t) * oldVectorSize);
delete[] oldTimePlTypes;
}
fragmentationVectorSize = size16;
}
}
uint16_t fragmentationVectorSize; // Number of fragmentations
size_t* fragmentationOffset; // Offset of pointer to data for each
// fragmentation
size_t* fragmentationLength; // Data size for each fragmentation
uint16_t* fragmentationTimeDiff; // Timestamp difference relative "now" for
// each fragmentation
uint8_t* fragmentationPlType; // Payload type of each fragmentation
private:
RTC_DISALLOW_COPY_AND_ASSIGN(RTPFragmentationHeader);
};
struct RTCPVoIPMetric {
// RFC 3611 4.7
uint8_t lossRate;
uint8_t discardRate;
uint8_t burstDensity;
uint8_t gapDensity;
uint16_t burstDuration;
uint16_t gapDuration;
uint16_t roundTripDelay;
uint16_t endSystemDelay;
uint8_t signalLevel;
uint8_t noiseLevel;
uint8_t RERL;
uint8_t Gmin;
uint8_t Rfactor;
uint8_t extRfactor;
uint8_t MOSLQ;
uint8_t MOSCQ;
uint8_t RXconfig;
uint16_t JBnominal;
uint16_t JBmax;
uint16_t JBabsMax;
};
// Types for the FEC packet masks. The type |kFecMaskRandom| is based on a
// random loss model. The type |kFecMaskBursty| is based on a bursty/consecutive
// loss model. The packet masks are defined in
// modules/rtp_rtcp/fec_private_tables_random(bursty).h
enum FecMaskType {
kFecMaskRandom,
kFecMaskBursty,
};
// Struct containing forward error correction settings.
struct FecProtectionParams {
int fec_rate;
int max_fec_frames;
FecMaskType fec_mask_type;
};
// Interface used by the CallStats class to distribute call statistics.
// Callbacks will be triggered as soon as the class has been registered to a
// CallStats object using RegisterStatsObserver.
class CallStatsObserver {
public:
virtual void OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms) = 0;
virtual ~CallStatsObserver() {}
};
/* This class holds up to 60 ms of super-wideband (32 kHz) stereo audio. It
* allows for adding and subtracting frames while keeping track of the resulting
* states.
*
* Notes
* - The total number of samples in |data_| is
* samples_per_channel_ * num_channels_
*
* - Stereo data is interleaved starting with the left channel.
*
* - The +operator assume that you would never add exactly opposite frames when
* deciding the resulting state. To do this use the -operator.
*/
class AudioFrame {
public:
// Stereo, 32 kHz, 60 ms (2 * 32 * 60)
enum : size_t {
kMaxDataSizeSamples = 3840
};
enum VADActivity {
kVadActive = 0,
kVadPassive = 1,
kVadUnknown = 2
};
enum SpeechType {
kNormalSpeech = 0,
kPLC = 1,
kCNG = 2,
kPLCCNG = 3,
kUndefined = 4
};
AudioFrame();
// Resets all members to their default state (except does not modify the
// contents of |data_|).
void Reset();
void UpdateFrame(int id, uint32_t timestamp, const int16_t* data,
size_t samples_per_channel, int sample_rate_hz,
SpeechType speech_type, VADActivity vad_activity,
size_t num_channels = 1);
void CopyFrom(const AudioFrame& src);
void Mute();
AudioFrame& operator>>=(const int rhs);
AudioFrame& operator+=(const AudioFrame& rhs);
int id_;
// RTP timestamp of the first sample in the AudioFrame.
uint32_t timestamp_;
// Time since the first frame in milliseconds.
// -1 represents an uninitialized value.
int64_t elapsed_time_ms_;
// NTP time of the estimated capture time in local timebase in milliseconds.
// -1 represents an uninitialized value.
int64_t ntp_time_ms_;
int16_t data_[kMaxDataSizeSamples];
size_t samples_per_channel_;
int sample_rate_hz_;
size_t num_channels_;
SpeechType speech_type_;
VADActivity vad_activity_;
private:
RTC_DISALLOW_COPY_AND_ASSIGN(AudioFrame);
};
// TODO(henrik.lundin) Can we remove the call to data_()?
// See https://bugs.chromium.org/p/webrtc/issues/detail?id=5647.
inline AudioFrame::AudioFrame()
: data_() {
Reset();
}
inline void AudioFrame::Reset() {
id_ = -1;
// TODO(wu): Zero is a valid value for |timestamp_|. We should initialize
// to an invalid value, or add a new member to indicate invalidity.
timestamp_ = 0;
elapsed_time_ms_ = -1;
ntp_time_ms_ = -1;
samples_per_channel_ = 0;
sample_rate_hz_ = 0;
num_channels_ = 0;
speech_type_ = kUndefined;
vad_activity_ = kVadUnknown;
}
inline void AudioFrame::UpdateFrame(int id,
uint32_t timestamp,
const int16_t* data,
size_t samples_per_channel,
int sample_rate_hz,
SpeechType speech_type,
VADActivity vad_activity,
size_t num_channels) {
id_ = id;
timestamp_ = timestamp;
samples_per_channel_ = samples_per_channel;
sample_rate_hz_ = sample_rate_hz;
speech_type_ = speech_type;
vad_activity_ = vad_activity;
num_channels_ = num_channels;
const size_t length = samples_per_channel * num_channels;
assert(length <= kMaxDataSizeSamples);
if (data != NULL) {
memcpy(data_, data, sizeof(int16_t) * length);
} else {
memset(data_, 0, sizeof(int16_t) * length);
}
}
inline void AudioFrame::CopyFrom(const AudioFrame& src) {
if (this == &src) return;
id_ = src.id_;
timestamp_ = src.timestamp_;
elapsed_time_ms_ = src.elapsed_time_ms_;
ntp_time_ms_ = src.ntp_time_ms_;
samples_per_channel_ = src.samples_per_channel_;
sample_rate_hz_ = src.sample_rate_hz_;
speech_type_ = src.speech_type_;
vad_activity_ = src.vad_activity_;
num_channels_ = src.num_channels_;
const size_t length = samples_per_channel_ * num_channels_;
assert(length <= kMaxDataSizeSamples);
memcpy(data_, src.data_, sizeof(int16_t) * length);
}
inline void AudioFrame::Mute() {
memset(data_, 0, samples_per_channel_ * num_channels_ * sizeof(int16_t));
}
inline AudioFrame& AudioFrame::operator>>=(const int rhs) {
assert((num_channels_ > 0) && (num_channels_ < 3));
if ((num_channels_ > 2) || (num_channels_ < 1)) return *this;
for (size_t i = 0; i < samples_per_channel_ * num_channels_; i++) {
data_[i] = static_cast<int16_t>(data_[i] >> rhs);
}
return *this;
}
namespace {
inline int16_t ClampToInt16(int32_t input) {
if (input < -0x00008000) {
return -0x8000;
} else if (input > 0x00007FFF) {
return 0x7FFF;
} else {
return static_cast<int16_t>(input);
}
}
}
inline AudioFrame& AudioFrame::operator+=(const AudioFrame& rhs) {
// Sanity check
assert((num_channels_ > 0) && (num_channels_ < 3));
if ((num_channels_ > 2) || (num_channels_ < 1)) return *this;
if (num_channels_ != rhs.num_channels_) return *this;
bool noPrevData = false;
if (samples_per_channel_ != rhs.samples_per_channel_) {
if (samples_per_channel_ == 0) {
// special case we have no data to start with
samples_per_channel_ = rhs.samples_per_channel_;
noPrevData = true;
} else {
return *this;
}
}
if ((vad_activity_ == kVadActive) || rhs.vad_activity_ == kVadActive) {
vad_activity_ = kVadActive;
} else if (vad_activity_ == kVadUnknown || rhs.vad_activity_ == kVadUnknown) {
vad_activity_ = kVadUnknown;
}
if (speech_type_ != rhs.speech_type_) speech_type_ = kUndefined;
if (noPrevData) {
memcpy(data_, rhs.data_,
sizeof(int16_t) * rhs.samples_per_channel_ * num_channels_);
} else {
// IMPROVEMENT this can be done very fast in assembly
for (size_t i = 0; i < samples_per_channel_ * num_channels_; i++) {
int32_t wrap_guard =
static_cast<int32_t>(data_[i]) + static_cast<int32_t>(rhs.data_[i]);
data_[i] = ClampToInt16(wrap_guard);
}
}
return *this;
}
inline bool IsNewerSequenceNumber(uint16_t sequence_number,
uint16_t prev_sequence_number) {
// Distinguish between elements that are exactly 0x8000 apart.
// If s1>s2 and |s1-s2| = 0x8000: IsNewer(s1,s2)=true, IsNewer(s2,s1)=false
// rather than having IsNewer(s1,s2) = IsNewer(s2,s1) = false.
if (static_cast<uint16_t>(sequence_number - prev_sequence_number) == 0x8000) {
return sequence_number > prev_sequence_number;
}
return sequence_number != prev_sequence_number &&
static_cast<uint16_t>(sequence_number - prev_sequence_number) < 0x8000;
}
inline bool IsNewerTimestamp(uint32_t timestamp, uint32_t prev_timestamp) {
// Distinguish between elements that are exactly 0x80000000 apart.
// If t1>t2 and |t1-t2| = 0x80000000: IsNewer(t1,t2)=true,
// IsNewer(t2,t1)=false
// rather than having IsNewer(t1,t2) = IsNewer(t2,t1) = false.
if (static_cast<uint32_t>(timestamp - prev_timestamp) == 0x80000000) {
return timestamp > prev_timestamp;
}
return timestamp != prev_timestamp &&
static_cast<uint32_t>(timestamp - prev_timestamp) < 0x80000000;
}
inline uint16_t LatestSequenceNumber(uint16_t sequence_number1,
uint16_t sequence_number2) {
return IsNewerSequenceNumber(sequence_number1, sequence_number2)
? sequence_number1
: sequence_number2;
}
inline uint32_t LatestTimestamp(uint32_t timestamp1, uint32_t timestamp2) {
return IsNewerTimestamp(timestamp1, timestamp2) ? timestamp1 : timestamp2;
}
// Utility class to unwrap a sequence number to a larger type, for easier
// handling large ranges. Note that sequence numbers will never be unwrapped
// to a negative value.
class SequenceNumberUnwrapper {
public:
SequenceNumberUnwrapper() : last_seq_(-1) {}
// Get the unwrapped sequence, but don't update the internal state.
int64_t UnwrapWithoutUpdate(uint16_t sequence_number) {
if (last_seq_ == -1)
return sequence_number;
uint16_t cropped_last = static_cast<uint16_t>(last_seq_);
int64_t delta = sequence_number - cropped_last;
if (IsNewerSequenceNumber(sequence_number, cropped_last)) {
if (delta < 0)
delta += (1 << 16); // Wrap forwards.
} else if (delta > 0 && (last_seq_ + delta - (1 << 16)) >= 0) {
// If sequence_number is older but delta is positive, this is a backwards
// wrap-around. However, don't wrap backwards past 0 (unwrapped).
delta -= (1 << 16);
}
return last_seq_ + delta;
}
// Only update the internal state to the specified last (unwrapped) sequence.
void UpdateLast(int64_t last_sequence) { last_seq_ = last_sequence; }
// Unwrap the sequence number and update the internal state.
int64_t Unwrap(uint16_t sequence_number) {
int64_t unwrapped = UnwrapWithoutUpdate(sequence_number);
UpdateLast(unwrapped);
return unwrapped;
}
private:
int64_t last_seq_;
};
} // namespace webrtc
#endif // WEBRTC_MODULES_INCLUDE_MODULE_COMMON_TYPES_H_