| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/remote_bitrate_estimator/overuse_estimator.h" |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| |
| #include "webrtc/base/logging.h" |
| #include "webrtc/modules/remote_bitrate_estimator/include/bwe_defines.h" |
| |
| namespace webrtc { |
| |
| enum { kMinFramePeriodHistoryLength = 60 }; |
| enum { kDeltaCounterMax = 1000 }; |
| |
| OveruseEstimator::OveruseEstimator(const OverUseDetectorOptions& options) |
| : options_(options), |
| num_of_deltas_(0), |
| slope_(options_.initial_slope), |
| offset_(options_.initial_offset), |
| prev_offset_(options_.initial_offset), |
| E_(), |
| process_noise_(), |
| avg_noise_(options_.initial_avg_noise), |
| var_noise_(options_.initial_var_noise), |
| ts_delta_hist_() { |
| memcpy(E_, options_.initial_e, sizeof(E_)); |
| memcpy(process_noise_, options_.initial_process_noise, |
| sizeof(process_noise_)); |
| } |
| |
| OveruseEstimator::~OveruseEstimator() { |
| ts_delta_hist_.clear(); |
| } |
| |
| void OveruseEstimator::Update(int64_t t_delta, |
| double ts_delta, |
| int size_delta, |
| BandwidthUsage current_hypothesis) { |
| const double min_frame_period = UpdateMinFramePeriod(ts_delta); |
| const double t_ts_delta = t_delta - ts_delta; |
| double fs_delta = size_delta; |
| |
| ++num_of_deltas_; |
| if (num_of_deltas_ > kDeltaCounterMax) { |
| num_of_deltas_ = kDeltaCounterMax; |
| } |
| |
| // Update the Kalman filter. |
| E_[0][0] += process_noise_[0]; |
| E_[1][1] += process_noise_[1]; |
| |
| if ((current_hypothesis == kBwOverusing && offset_ < prev_offset_) || |
| (current_hypothesis == kBwUnderusing && offset_ > prev_offset_)) { |
| E_[1][1] += 10 * process_noise_[1]; |
| } |
| |
| const double h[2] = {fs_delta, 1.0}; |
| const double Eh[2] = {E_[0][0]*h[0] + E_[0][1]*h[1], |
| E_[1][0]*h[0] + E_[1][1]*h[1]}; |
| |
| const double residual = t_ts_delta - slope_*h[0] - offset_; |
| |
| const bool in_stable_state = (current_hypothesis == kBwNormal); |
| const double max_residual = 3.0 * sqrt(var_noise_); |
| // We try to filter out very late frames. For instance periodic key |
| // frames doesn't fit the Gaussian model well. |
| if (fabs(residual) < max_residual) { |
| UpdateNoiseEstimate(residual, min_frame_period, in_stable_state); |
| } else { |
| UpdateNoiseEstimate(residual < 0 ? -max_residual : max_residual, |
| min_frame_period, in_stable_state); |
| } |
| |
| const double denom = var_noise_ + h[0]*Eh[0] + h[1]*Eh[1]; |
| |
| const double K[2] = {Eh[0] / denom, |
| Eh[1] / denom}; |
| |
| const double IKh[2][2] = {{1.0 - K[0]*h[0], -K[0]*h[1]}, |
| {-K[1]*h[0], 1.0 - K[1]*h[1]}}; |
| const double e00 = E_[0][0]; |
| const double e01 = E_[0][1]; |
| |
| // Update state. |
| E_[0][0] = e00 * IKh[0][0] + E_[1][0] * IKh[0][1]; |
| E_[0][1] = e01 * IKh[0][0] + E_[1][1] * IKh[0][1]; |
| E_[1][0] = e00 * IKh[1][0] + E_[1][0] * IKh[1][1]; |
| E_[1][1] = e01 * IKh[1][0] + E_[1][1] * IKh[1][1]; |
| |
| // The covariance matrix must be positive semi-definite. |
| bool positive_semi_definite = E_[0][0] + E_[1][1] >= 0 && |
| E_[0][0] * E_[1][1] - E_[0][1] * E_[1][0] >= 0 && E_[0][0] >= 0; |
| assert(positive_semi_definite); |
| if (!positive_semi_definite) { |
| LOG(LS_ERROR) << "The over-use estimator's covariance matrix is no longer " |
| "semi-definite."; |
| } |
| |
| slope_ = slope_ + K[0] * residual; |
| prev_offset_ = offset_; |
| offset_ = offset_ + K[1] * residual; |
| } |
| |
| double OveruseEstimator::UpdateMinFramePeriod(double ts_delta) { |
| double min_frame_period = ts_delta; |
| if (ts_delta_hist_.size() >= kMinFramePeriodHistoryLength) { |
| ts_delta_hist_.pop_front(); |
| } |
| std::list<double>::iterator it = ts_delta_hist_.begin(); |
| for (; it != ts_delta_hist_.end(); it++) { |
| min_frame_period = std::min(*it, min_frame_period); |
| } |
| ts_delta_hist_.push_back(ts_delta); |
| return min_frame_period; |
| } |
| |
| void OveruseEstimator::UpdateNoiseEstimate(double residual, |
| double ts_delta, |
| bool stable_state) { |
| if (!stable_state) { |
| return; |
| } |
| // Faster filter during startup to faster adapt to the jitter level |
| // of the network. |alpha| is tuned for 30 frames per second, but is scaled |
| // according to |ts_delta|. |
| double alpha = 0.01; |
| if (num_of_deltas_ > 10*30) { |
| alpha = 0.002; |
| } |
| // Only update the noise estimate if we're not over-using. |beta| is a |
| // function of alpha and the time delta since the previous update. |
| const double beta = pow(1 - alpha, ts_delta * 30.0 / 1000.0); |
| avg_noise_ = beta * avg_noise_ |
| + (1 - beta) * residual; |
| var_noise_ = beta * var_noise_ |
| + (1 - beta) * (avg_noise_ - residual) * (avg_noise_ - residual); |
| if (var_noise_ < 1) { |
| var_noise_ = 1; |
| } |
| } |
| } // namespace webrtc |