blob: 11e33f29e2df7d2f892fe7f528fc187592fa4815 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_tools/event_log_visualizer/analyzer.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <map>
#include <string>
#include <utility>
#include "absl/memory/memory.h"
#include "absl/strings/string_view.h"
#include "api/function_view.h"
#include "api/transport/field_trial_based_config.h"
#include "api/transport/goog_cc_factory.h"
#include "call/audio_receive_stream.h"
#include "call/audio_send_stream.h"
#include "call/call.h"
#include "call/video_receive_stream.h"
#include "call/video_send_stream.h"
#include "logging/rtc_event_log/rtc_stream_config.h"
#include "modules/audio_coding/audio_network_adaptor/include/audio_network_adaptor.h"
#include "modules/audio_coding/neteq/tools/audio_sink.h"
#include "modules/audio_coding/neteq/tools/fake_decode_from_file.h"
#include "modules/audio_coding/neteq/tools/neteq_delay_analyzer.h"
#include "modules/audio_coding/neteq/tools/neteq_replacement_input.h"
#include "modules/audio_coding/neteq/tools/neteq_test.h"
#include "modules/audio_coding/neteq/tools/resample_input_audio_file.h"
#include "modules/congestion_controller/goog_cc/acknowledged_bitrate_estimator.h"
#include "modules/congestion_controller/goog_cc/bitrate_estimator.h"
#include "modules/congestion_controller/goog_cc/delay_based_bwe.h"
#include "modules/congestion_controller/include/receive_side_congestion_controller.h"
#include "modules/congestion_controller/rtp/transport_feedback_adapter.h"
#include "modules/pacing/paced_sender.h"
#include "modules/pacing/packet_router.h"
#include "modules/remote_bitrate_estimator/include/bwe_defines.h"
#include "modules/rtp_rtcp/include/rtp_rtcp.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/rtcp_packet.h"
#include "modules/rtp_rtcp/source/rtcp_packet/common_header.h"
#include "modules/rtp_rtcp/source/rtcp_packet/receiver_report.h"
#include "modules/rtp_rtcp/source/rtcp_packet/remb.h"
#include "modules/rtp_rtcp/source/rtcp_packet/sender_report.h"
#include "modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h"
#include "modules/rtp_rtcp/source/rtp_header_extensions.h"
#include "modules/rtp_rtcp/source/rtp_utility.h"
#include "rtc_base/checks.h"
#include "rtc_base/format_macros.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/sequence_number_util.h"
#include "rtc_base/rate_statistics.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_tools/event_log_visualizer/log_simulation.h"
#ifndef BWE_TEST_LOGGING_COMPILE_TIME_ENABLE
#define BWE_TEST_LOGGING_COMPILE_TIME_ENABLE 0
#endif // BWE_TEST_LOGGING_COMPILE_TIME_ENABLE
namespace webrtc {
namespace {
const int kNumMicrosecsPerSec = 1000000;
std::string SsrcToString(uint32_t ssrc) {
rtc::StringBuilder ss;
ss << "SSRC " << ssrc;
return ss.Release();
}
// Checks whether an SSRC is contained in the list of desired SSRCs.
// Note that an empty SSRC list matches every SSRC.
bool MatchingSsrc(uint32_t ssrc, const std::vector<uint32_t>& desired_ssrc) {
if (desired_ssrc.size() == 0)
return true;
return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) !=
desired_ssrc.end();
}
double AbsSendTimeToMicroseconds(int64_t abs_send_time) {
// The timestamp is a fixed point representation with 6 bits for seconds
// and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the
// time in seconds and then multiply by kNumMicrosecsPerSec to convert to
// microseconds.
static constexpr double kTimestampToMicroSec =
static_cast<double>(kNumMicrosecsPerSec) / static_cast<double>(1ul << 18);
return abs_send_time * kTimestampToMicroSec;
}
// Computes the difference |later| - |earlier| where |later| and |earlier|
// are counters that wrap at |modulus|. The difference is chosen to have the
// least absolute value. For example if |modulus| is 8, then the difference will
// be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will
// be in [-4, 4].
int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) {
RTC_DCHECK_LE(1, modulus);
RTC_DCHECK_LT(later, modulus);
RTC_DCHECK_LT(earlier, modulus);
int64_t difference =
static_cast<int64_t>(later) - static_cast<int64_t>(earlier);
int64_t max_difference = modulus / 2;
int64_t min_difference = max_difference - modulus + 1;
if (difference > max_difference) {
difference -= modulus;
}
if (difference < min_difference) {
difference += modulus;
}
if (difference > max_difference / 2 || difference < min_difference / 2) {
RTC_LOG(LS_WARNING) << "Difference between" << later << " and " << earlier
<< " expected to be in the range ("
<< min_difference / 2 << "," << max_difference / 2
<< ") but is " << difference
<< ". Correct unwrapping is uncertain.";
}
return difference;
}
// This is much more reliable for outgoing streams than for incoming streams.
template <typename RtpPacketContainer>
absl::optional<uint32_t> EstimateRtpClockFrequency(
const RtpPacketContainer& packets,
int64_t end_time_us) {
RTC_CHECK(packets.size() >= 2);
SeqNumUnwrapper<uint32_t> unwrapper;
int64_t first_rtp_timestamp =
unwrapper.Unwrap(packets[0].rtp.header.timestamp);
int64_t first_log_timestamp = packets[0].log_time_us();
int64_t last_rtp_timestamp = first_rtp_timestamp;
int64_t last_log_timestamp = first_log_timestamp;
for (size_t i = 1; i < packets.size(); i++) {
if (packets[i].log_time_us() > end_time_us)
break;
last_rtp_timestamp = unwrapper.Unwrap(packets[i].rtp.header.timestamp);
last_log_timestamp = packets[i].log_time_us();
}
if (last_log_timestamp - first_log_timestamp < kNumMicrosecsPerSec) {
RTC_LOG(LS_WARNING)
<< "Failed to estimate RTP clock frequency: Stream too short. ("
<< packets.size() << " packets, "
<< last_log_timestamp - first_log_timestamp << " us)";
return absl::nullopt;
}
double duration =
static_cast<double>(last_log_timestamp - first_log_timestamp) /
kNumMicrosecsPerSec;
double estimated_frequency =
(last_rtp_timestamp - first_rtp_timestamp) / duration;
for (uint32_t f : {8000, 16000, 32000, 48000, 90000}) {
if (std::fabs(estimated_frequency - f) < 0.05 * f) {
return f;
}
}
RTC_LOG(LS_WARNING) << "Failed to estimate RTP clock frequency: Estimate "
<< estimated_frequency
<< "not close to any stardard RTP frequency.";
return absl::nullopt;
}
constexpr float kLeftMargin = 0.01f;
constexpr float kRightMargin = 0.02f;
constexpr float kBottomMargin = 0.02f;
constexpr float kTopMargin = 0.05f;
absl::optional<double> NetworkDelayDiff_AbsSendTime(
const LoggedRtpPacketIncoming& old_packet,
const LoggedRtpPacketIncoming& new_packet) {
if (old_packet.rtp.header.extension.hasAbsoluteSendTime &&
new_packet.rtp.header.extension.hasAbsoluteSendTime) {
int64_t send_time_diff = WrappingDifference(
new_packet.rtp.header.extension.absoluteSendTime,
old_packet.rtp.header.extension.absoluteSendTime, 1ul << 24);
int64_t recv_time_diff =
new_packet.log_time_us() - old_packet.log_time_us();
double delay_change_us =
recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff);
return delay_change_us / 1000;
} else {
return absl::nullopt;
}
}
absl::optional<double> NetworkDelayDiff_CaptureTime(
const LoggedRtpPacketIncoming& old_packet,
const LoggedRtpPacketIncoming& new_packet,
const double sample_rate) {
int64_t send_time_diff =
WrappingDifference(new_packet.rtp.header.timestamp,
old_packet.rtp.header.timestamp, 1ull << 32);
int64_t recv_time_diff = new_packet.log_time_us() - old_packet.log_time_us();
double delay_change =
static_cast<double>(recv_time_diff) / 1000 -
static_cast<double>(send_time_diff) / sample_rate * 1000;
if (delay_change < -10000 || 10000 < delay_change) {
RTC_LOG(LS_WARNING) << "Very large delay change. Timestamps correct?";
RTC_LOG(LS_WARNING) << "Old capture time "
<< old_packet.rtp.header.timestamp << ", received time "
<< old_packet.log_time_us();
RTC_LOG(LS_WARNING) << "New capture time "
<< new_packet.rtp.header.timestamp << ", received time "
<< new_packet.log_time_us();
RTC_LOG(LS_WARNING) << "Receive time difference " << recv_time_diff << " = "
<< static_cast<double>(recv_time_diff) /
kNumMicrosecsPerSec
<< "s";
RTC_LOG(LS_WARNING) << "Send time difference " << send_time_diff << " = "
<< static_cast<double>(send_time_diff) / sample_rate
<< "s";
}
return delay_change;
}
// For each element in data_view, use |f()| to extract a y-coordinate and
// store the result in a TimeSeries.
template <typename DataType, typename IterableType>
void ProcessPoints(rtc::FunctionView<float(const DataType&)> fx,
rtc::FunctionView<absl::optional<float>(const DataType&)> fy,
const IterableType& data_view,
TimeSeries* result) {
for (size_t i = 0; i < data_view.size(); i++) {
const DataType& elem = data_view[i];
float x = fx(elem);
absl::optional<float> y = fy(elem);
if (y)
result->points.emplace_back(x, *y);
}
}
// For each pair of adjacent elements in |data|, use |f()| to extract a
// y-coordinate and store the result in a TimeSeries. Note that the x-coordinate
// will be the time of the second element in the pair.
template <typename DataType, typename ResultType, typename IterableType>
void ProcessPairs(
rtc::FunctionView<float(const DataType&)> fx,
rtc::FunctionView<absl::optional<ResultType>(const DataType&,
const DataType&)> fy,
const IterableType& data,
TimeSeries* result) {
for (size_t i = 1; i < data.size(); i++) {
float x = fx(data[i]);
absl::optional<ResultType> y = fy(data[i - 1], data[i]);
if (y)
result->points.emplace_back(x, static_cast<float>(*y));
}
}
// For each pair of adjacent elements in |data|, use |f()| to extract a
// y-coordinate and store the result in a TimeSeries. Note that the x-coordinate
// will be the time of the second element in the pair.
template <typename DataType, typename ResultType, typename IterableType>
void AccumulatePairs(
rtc::FunctionView<float(const DataType&)> fx,
rtc::FunctionView<absl::optional<ResultType>(const DataType&,
const DataType&)> fy,
const IterableType& data,
TimeSeries* result) {
ResultType sum = 0;
for (size_t i = 1; i < data.size(); i++) {
float x = fx(data[i]);
absl::optional<ResultType> y = fy(data[i - 1], data[i]);
if (y) {
sum += *y;
result->points.emplace_back(x, static_cast<float>(sum));
}
}
}
// Calculates a moving average of |data| and stores the result in a TimeSeries.
// A data point is generated every |step| microseconds from |begin_time|
// to |end_time|. The value of each data point is the average of the data
// during the preceeding |window_duration_us| microseconds.
template <typename DataType, typename ResultType, typename IterableType>
void MovingAverage(
rtc::FunctionView<absl::optional<ResultType>(const DataType&)> fy,
const IterableType& data_view,
AnalyzerConfig config,
TimeSeries* result) {
size_t window_index_begin = 0;
size_t window_index_end = 0;
ResultType sum_in_window = 0;
for (int64_t t = config.begin_time_; t < config.end_time_ + config.step_;
t += config.step_) {
while (window_index_end < data_view.size() &&
data_view[window_index_end].log_time_us() < t) {
absl::optional<ResultType> value = fy(data_view[window_index_end]);
if (value)
sum_in_window += *value;
++window_index_end;
}
while (window_index_begin < data_view.size() &&
data_view[window_index_begin].log_time_us() <
t - config.window_duration_) {
absl::optional<ResultType> value = fy(data_view[window_index_begin]);
if (value)
sum_in_window -= *value;
++window_index_begin;
}
float window_duration_s =
static_cast<float>(config.window_duration_) / kNumMicrosecsPerSec;
float x = config.GetCallTimeSec(t);
float y = sum_in_window / window_duration_s;
result->points.emplace_back(x, y);
}
}
template <typename T>
TimeSeries CreateRtcpTypeTimeSeries(const std::vector<T>& rtcp_list,
AnalyzerConfig config,
std::string rtcp_name,
int category_id) {
TimeSeries time_series(rtcp_name, LineStyle::kNone, PointStyle::kHighlight);
for (const auto& rtcp : rtcp_list) {
float x = config.GetCallTimeSec(rtcp.log_time_us());
float y = category_id;
time_series.points.emplace_back(x, y);
}
return time_series;
}
const char kUnknownEnumValue[] = "unknown";
const char kIceCandidateTypeLocal[] = "local";
const char kIceCandidateTypeStun[] = "stun";
const char kIceCandidateTypePrflx[] = "prflx";
const char kIceCandidateTypeRelay[] = "relay";
const char kProtocolUdp[] = "udp";
const char kProtocolTcp[] = "tcp";
const char kProtocolSsltcp[] = "ssltcp";
const char kProtocolTls[] = "tls";
const char kAddressFamilyIpv4[] = "ipv4";
const char kAddressFamilyIpv6[] = "ipv6";
const char kNetworkTypeEthernet[] = "ethernet";
const char kNetworkTypeLoopback[] = "loopback";
const char kNetworkTypeWifi[] = "wifi";
const char kNetworkTypeVpn[] = "vpn";
const char kNetworkTypeCellular[] = "cellular";
std::string GetIceCandidateTypeAsString(webrtc::IceCandidateType type) {
switch (type) {
case webrtc::IceCandidateType::kLocal:
return kIceCandidateTypeLocal;
case webrtc::IceCandidateType::kStun:
return kIceCandidateTypeStun;
case webrtc::IceCandidateType::kPrflx:
return kIceCandidateTypePrflx;
case webrtc::IceCandidateType::kRelay:
return kIceCandidateTypeRelay;
default:
return kUnknownEnumValue;
}
}
std::string GetProtocolAsString(webrtc::IceCandidatePairProtocol protocol) {
switch (protocol) {
case webrtc::IceCandidatePairProtocol::kUdp:
return kProtocolUdp;
case webrtc::IceCandidatePairProtocol::kTcp:
return kProtocolTcp;
case webrtc::IceCandidatePairProtocol::kSsltcp:
return kProtocolSsltcp;
case webrtc::IceCandidatePairProtocol::kTls:
return kProtocolTls;
default:
return kUnknownEnumValue;
}
}
std::string GetAddressFamilyAsString(
webrtc::IceCandidatePairAddressFamily family) {
switch (family) {
case webrtc::IceCandidatePairAddressFamily::kIpv4:
return kAddressFamilyIpv4;
case webrtc::IceCandidatePairAddressFamily::kIpv6:
return kAddressFamilyIpv6;
default:
return kUnknownEnumValue;
}
}
std::string GetNetworkTypeAsString(webrtc::IceCandidateNetworkType type) {
switch (type) {
case webrtc::IceCandidateNetworkType::kEthernet:
return kNetworkTypeEthernet;
case webrtc::IceCandidateNetworkType::kLoopback:
return kNetworkTypeLoopback;
case webrtc::IceCandidateNetworkType::kWifi:
return kNetworkTypeWifi;
case webrtc::IceCandidateNetworkType::kVpn:
return kNetworkTypeVpn;
case webrtc::IceCandidateNetworkType::kCellular:
return kNetworkTypeCellular;
default:
return kUnknownEnumValue;
}
}
std::string GetCandidatePairLogDescriptionAsString(
const LoggedIceCandidatePairConfig& config) {
// Example: stun:wifi->relay(tcp):cellular@udp:ipv4
// represents a pair of a local server-reflexive candidate on a WiFi network
// and a remote relay candidate using TCP as the relay protocol on a cell
// network, when the candidate pair communicates over UDP using IPv4.
rtc::StringBuilder ss;
std::string local_candidate_type =
GetIceCandidateTypeAsString(config.local_candidate_type);
std::string remote_candidate_type =
GetIceCandidateTypeAsString(config.remote_candidate_type);
if (config.local_candidate_type == webrtc::IceCandidateType::kRelay) {
local_candidate_type +=
"(" + GetProtocolAsString(config.local_relay_protocol) + ")";
}
ss << local_candidate_type << ":"
<< GetNetworkTypeAsString(config.local_network_type) << ":"
<< GetAddressFamilyAsString(config.local_address_family) << "->"
<< remote_candidate_type << ":"
<< GetAddressFamilyAsString(config.remote_address_family) << "@"
<< GetProtocolAsString(config.candidate_pair_protocol);
return ss.Release();
}
std::string GetDirectionAsString(PacketDirection direction) {
if (direction == kIncomingPacket) {
return "Incoming";
} else {
return "Outgoing";
}
}
std::string GetDirectionAsShortString(PacketDirection direction) {
if (direction == kIncomingPacket) {
return "In";
} else {
return "Out";
}
}
} // namespace
EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log,
bool normalize_time)
: parsed_log_(log) {
config_.window_duration_ = 250000;
config_.step_ = 10000;
config_.normalize_time_ = normalize_time;
config_.begin_time_ = parsed_log_.first_timestamp();
config_.end_time_ = parsed_log_.last_timestamp();
if (config_.end_time_ < config_.begin_time_) {
RTC_LOG(LS_WARNING) << "No useful events in the log.";
config_.begin_time_ = config_.end_time_ = 0;
}
const auto& log_start_events = parsed_log_.start_log_events();
const auto& log_end_events = parsed_log_.stop_log_events();
auto start_iter = log_start_events.begin();
auto end_iter = log_end_events.begin();
while (start_iter != log_start_events.end()) {
int64_t start = start_iter->log_time_us();
++start_iter;
absl::optional<int64_t> next_start;
if (start_iter != log_start_events.end())
next_start.emplace(start_iter->log_time_us());
if (end_iter != log_end_events.end() &&
end_iter->log_time_us() <=
next_start.value_or(std::numeric_limits<int64_t>::max())) {
int64_t end = end_iter->log_time_us();
RTC_DCHECK_LE(start, end);
log_segments_.push_back(std::make_pair(start, end));
++end_iter;
} else {
// we're missing an end event. Assume that it occurred just before the
// next start.
log_segments_.push_back(
std::make_pair(start, next_start.value_or(config_.end_time_)));
}
}
RTC_LOG(LS_INFO) << "Found " << log_segments_.size()
<< " (LOG_START, LOG_END) segments in log.";
}
class BitrateObserver : public RemoteBitrateObserver {
public:
BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {}
void Update(NetworkControlUpdate update) {
if (update.target_rate) {
last_bitrate_bps_ = update.target_rate->target_rate.bps();
bitrate_updated_ = true;
}
}
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
uint32_t bitrate) override {}
uint32_t last_bitrate_bps() const { return last_bitrate_bps_; }
bool GetAndResetBitrateUpdated() {
bool bitrate_updated = bitrate_updated_;
bitrate_updated_ = false;
return bitrate_updated;
}
private:
uint32_t last_bitrate_bps_;
bool bitrate_updated_;
};
void EventLogAnalyzer::CreatePacketGraph(PacketDirection direction,
Plot* plot) {
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
// Filter on SSRC.
if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
continue;
}
TimeSeries time_series(GetStreamName(direction, stream.ssrc),
LineStyle::kBar);
auto GetPacketSize = [](const LoggedRtpPacket& packet) {
return absl::optional<float>(packet.total_length);
};
auto ToCallTime = [this](const LoggedRtpPacket& packet) {
return this->config_.GetCallTimeSec(packet.log_time_us());
};
ProcessPoints<LoggedRtpPacket>(ToCallTime, GetPacketSize,
stream.packet_view, &time_series);
plot->AppendTimeSeries(std::move(time_series));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin,
kTopMargin);
plot->SetTitle(GetDirectionAsString(direction) + " RTP packets");
}
void EventLogAnalyzer::CreateRtcpTypeGraph(PacketDirection direction,
Plot* plot) {
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
parsed_log_.transport_feedbacks(direction), config_, "TWCC", 1));
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
parsed_log_.receiver_reports(direction), config_, "RR", 2));
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
parsed_log_.sender_reports(direction), config_, "SR", 3));
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
parsed_log_.extended_reports(direction), config_, "XR", 4));
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(parsed_log_.nacks(direction),
config_, "NACK", 5));
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(parsed_log_.rembs(direction),
config_, "REMB", 6));
plot->AppendTimeSeries(
CreateRtcpTypeTimeSeries(parsed_log_.firs(direction), config_, "FIR", 7));
plot->AppendTimeSeries(
CreateRtcpTypeTimeSeries(parsed_log_.plis(direction), config_, "PLI", 8));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "RTCP type", kBottomMargin, kTopMargin);
plot->SetTitle(GetDirectionAsString(direction) + " RTCP packets");
}
template <typename IterableType>
void EventLogAnalyzer::CreateAccumulatedPacketsTimeSeries(
Plot* plot,
const IterableType& packets,
const std::string& label) {
TimeSeries time_series(label, LineStyle::kStep);
for (size_t i = 0; i < packets.size(); i++) {
float x = config_.GetCallTimeSec(packets[i].log_time_us());
time_series.points.emplace_back(x, i + 1);
}
plot->AppendTimeSeries(std::move(time_series));
}
void EventLogAnalyzer::CreateAccumulatedPacketsGraph(PacketDirection direction,
Plot* plot) {
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
if (!MatchingSsrc(stream.ssrc, desired_ssrc_))
continue;
std::string label =
std::string("RTP ") + GetStreamName(direction, stream.ssrc);
CreateAccumulatedPacketsTimeSeries(plot, stream.packet_view, label);
}
std::string label =
std::string("RTCP ") + "(" + GetDirectionAsShortString(direction) + ")";
if (direction == kIncomingPacket) {
CreateAccumulatedPacketsTimeSeries(
plot, parsed_log_.incoming_rtcp_packets(), label);
} else {
CreateAccumulatedPacketsTimeSeries(
plot, parsed_log_.outgoing_rtcp_packets(), label);
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Received Packets", kBottomMargin, kTopMargin);
plot->SetTitle(std::string("Accumulated ") + GetDirectionAsString(direction) +
" RTP/RTCP packets");
}
// For each SSRC, plot the time between the consecutive playouts.
void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) {
for (const auto& playout_stream : parsed_log_.audio_playout_events()) {
uint32_t ssrc = playout_stream.first;
if (!MatchingSsrc(ssrc, desired_ssrc_))
continue;
absl::optional<int64_t> last_playout_ms;
TimeSeries time_series(SsrcToString(ssrc), LineStyle::kBar);
for (const auto& playout_event : playout_stream.second) {
float x = config_.GetCallTimeSec(playout_event.log_time_us());
int64_t playout_time_ms = playout_event.log_time_ms();
// If there were no previous playouts, place the point on the x-axis.
float y = playout_time_ms - last_playout_ms.value_or(playout_time_ms);
time_series.points.push_back(TimeSeriesPoint(x, y));
last_playout_ms.emplace(playout_time_ms);
}
plot->AppendTimeSeries(std::move(time_series));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin,
kTopMargin);
plot->SetTitle("Audio playout");
}
// For audio SSRCs, plot the audio level.
void EventLogAnalyzer::CreateAudioLevelGraph(PacketDirection direction,
Plot* plot) {
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
if (!IsAudioSsrc(direction, stream.ssrc))
continue;
TimeSeries time_series(GetStreamName(direction, stream.ssrc),
LineStyle::kLine);
for (auto& packet : stream.packet_view) {
if (packet.header.extension.hasAudioLevel) {
float x = config_.GetCallTimeSec(packet.log_time_us());
// The audio level is stored in -dBov (so e.g. -10 dBov is stored as 10)
// Here we convert it to dBov.
float y = static_cast<float>(-packet.header.extension.audioLevel);
time_series.points.emplace_back(TimeSeriesPoint(x, y));
}
}
plot->AppendTimeSeries(std::move(time_series));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetYAxis(-127, 0, "Audio level (dBov)", kBottomMargin, kTopMargin);
plot->SetTitle(GetDirectionAsString(direction) + " audio level");
}
// For each SSRC, plot the sequence number difference between consecutive
// incoming packets.
void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) {
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
// Filter on SSRC.
if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
continue;
}
TimeSeries time_series(GetStreamName(kIncomingPacket, stream.ssrc),
LineStyle::kBar);
auto GetSequenceNumberDiff = [](const LoggedRtpPacketIncoming& old_packet,
const LoggedRtpPacketIncoming& new_packet) {
int64_t diff =
WrappingDifference(new_packet.rtp.header.sequenceNumber,
old_packet.rtp.header.sequenceNumber, 1ul << 16);
return diff;
};
auto ToCallTime = [this](const LoggedRtpPacketIncoming& packet) {
return this->config_.GetCallTimeSec(packet.log_time_us());
};
ProcessPairs<LoggedRtpPacketIncoming, float>(
ToCallTime, GetSequenceNumberDiff, stream.incoming_packets,
&time_series);
plot->AppendTimeSeries(std::move(time_series));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin,
kTopMargin);
plot->SetTitle("Incoming sequence number delta");
}
void EventLogAnalyzer::CreateIncomingPacketLossGraph(Plot* plot) {
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
const std::vector<LoggedRtpPacketIncoming>& packets =
stream.incoming_packets;
// Filter on SSRC.
if (!MatchingSsrc(stream.ssrc, desired_ssrc_) || packets.size() == 0) {
continue;
}
TimeSeries time_series(GetStreamName(kIncomingPacket, stream.ssrc),
LineStyle::kLine, PointStyle::kHighlight);
// TODO(terelius): Should the window and step size be read from the class
// instead?
const int64_t kWindowUs = 1000000;
const int64_t kStep = 1000000;
SeqNumUnwrapper<uint16_t> unwrapper_;
SeqNumUnwrapper<uint16_t> prior_unwrapper_;
size_t window_index_begin = 0;
size_t window_index_end = 0;
uint64_t highest_seq_number =
unwrapper_.Unwrap(packets[0].rtp.header.sequenceNumber) - 1;
uint64_t highest_prior_seq_number =
prior_unwrapper_.Unwrap(packets[0].rtp.header.sequenceNumber) - 1;
for (int64_t t = config_.begin_time_; t < config_.end_time_ + kStep;
t += kStep) {
while (window_index_end < packets.size() &&
packets[window_index_end].rtp.log_time_us() < t) {
uint64_t sequence_number = unwrapper_.Unwrap(
packets[window_index_end].rtp.header.sequenceNumber);
highest_seq_number = std::max(highest_seq_number, sequence_number);
++window_index_end;
}
while (window_index_begin < packets.size() &&
packets[window_index_begin].rtp.log_time_us() < t - kWindowUs) {
uint64_t sequence_number = prior_unwrapper_.Unwrap(
packets[window_index_begin].rtp.header.sequenceNumber);
highest_prior_seq_number =
std::max(highest_prior_seq_number, sequence_number);
++window_index_begin;
}
float x = config_.GetCallTimeSec(t);
uint64_t expected_packets = highest_seq_number - highest_prior_seq_number;
if (expected_packets > 0) {
int64_t received_packets = window_index_end - window_index_begin;
int64_t lost_packets = expected_packets - received_packets;
float y = static_cast<float>(lost_packets) / expected_packets * 100;
time_series.points.emplace_back(x, y);
}
}
plot->AppendTimeSeries(std::move(time_series));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Loss rate (in %)", kBottomMargin, kTopMargin);
plot->SetTitle("Incoming packet loss (derived from incoming packets)");
}
void EventLogAnalyzer::CreateIncomingDelayGraph(Plot* plot) {
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
// Filter on SSRC.
if (!MatchingSsrc(stream.ssrc, desired_ssrc_) ||
IsRtxSsrc(kIncomingPacket, stream.ssrc)) {
continue;
}
const std::vector<LoggedRtpPacketIncoming>& packets =
stream.incoming_packets;
if (packets.size() < 100) {
RTC_LOG(LS_WARNING) << "Can't estimate the RTP clock frequency with "
<< packets.size() << " packets in the stream.";
continue;
}
int64_t end_time_us = log_segments_.empty()
? std::numeric_limits<int64_t>::max()
: log_segments_.front().second;
absl::optional<uint32_t> estimated_frequency =
EstimateRtpClockFrequency(packets, end_time_us);
if (!estimated_frequency)
continue;
const double frequency_hz = *estimated_frequency;
if (IsVideoSsrc(kIncomingPacket, stream.ssrc) && frequency_hz != 90000) {
RTC_LOG(LS_WARNING)
<< "Video stream should use a 90 kHz clock but appears to use "
<< frequency_hz / 1000 << ". Discarding.";
continue;
}
auto ToCallTime = [this](const LoggedRtpPacketIncoming& packet) {
return this->config_.GetCallTimeSec(packet.log_time_us());
};
auto ToNetworkDelay = [frequency_hz](
const LoggedRtpPacketIncoming& old_packet,
const LoggedRtpPacketIncoming& new_packet) {
return NetworkDelayDiff_CaptureTime(old_packet, new_packet, frequency_hz);
};
TimeSeries capture_time_data(
GetStreamName(kIncomingPacket, stream.ssrc) + " capture-time",
LineStyle::kLine);
AccumulatePairs<LoggedRtpPacketIncoming, double>(
ToCallTime, ToNetworkDelay, packets, &capture_time_data);
plot->AppendTimeSeries(std::move(capture_time_data));
TimeSeries send_time_data(
GetStreamName(kIncomingPacket, stream.ssrc) + " abs-send-time",
LineStyle::kLine);
AccumulatePairs<LoggedRtpPacketIncoming, double>(
ToCallTime, NetworkDelayDiff_AbsSendTime, packets, &send_time_data);
plot->AppendTimeSeriesIfNotEmpty(std::move(send_time_data));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Delay (ms)", kBottomMargin, kTopMargin);
plot->SetTitle("Incoming network delay (relative to first packet)");
}
// Plot the fraction of packets lost (as perceived by the loss-based BWE).
void EventLogAnalyzer::CreateFractionLossGraph(Plot* plot) {
TimeSeries time_series("Fraction lost", LineStyle::kLine,
PointStyle::kHighlight);
for (auto& bwe_update : parsed_log_.bwe_loss_updates()) {
float x = config_.GetCallTimeSec(bwe_update.log_time_us());
float y = static_cast<float>(bwe_update.fraction_lost) / 255 * 100;
time_series.points.emplace_back(x, y);
}
plot->AppendTimeSeries(std::move(time_series));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Loss rate (in %)", kBottomMargin, kTopMargin);
plot->SetTitle("Outgoing packet loss (as reported by BWE)");
}
// Plot the total bandwidth used by all RTP streams.
void EventLogAnalyzer::CreateTotalIncomingBitrateGraph(Plot* plot) {
// TODO(terelius): This could be provided by the parser.
std::multimap<int64_t, size_t> packets_in_order;
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
for (const LoggedRtpPacketIncoming& packet : stream.incoming_packets)
packets_in_order.insert(
std::make_pair(packet.rtp.log_time_us(), packet.rtp.total_length));
}
auto window_begin = packets_in_order.begin();
auto window_end = packets_in_order.begin();
size_t bytes_in_window = 0;
if (!packets_in_order.empty()) {
// Calculate a moving average of the bitrate and store in a TimeSeries.
TimeSeries bitrate_series("Bitrate", LineStyle::kLine);
for (int64_t time = config_.begin_time_;
time < config_.end_time_ + config_.step_; time += config_.step_) {
while (window_end != packets_in_order.end() && window_end->first < time) {
bytes_in_window += window_end->second;
++window_end;
}
while (window_begin != packets_in_order.end() &&
window_begin->first < time - config_.window_duration_) {
RTC_DCHECK_LE(window_begin->second, bytes_in_window);
bytes_in_window -= window_begin->second;
++window_begin;
}
float window_duration_in_seconds =
static_cast<float>(config_.window_duration_) / kNumMicrosecsPerSec;
float x = config_.GetCallTimeSec(time);
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
bitrate_series.points.emplace_back(x, y);
}
plot->AppendTimeSeries(std::move(bitrate_series));
}
// Overlay the outgoing REMB over incoming bitrate.
TimeSeries remb_series("Remb", LineStyle::kStep);
for (const auto& rtcp : parsed_log_.rembs(kOutgoingPacket)) {
float x = config_.GetCallTimeSec(rtcp.log_time_us());
float y = static_cast<float>(rtcp.remb.bitrate_bps()) / 1000;
remb_series.points.emplace_back(x, y);
}
plot->AppendTimeSeriesIfNotEmpty(std::move(remb_series));
if (!parsed_log_.generic_packets_received().empty()) {
TimeSeries time_series("Incoming generic bitrate", LineStyle::kLine);
auto GetPacketSizeKilobits = [](const LoggedGenericPacketReceived& packet) {
return packet.packet_length * 8.0 / 1000.0;
};
MovingAverage<LoggedGenericPacketReceived, double>(
GetPacketSizeKilobits, parsed_log_.generic_packets_received(), config_,
&time_series);
plot->AppendTimeSeries(std::move(time_series));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
plot->SetTitle("Incoming RTP bitrate");
}
// Plot the total bandwidth used by all RTP streams.
void EventLogAnalyzer::CreateTotalOutgoingBitrateGraph(Plot* plot,
bool show_detector_state,
bool show_alr_state) {
// TODO(terelius): This could be provided by the parser.
std::multimap<int64_t, size_t> packets_in_order;
for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) {
for (const LoggedRtpPacketOutgoing& packet : stream.outgoing_packets)
packets_in_order.insert(
std::make_pair(packet.rtp.log_time_us(), packet.rtp.total_length));
}
auto window_begin = packets_in_order.begin();
auto window_end = packets_in_order.begin();
size_t bytes_in_window = 0;
if (!packets_in_order.empty()) {
// Calculate a moving average of the bitrate and store in a TimeSeries.
TimeSeries bitrate_series("Bitrate", LineStyle::kLine);
for (int64_t time = config_.begin_time_;
time < config_.end_time_ + config_.step_; time += config_.step_) {
while (window_end != packets_in_order.end() && window_end->first < time) {
bytes_in_window += window_end->second;
++window_end;
}
while (window_begin != packets_in_order.end() &&
window_begin->first < time - config_.window_duration_) {
RTC_DCHECK_LE(window_begin->second, bytes_in_window);
bytes_in_window -= window_begin->second;
++window_begin;
}
float window_duration_in_seconds =
static_cast<float>(config_.window_duration_) / kNumMicrosecsPerSec;
float x = config_.GetCallTimeSec(time);
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
bitrate_series.points.emplace_back(x, y);
}
plot->AppendTimeSeries(std::move(bitrate_series));
}
// Overlay the send-side bandwidth estimate over the outgoing bitrate.
TimeSeries loss_series("Loss-based estimate", LineStyle::kStep);
for (auto& loss_update : parsed_log_.bwe_loss_updates()) {
float x = config_.GetCallTimeSec(loss_update.log_time_us());
float y = static_cast<float>(loss_update.bitrate_bps) / 1000;
loss_series.points.emplace_back(x, y);
}
TimeSeries delay_series("Delay-based estimate", LineStyle::kStep);
IntervalSeries overusing_series("Overusing", "#ff8e82",
IntervalSeries::kHorizontal);
IntervalSeries underusing_series("Underusing", "#5092fc",
IntervalSeries::kHorizontal);
IntervalSeries normal_series("Normal", "#c4ffc4",
IntervalSeries::kHorizontal);
IntervalSeries* last_series = &normal_series;
double last_detector_switch = 0.0;
BandwidthUsage last_detector_state = BandwidthUsage::kBwNormal;
for (auto& delay_update : parsed_log_.bwe_delay_updates()) {
float x = config_.GetCallTimeSec(delay_update.log_time_us());
float y = static_cast<float>(delay_update.bitrate_bps) / 1000;
if (last_detector_state != delay_update.detector_state) {
last_series->intervals.emplace_back(last_detector_switch, x);
last_detector_state = delay_update.detector_state;
last_detector_switch = x;
switch (delay_update.detector_state) {
case BandwidthUsage::kBwNormal:
last_series = &normal_series;
break;
case BandwidthUsage::kBwUnderusing:
last_series = &underusing_series;
break;
case BandwidthUsage::kBwOverusing:
last_series = &overusing_series;
break;
case BandwidthUsage::kLast:
RTC_NOTREACHED();
}
}
delay_series.points.emplace_back(x, y);
}
RTC_CHECK(last_series);
last_series->intervals.emplace_back(last_detector_switch, config_.end_time_);
TimeSeries created_series("Probe cluster created.", LineStyle::kNone,
PointStyle::kHighlight);
for (auto& cluster : parsed_log_.bwe_probe_cluster_created_events()) {
float x = config_.GetCallTimeSec(cluster.log_time_us());
float y = static_cast<float>(cluster.bitrate_bps) / 1000;
created_series.points.emplace_back(x, y);
}
TimeSeries result_series("Probing results.", LineStyle::kNone,
PointStyle::kHighlight);
for (auto& result : parsed_log_.bwe_probe_success_events()) {
float x = config_.GetCallTimeSec(result.log_time_us());
float y = static_cast<float>(result.bitrate_bps) / 1000;
result_series.points.emplace_back(x, y);
}
TimeSeries probe_failures_series("Probe failed", LineStyle::kNone,
PointStyle::kHighlight);
for (auto& failure : parsed_log_.bwe_probe_failure_events()) {
float x = config_.GetCallTimeSec(failure.log_time_us());
probe_failures_series.points.emplace_back(x, 0);
}
IntervalSeries alr_state("ALR", "#555555", IntervalSeries::kHorizontal);
bool previously_in_alr = false;
int64_t alr_start = 0;
for (auto& alr : parsed_log_.alr_state_events()) {
float y = config_.GetCallTimeSec(alr.log_time_us());
if (!previously_in_alr && alr.in_alr) {
alr_start = alr.log_time_us();
previously_in_alr = true;
} else if (previously_in_alr && !alr.in_alr) {
float x = config_.GetCallTimeSec(alr_start);
alr_state.intervals.emplace_back(x, y);
previously_in_alr = false;
}
}
if (previously_in_alr) {
float x = config_.GetCallTimeSec(alr_start);
float y = config_.GetCallTimeSec(config_.end_time_);
alr_state.intervals.emplace_back(x, y);
}
if (show_detector_state) {
plot->AppendIntervalSeries(std::move(overusing_series));
plot->AppendIntervalSeries(std::move(underusing_series));
plot->AppendIntervalSeries(std::move(normal_series));
}
if (show_alr_state) {
plot->AppendIntervalSeries(std::move(alr_state));
}
plot->AppendTimeSeries(std::move(loss_series));
plot->AppendTimeSeriesIfNotEmpty(std::move(probe_failures_series));
plot->AppendTimeSeries(std::move(delay_series));
plot->AppendTimeSeries(std::move(created_series));
plot->AppendTimeSeries(std::move(result_series));
// Overlay the incoming REMB over the outgoing bitrate.
TimeSeries remb_series("Remb", LineStyle::kStep);
for (const auto& rtcp : parsed_log_.rembs(kIncomingPacket)) {
float x = config_.GetCallTimeSec(rtcp.log_time_us());
float y = static_cast<float>(rtcp.remb.bitrate_bps()) / 1000;
remb_series.points.emplace_back(x, y);
}
plot->AppendTimeSeriesIfNotEmpty(std::move(remb_series));
if (!parsed_log_.generic_packets_sent().empty()) {
{
TimeSeries time_series("Outgoing generic total bitrate",
LineStyle::kLine);
auto GetPacketSizeKilobits = [](const LoggedGenericPacketSent& packet) {
return packet.packet_length() * 8.0 / 1000.0;
};
MovingAverage<LoggedGenericPacketSent, double>(
GetPacketSizeKilobits, parsed_log_.generic_packets_sent(), config_,
&time_series);
plot->AppendTimeSeries(std::move(time_series));
}
{
TimeSeries time_series("Outgoing generic payload bitrate",
LineStyle::kLine);
auto GetPacketSizeKilobits = [](const LoggedGenericPacketSent& packet) {
return packet.payload_length * 8.0 / 1000.0;
};
MovingAverage<LoggedGenericPacketSent, double>(
GetPacketSizeKilobits, parsed_log_.generic_packets_sent(), config_,
&time_series);
plot->AppendTimeSeries(std::move(time_series));
}
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
plot->SetTitle("Outgoing RTP bitrate");
}
// For each SSRC, plot the bandwidth used by that stream.
void EventLogAnalyzer::CreateStreamBitrateGraph(PacketDirection direction,
Plot* plot) {
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
// Filter on SSRC.
if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
continue;
}
TimeSeries time_series(GetStreamName(direction, stream.ssrc),
LineStyle::kLine);
auto GetPacketSizeKilobits = [](const LoggedRtpPacket& packet) {
return packet.total_length * 8.0 / 1000.0;
};
MovingAverage<LoggedRtpPacket, double>(
GetPacketSizeKilobits, stream.packet_view, config_, &time_series);
plot->AppendTimeSeries(std::move(time_series));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
plot->SetTitle(GetDirectionAsString(direction) + " bitrate per stream");
}
// Plot the bitrate allocation for each temporal and spatial layer.
// Computed from RTCP XR target bitrate block, so the graph is only populated if
// those are sent.
void EventLogAnalyzer::CreateBitrateAllocationGraph(PacketDirection direction,
Plot* plot) {
std::map<LayerDescription, TimeSeries> time_series;
const auto& xr_list = parsed_log_.extended_reports(direction);
for (const auto& rtcp : xr_list) {
const absl::optional<rtcp::TargetBitrate>& target_bitrate =
rtcp.xr.target_bitrate();
if (!target_bitrate.has_value())
continue;
for (const auto& bitrate_item : target_bitrate->GetTargetBitrates()) {
LayerDescription layer(rtcp.xr.sender_ssrc(), bitrate_item.spatial_layer,
bitrate_item.temporal_layer);
auto time_series_it = time_series.find(layer);
if (time_series_it == time_series.end()) {
std::string layer_name = GetLayerName(layer);
bool inserted;
std::tie(time_series_it, inserted) = time_series.insert(
std::make_pair(layer, TimeSeries(layer_name, LineStyle::kStep)));
RTC_DCHECK(inserted);
}
float x = config_.GetCallTimeSec(rtcp.log_time_us());
float y = bitrate_item.target_bitrate_kbps;
time_series_it->second.points.emplace_back(x, y);
}
}
for (auto& layer : time_series) {
plot->AppendTimeSeries(std::move(layer.second));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
if (direction == kIncomingPacket)
plot->SetTitle("Target bitrate per incoming layer");
else
plot->SetTitle("Target bitrate per outgoing layer");
}
void EventLogAnalyzer::CreateGoogCcSimulationGraph(Plot* plot) {
TimeSeries target_rates("Simulated target rate", LineStyle::kStep,
PointStyle::kHighlight);
TimeSeries delay_based("Logged delay-based estimate", LineStyle::kStep,
PointStyle::kHighlight);
TimeSeries loss_based("Logged loss-based estimate", LineStyle::kStep,
PointStyle::kHighlight);
TimeSeries probe_results("Logged probe success", LineStyle::kNone,
PointStyle::kHighlight);
LogBasedNetworkControllerSimulation simulation(
absl::make_unique<GoogCcNetworkControllerFactory>(),
[&](const NetworkControlUpdate& update, Timestamp at_time) {
if (update.target_rate) {
target_rates.points.emplace_back(
config_.GetCallTimeSec(at_time.us()),
update.target_rate->target_rate.kbps<float>());
}
});
simulation.ProcessEventsInLog(parsed_log_);
for (const auto& logged : parsed_log_.bwe_delay_updates())
delay_based.points.emplace_back(
config_.GetCallTimeSec(logged.log_time_us()),
logged.bitrate_bps / 1000);
for (const auto& logged : parsed_log_.bwe_probe_success_events())
probe_results.points.emplace_back(
config_.GetCallTimeSec(logged.log_time_us()),
logged.bitrate_bps / 1000);
for (const auto& logged : parsed_log_.bwe_loss_updates())
loss_based.points.emplace_back(config_.GetCallTimeSec(logged.log_time_us()),
logged.bitrate_bps / 1000);
plot->AppendTimeSeries(std::move(delay_based));
plot->AppendTimeSeries(std::move(loss_based));
plot->AppendTimeSeries(std::move(probe_results));
plot->AppendTimeSeries(std::move(target_rates));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
plot->SetTitle("Simulated BWE behavior");
}
void EventLogAnalyzer::CreateSendSideBweSimulationGraph(Plot* plot) {
using RtpPacketType = LoggedRtpPacketOutgoing;
using TransportFeedbackType = LoggedRtcpPacketTransportFeedback;
// TODO(terelius): This could be provided by the parser.
std::multimap<int64_t, const RtpPacketType*> outgoing_rtp;
for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) {
for (const RtpPacketType& rtp_packet : stream.outgoing_packets)
outgoing_rtp.insert(
std::make_pair(rtp_packet.rtp.log_time_us(), &rtp_packet));
}
const std::vector<TransportFeedbackType>& incoming_rtcp =
parsed_log_.transport_feedbacks(kIncomingPacket);
SimulatedClock clock(0);
BitrateObserver observer;
RtcEventLogNullImpl null_event_log;
PacketRouter packet_router;
PacedSender pacer(&clock, &packet_router, &null_event_log);
TransportFeedbackAdapter transport_feedback;
auto factory = GoogCcNetworkControllerFactory();
TimeDelta process_interval = factory.GetProcessInterval();
// TODO(holmer): Log the call config and use that here instead.
static const uint32_t kDefaultStartBitrateBps = 300000;
NetworkControllerConfig cc_config;
cc_config.constraints.at_time = Timestamp::us(clock.TimeInMicroseconds());
cc_config.constraints.starting_rate = DataRate::bps(kDefaultStartBitrateBps);
cc_config.event_log = &null_event_log;
auto goog_cc = factory.Create(cc_config);
TimeSeries time_series("Delay-based estimate", LineStyle::kStep,
PointStyle::kHighlight);
TimeSeries acked_time_series("Acked bitrate", LineStyle::kLine,
PointStyle::kHighlight);
TimeSeries acked_estimate_time_series(
"Acked bitrate estimate", LineStyle::kLine, PointStyle::kHighlight);
auto rtp_iterator = outgoing_rtp.begin();
auto rtcp_iterator = incoming_rtcp.begin();
auto NextRtpTime = [&]() {
if (rtp_iterator != outgoing_rtp.end())
return static_cast<int64_t>(rtp_iterator->first);
return std::numeric_limits<int64_t>::max();
};
auto NextRtcpTime = [&]() {
if (rtcp_iterator != incoming_rtcp.end())
return static_cast<int64_t>(rtcp_iterator->log_time_us());
return std::numeric_limits<int64_t>::max();
};
int64_t next_process_time_us_ = std::min({NextRtpTime(), NextRtcpTime()});
auto NextProcessTime = [&]() {
if (rtcp_iterator != incoming_rtcp.end() ||
rtp_iterator != outgoing_rtp.end()) {
return next_process_time_us_;
}
return std::numeric_limits<int64_t>::max();
};
RateStatistics acked_bitrate(250, 8000);
#if !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
FieldTrialBasedConfig field_trial_config_;
// The event_log_visualizer should normally not be compiled with
// BWE_TEST_LOGGING_COMPILE_TIME_ENABLE since the normal plots won't work.
// However, compiling with BWE_TEST_LOGGING, runnning with --plot_sendside_bwe
// and piping the output to plot_dynamics.py can be used as a hack to get the
// internal state of various BWE components. In this case, it is important
// we don't instantiate the AcknowledgedBitrateEstimator both here and in
// GoogCcNetworkController since that would lead to duplicate outputs.
AcknowledgedBitrateEstimator acknowledged_bitrate_estimator(
&field_trial_config_,
absl::make_unique<BitrateEstimator>(&field_trial_config_));
#endif // !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
int64_t time_us =
std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()});
int64_t last_update_us = 0;
while (time_us != std::numeric_limits<int64_t>::max()) {
clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds());
if (clock.TimeInMicroseconds() >= NextRtpTime()) {
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime());
const RtpPacketType& rtp_packet = *rtp_iterator->second;
if (rtp_packet.rtp.header.extension.hasTransportSequenceNumber) {
RTC_DCHECK(rtp_packet.rtp.header.extension.hasTransportSequenceNumber);
RtpPacketSendInfo packet_info;
packet_info.ssrc = rtp_packet.rtp.header.ssrc;
packet_info.transport_sequence_number =
rtp_packet.rtp.header.extension.transportSequenceNumber;
packet_info.rtp_sequence_number = rtp_packet.rtp.header.sequenceNumber;
packet_info.has_rtp_sequence_number = true;
packet_info.length = rtp_packet.rtp.total_length;
transport_feedback.AddPacket(
packet_info,
0u, // Per packet overhead bytes.
Timestamp::us(rtp_packet.rtp.log_time_us()));
rtc::SentPacket sent_packet(
rtp_packet.rtp.header.extension.transportSequenceNumber,
rtp_packet.rtp.log_time_us() / 1000);
auto sent_msg = transport_feedback.ProcessSentPacket(sent_packet);
if (sent_msg)
observer.Update(goog_cc->OnSentPacket(*sent_msg));
}
++rtp_iterator;
}
if (clock.TimeInMicroseconds() >= NextRtcpTime()) {
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime());
auto feedback_msg = transport_feedback.ProcessTransportFeedback(
rtcp_iterator->transport_feedback,
Timestamp::ms(clock.TimeInMilliseconds()));
absl::optional<uint32_t> bitrate_bps;
if (feedback_msg) {
observer.Update(goog_cc->OnTransportPacketsFeedback(*feedback_msg));
std::vector<PacketResult> feedback =
feedback_msg->SortedByReceiveTime();
if (!feedback.empty()) {
#if !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
acknowledged_bitrate_estimator.IncomingPacketFeedbackVector(feedback);
#endif // !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
for (const PacketResult& packet : feedback)
acked_bitrate.Update(packet.sent_packet.size.bytes(),
packet.receive_time.ms());
bitrate_bps = acked_bitrate.Rate(feedback.back().receive_time.ms());
}
}
float x = config_.GetCallTimeSec(clock.TimeInMicroseconds());
float y = bitrate_bps.value_or(0) / 1000;
acked_time_series.points.emplace_back(x, y);
#if !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
y = acknowledged_bitrate_estimator.bitrate()
.value_or(DataRate::Zero())
.kbps();
acked_estimate_time_series.points.emplace_back(x, y);
#endif // !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
++rtcp_iterator;
}
if (clock.TimeInMicroseconds() >= NextProcessTime()) {
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime());
ProcessInterval msg;
msg.at_time = Timestamp::us(clock.TimeInMicroseconds());
observer.Update(goog_cc->OnProcessInterval(msg));
next_process_time_us_ += process_interval.us();
}
if (observer.GetAndResetBitrateUpdated() ||
time_us - last_update_us >= 1e6) {
uint32_t y = observer.last_bitrate_bps() / 1000;
float x = config_.GetCallTimeSec(clock.TimeInMicroseconds());
time_series.points.emplace_back(x, y);
last_update_us = time_us;
}
time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()});
}
// Add the data set to the plot.
plot->AppendTimeSeries(std::move(time_series));
plot->AppendTimeSeries(std::move(acked_time_series));
plot->AppendTimeSeriesIfNotEmpty(std::move(acked_estimate_time_series));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
plot->SetTitle("Simulated send-side BWE behavior");
}
void EventLogAnalyzer::CreateReceiveSideBweSimulationGraph(Plot* plot) {
using RtpPacketType = LoggedRtpPacketIncoming;
class RembInterceptingPacketRouter : public PacketRouter {
public:
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
uint32_t bitrate_bps) override {
last_bitrate_bps_ = bitrate_bps;
bitrate_updated_ = true;
PacketRouter::OnReceiveBitrateChanged(ssrcs, bitrate_bps);
}
uint32_t last_bitrate_bps() const { return last_bitrate_bps_; }
bool GetAndResetBitrateUpdated() {
bool bitrate_updated = bitrate_updated_;
bitrate_updated_ = false;
return bitrate_updated;
}
private:
uint32_t last_bitrate_bps_;
bool bitrate_updated_;
};
std::multimap<int64_t, const RtpPacketType*> incoming_rtp;
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
if (IsVideoSsrc(kIncomingPacket, stream.ssrc)) {
for (const auto& rtp_packet : stream.incoming_packets)
incoming_rtp.insert(
std::make_pair(rtp_packet.rtp.log_time_us(), &rtp_packet));
}
}
SimulatedClock clock(0);
RembInterceptingPacketRouter packet_router;
// TODO(terelius): The PacketRouter is used as the RemoteBitrateObserver.
// Is this intentional?
ReceiveSideCongestionController rscc(&clock, &packet_router);
// TODO(holmer): Log the call config and use that here instead.
// static const uint32_t kDefaultStartBitrateBps = 300000;
// rscc.SetBweBitrates(0, kDefaultStartBitrateBps, -1);
TimeSeries time_series("Receive side estimate", LineStyle::kLine,
PointStyle::kHighlight);
TimeSeries acked_time_series("Received bitrate", LineStyle::kLine);
RateStatistics acked_bitrate(250, 8000);
int64_t last_update_us = 0;
for (const auto& kv : incoming_rtp) {
const RtpPacketType& packet = *kv.second;
int64_t arrival_time_ms = packet.rtp.log_time_us() / 1000;
size_t payload = packet.rtp.total_length; /*Should subtract header?*/
clock.AdvanceTimeMicroseconds(packet.rtp.log_time_us() -
clock.TimeInMicroseconds());
rscc.OnReceivedPacket(arrival_time_ms, payload, packet.rtp.header);
acked_bitrate.Update(payload, arrival_time_ms);
absl::optional<uint32_t> bitrate_bps = acked_bitrate.Rate(arrival_time_ms);
if (bitrate_bps) {
uint32_t y = *bitrate_bps / 1000;
float x = config_.GetCallTimeSec(clock.TimeInMicroseconds());
acked_time_series.points.emplace_back(x, y);
}
if (packet_router.GetAndResetBitrateUpdated() ||
clock.TimeInMicroseconds() - last_update_us >= 1e6) {
uint32_t y = packet_router.last_bitrate_bps() / 1000;
float x = config_.GetCallTimeSec(clock.TimeInMicroseconds());
time_series.points.emplace_back(x, y);
last_update_us = clock.TimeInMicroseconds();
}
}
// Add the data set to the plot.
plot->AppendTimeSeries(std::move(time_series));
plot->AppendTimeSeries(std::move(acked_time_series));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
plot->SetTitle("Simulated receive-side BWE behavior");
}
void EventLogAnalyzer::CreateNetworkDelayFeedbackGraph(Plot* plot) {
TimeSeries late_feedback_series("Late feedback results.", LineStyle::kNone,
PointStyle::kHighlight);
TimeSeries time_series("Network delay", LineStyle::kLine,
PointStyle::kHighlight);
int64_t min_send_receive_diff_ms = std::numeric_limits<int64_t>::max();
int64_t min_rtt_ms = std::numeric_limits<int64_t>::max();
int64_t prev_y = 0;
for (auto packet : GetNetworkTrace(parsed_log_)) {
if (packet.arrival_time_ms == PacketFeedback::kNotReceived)
continue;
float x = config_.GetCallTimeSec(1000 * packet.feedback_arrival_time_ms);
if (packet.send_time_ms == PacketFeedback::kNoSendTime) {
late_feedback_series.points.emplace_back(x, prev_y);
continue;
}
int64_t y = packet.arrival_time_ms - packet.send_time_ms;
prev_y = y;
int64_t rtt_ms = packet.feedback_arrival_time_ms - packet.send_time_ms;
min_rtt_ms = std::min(rtt_ms, min_rtt_ms);
min_send_receive_diff_ms = std::min(y, min_send_receive_diff_ms);
time_series.points.emplace_back(x, y);
}
// We assume that the base network delay (w/o queues) is equal to half
// the minimum RTT. Therefore rescale the delays by subtracting the minimum
// observed 1-ways delay and add half the minumum RTT.
const int64_t estimated_clock_offset_ms =
min_send_receive_diff_ms - min_rtt_ms / 2;
for (TimeSeriesPoint& point : time_series.points)
point.y -= estimated_clock_offset_ms;
for (TimeSeriesPoint& point : late_feedback_series.points)
point.y -= estimated_clock_offset_ms;
// Add the data set to the plot.
plot->AppendTimeSeriesIfNotEmpty(std::move(time_series));
plot->AppendTimeSeriesIfNotEmpty(std::move(late_feedback_series));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin);
plot->SetTitle("Outgoing network delay (based on per-packet feedback)");
}
void EventLogAnalyzer::CreatePacerDelayGraph(Plot* plot) {
for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) {
const std::vector<LoggedRtpPacketOutgoing>& packets =
stream.outgoing_packets;
if (IsRtxSsrc(kOutgoingPacket, stream.ssrc)) {
continue;
}
if (packets.size() < 2) {
RTC_LOG(LS_WARNING)
<< "Can't estimate a the RTP clock frequency or the "
"pacer delay with less than 2 packets in the stream";
continue;
}
int64_t end_time_us = log_segments_.empty()
? std::numeric_limits<int64_t>::max()
: log_segments_.front().second;
absl::optional<uint32_t> estimated_frequency =
EstimateRtpClockFrequency(packets, end_time_us);
if (!estimated_frequency)
continue;
if (IsVideoSsrc(kOutgoingPacket, stream.ssrc) &&
*estimated_frequency != 90000) {
RTC_LOG(LS_WARNING)
<< "Video stream should use a 90 kHz clock but appears to use "
<< *estimated_frequency / 1000 << ". Discarding.";
continue;
}
TimeSeries pacer_delay_series(
GetStreamName(kOutgoingPacket, stream.ssrc) + "(" +
std::to_string(*estimated_frequency / 1000) + " kHz)",
LineStyle::kLine, PointStyle::kHighlight);
SeqNumUnwrapper<uint32_t> timestamp_unwrapper;
uint64_t first_capture_timestamp =
timestamp_unwrapper.Unwrap(packets.front().rtp.header.timestamp);
uint64_t first_send_timestamp = packets.front().rtp.log_time_us();
for (const auto& packet : packets) {
double capture_time_ms = (static_cast<double>(timestamp_unwrapper.Unwrap(
packet.rtp.header.timestamp)) -
first_capture_timestamp) /
*estimated_frequency * 1000;
double send_time_ms =
static_cast<double>(packet.rtp.log_time_us() - first_send_timestamp) /
1000;
float x = config_.GetCallTimeSec(packet.rtp.log_time_us());
float y = send_time_ms - capture_time_ms;
pacer_delay_series.points.emplace_back(x, y);
}
plot->AppendTimeSeries(std::move(pacer_delay_series));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Pacer delay (ms)", kBottomMargin, kTopMargin);
plot->SetTitle(
"Delay from capture to send time. (First packet normalized to 0.)");
}
void EventLogAnalyzer::CreateTimestampGraph(PacketDirection direction,
Plot* plot) {
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
TimeSeries rtp_timestamps(
GetStreamName(direction, stream.ssrc) + " capture-time",
LineStyle::kLine, PointStyle::kHighlight);
for (const auto& packet : stream.packet_view) {
float x = config_.GetCallTimeSec(packet.log_time_us());
float y = packet.header.timestamp;
rtp_timestamps.points.emplace_back(x, y);
}
plot->AppendTimeSeries(std::move(rtp_timestamps));
TimeSeries rtcp_timestamps(
GetStreamName(direction, stream.ssrc) + " rtcp capture-time",
LineStyle::kLine, PointStyle::kHighlight);
// TODO(terelius): Why only sender reports?
const auto& sender_reports = parsed_log_.sender_reports(direction);
for (const auto& rtcp : sender_reports) {
if (rtcp.sr.sender_ssrc() != stream.ssrc)
continue;
float x = config_.GetCallTimeSec(rtcp.log_time_us());
float y = rtcp.sr.rtp_timestamp();
rtcp_timestamps.points.emplace_back(x, y);
}
plot->AppendTimeSeriesIfNotEmpty(std::move(rtcp_timestamps));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "RTP timestamp", kBottomMargin, kTopMargin);
plot->SetTitle(GetDirectionAsString(direction) + " timestamps");
}
void EventLogAnalyzer::CreateSenderAndReceiverReportPlot(
PacketDirection direction,
rtc::FunctionView<float(const rtcp::ReportBlock&)> fy,
std::string title,
std::string yaxis_label,
Plot* plot) {
std::map<uint32_t, TimeSeries> sr_reports_by_ssrc;
const auto& sender_reports = parsed_log_.sender_reports(direction);
for (const auto& rtcp : sender_reports) {
float x = config_.GetCallTimeSec(rtcp.log_time_us());
uint32_t ssrc = rtcp.sr.sender_ssrc();
for (const auto& block : rtcp.sr.report_blocks()) {
float y = fy(block);
auto sr_report_it = sr_reports_by_ssrc.find(ssrc);
bool inserted;
if (sr_report_it == sr_reports_by_ssrc.end()) {
std::tie(sr_report_it, inserted) = sr_reports_by_ssrc.emplace(
ssrc, TimeSeries(GetStreamName(direction, ssrc) + " Sender Reports",
LineStyle::kLine, PointStyle::kHighlight));
}
sr_report_it->second.points.emplace_back(x, y);
}
}
for (auto& kv : sr_reports_by_ssrc) {
plot->AppendTimeSeries(std::move(kv.second));
}
std::map<uint32_t, TimeSeries> rr_reports_by_ssrc;
const auto& receiver_reports = parsed_log_.receiver_reports(direction);
for (const auto& rtcp : receiver_reports) {
float x = config_.GetCallTimeSec(rtcp.log_time_us());
uint32_t ssrc = rtcp.rr.sender_ssrc();
for (const auto& block : rtcp.rr.report_blocks()) {
float y = fy(block);
auto rr_report_it = rr_reports_by_ssrc.find(ssrc);
bool inserted;
if (rr_report_it == rr_reports_by_ssrc.end()) {
std::tie(rr_report_it, inserted) = rr_reports_by_ssrc.emplace(
ssrc,
TimeSeries(GetStreamName(direction, ssrc) + " Receiver Reports",
LineStyle::kLine, PointStyle::kHighlight));
}
rr_report_it->second.points.emplace_back(x, y);
}
}
for (auto& kv : rr_reports_by_ssrc) {
plot->AppendTimeSeries(std::move(kv.second));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, yaxis_label, kBottomMargin, kTopMargin);
plot->SetTitle(title);
}
void EventLogAnalyzer::CreateAudioEncoderTargetBitrateGraph(Plot* plot) {
TimeSeries time_series("Audio encoder target bitrate", LineStyle::kLine,
PointStyle::kHighlight);
auto GetAnaBitrateBps = [](const LoggedAudioNetworkAdaptationEvent& ana_event)
-> absl::optional<float> {
if (ana_event.config.bitrate_bps)
return absl::optional<float>(
static_cast<float>(*ana_event.config.bitrate_bps));
return absl::nullopt;
};
auto ToCallTime = [this](const LoggedAudioNetworkAdaptationEvent& packet) {
return this->config_.GetCallTimeSec(packet.log_time_us());
};
ProcessPoints<LoggedAudioNetworkAdaptationEvent>(
ToCallTime, GetAnaBitrateBps,
parsed_log_.audio_network_adaptation_events(), &time_series);
plot->AppendTimeSeries(std::move(time_series));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Bitrate (bps)", kBottomMargin, kTopMargin);
plot->SetTitle("Reported audio encoder target bitrate");
}
void EventLogAnalyzer::CreateAudioEncoderFrameLengthGraph(Plot* plot) {
TimeSeries time_series("Audio encoder frame length", LineStyle::kLine,
PointStyle::kHighlight);
auto GetAnaFrameLengthMs =
[](const LoggedAudioNetworkAdaptationEvent& ana_event) {
if (ana_event.config.frame_length_ms)
return absl::optional<float>(
static_cast<float>(*ana_event.config.frame_length_ms));
return absl::optional<float>();
};
auto ToCallTime = [this](const LoggedAudioNetworkAdaptationEvent& packet) {
return this->config_.GetCallTimeSec(packet.log_time_us());
};
ProcessPoints<LoggedAudioNetworkAdaptationEvent>(
ToCallTime, GetAnaFrameLengthMs,
parsed_log_.audio_network_adaptation_events(), &time_series);
plot->AppendTimeSeries(std::move(time_series));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Frame length (ms)", kBottomMargin, kTopMargin);
plot->SetTitle("Reported audio encoder frame length");
}
void EventLogAnalyzer::CreateAudioEncoderPacketLossGraph(Plot* plot) {
TimeSeries time_series("Audio encoder uplink packet loss fraction",
LineStyle::kLine, PointStyle::kHighlight);
auto GetAnaPacketLoss =
[](const LoggedAudioNetworkAdaptationEvent& ana_event) {
if (ana_event.config.uplink_packet_loss_fraction)
return absl::optional<float>(static_cast<float>(
*ana_event.config.uplink_packet_loss_fraction));
return absl::optional<float>();
};
auto ToCallTime = [this](const LoggedAudioNetworkAdaptationEvent& packet) {
return this->config_.GetCallTimeSec(packet.log_time_us());
};
ProcessPoints<LoggedAudioNetworkAdaptationEvent>(
ToCallTime, GetAnaPacketLoss,
parsed_log_.audio_network_adaptation_events(), &time_series);
plot->AppendTimeSeries(std::move(time_series));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Percent lost packets", kBottomMargin,
kTopMargin);
plot->SetTitle("Reported audio encoder lost packets");
}
void EventLogAnalyzer::CreateAudioEncoderEnableFecGraph(Plot* plot) {
TimeSeries time_series("Audio encoder FEC", LineStyle::kLine,
PointStyle::kHighlight);
auto GetAnaFecEnabled =
[](const LoggedAudioNetworkAdaptationEvent& ana_event) {
if (ana_event.config.enable_fec)
return absl::optional<float>(
static_cast<float>(*ana_event.config.enable_fec));
return absl::optional<float>();
};
auto ToCallTime = [this](const LoggedAudioNetworkAdaptationEvent& packet) {
return this->config_.GetCallTimeSec(packet.log_time_us());
};
ProcessPoints<LoggedAudioNetworkAdaptationEvent>(
ToCallTime, GetAnaFecEnabled,
parsed_log_.audio_network_adaptation_events(), &time_series);
plot->AppendTimeSeries(std::move(time_series));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "FEC (false/true)", kBottomMargin, kTopMargin);
plot->SetTitle("Reported audio encoder FEC");
}
void EventLogAnalyzer::CreateAudioEncoderEnableDtxGraph(Plot* plot) {
TimeSeries time_series("Audio encoder DTX", LineStyle::kLine,
PointStyle::kHighlight);
auto GetAnaDtxEnabled =
[](const LoggedAudioNetworkAdaptationEvent& ana_event) {
if (ana_event.config.enable_dtx)
return absl::optional<float>(
static_cast<float>(*ana_event.config.enable_dtx));
return absl::optional<float>();
};
auto ToCallTime = [this](const LoggedAudioNetworkAdaptationEvent& packet) {
return this->config_.GetCallTimeSec(packet.log_time_us());
};
ProcessPoints<LoggedAudioNetworkAdaptationEvent>(
ToCallTime, GetAnaDtxEnabled,
parsed_log_.audio_network_adaptation_events(), &time_series);
plot->AppendTimeSeries(std::move(time_series));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "DTX (false/true)", kBottomMargin, kTopMargin);
plot->SetTitle("Reported audio encoder DTX");
}
void EventLogAnalyzer::CreateAudioEncoderNumChannelsGraph(Plot* plot) {
TimeSeries time_series("Audio encoder number of channels", LineStyle::kLine,
PointStyle::kHighlight);
auto GetAnaNumChannels =
[](const LoggedAudioNetworkAdaptationEvent& ana_event) {
if (ana_event.config.num_channels)
return absl::optional<float>(
static_cast<float>(*ana_event.config.num_channels));
return absl::optional<float>();
};
auto ToCallTime = [this](const LoggedAudioNetworkAdaptationEvent& packet) {
return this->config_.GetCallTimeSec(packet.log_time_us());
};
ProcessPoints<LoggedAudioNetworkAdaptationEvent>(
ToCallTime, GetAnaNumChannels,
parsed_log_.audio_network_adaptation_events(), &time_series);
plot->AppendTimeSeries(std::move(time_series));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Number of channels (1 (mono)/2 (stereo))",
kBottomMargin, kTopMargin);
plot->SetTitle("Reported audio encoder number of channels");
}
class NetEqStreamInput : public test::NetEqInput {
public:
// Does not take any ownership, and all pointers must refer to valid objects
// that outlive the one constructed.
NetEqStreamInput(const std::vector<LoggedRtpPacketIncoming>* packet_stream,
const std::vector<LoggedAudioPlayoutEvent>* output_events,
absl::optional<int64_t> end_time_ms)
: packet_stream_(*packet_stream),
packet_stream_it_(packet_stream_.begin()),
output_events_it_(output_events->begin()),
output_events_end_(output_events->end()),
end_time_ms_(end_time_ms) {
RTC_DCHECK(packet_stream);
RTC_DCHECK(output_events);
}
absl::optional<int64_t> NextPacketTime() const override {
if (packet_stream_it_ == packet_stream_.end()) {
return absl::nullopt;
}
if (end_time_ms_ && packet_stream_it_->rtp.log_time_ms() > *end_time_ms_) {
return absl::nullopt;
}
return packet_stream_it_->rtp.log_time_ms();
}
absl::optional<int64_t> NextOutputEventTime() const override {
if (output_events_it_ == output_events_end_) {
return absl::nullopt;
}
if (end_time_ms_ && output_events_it_->log_time_ms() > *end_time_ms_) {
return absl::nullopt;
}
return output_events_it_->log_time_ms();
}
std::unique_ptr<PacketData> PopPacket() override {
if (packet_stream_it_ == packet_stream_.end()) {
return std::unique_ptr<PacketData>();
}
std::unique_ptr<PacketData> packet_data(new PacketData());
packet_data->header = packet_stream_it_->rtp.header;
packet_data->time_ms = packet_stream_it_->rtp.log_time_ms();
// This is a header-only "dummy" packet. Set the payload to all zeros, with
// length according to the virtual length.
packet_data->payload.SetSize(packet_stream_it_->rtp.total_length -
packet_stream_it_->rtp.header_length);
std::fill_n(packet_data->payload.data(), packet_data->payload.size(), 0);
++packet_stream_it_;
return packet_data;
}
void AdvanceOutputEvent() override {
if (output_events_it_ != output_events_end_) {
++output_events_it_;
}
}
bool ended() const override { return !NextEventTime(); }
absl::optional<RTPHeader> NextHeader() const override {
if (packet_stream_it_ == packet_stream_.end()) {
return absl::nullopt;
}
return packet_stream_it_->rtp.header;
}
private:
const std::vector<LoggedRtpPacketIncoming>& packet_stream_;
std::vector<LoggedRtpPacketIncoming>::const_iterator packet_stream_it_;
std::vector<LoggedAudioPlayoutEvent>::const_iterator output_events_it_;
const std::vector<LoggedAudioPlayoutEvent>::const_iterator output_events_end_;
const absl::optional<int64_t> end_time_ms_;
};
namespace {
// Factory to create a "replacement decoder" that produces the decoded audio
// by reading from a file rather than from the encoded payloads.
class ReplacementAudioDecoderFactory : public AudioDecoderFactory {
public:
ReplacementAudioDecoderFactory(const absl::string_view replacement_file_name,
int file_sample_rate_hz)
: replacement_file_name_(replacement_file_name),
file_sample_rate_hz_(file_sample_rate_hz) {}
std::vector<AudioCodecSpec> GetSupportedDecoders() override {
RTC_NOTREACHED();
return {};
}
bool IsSupportedDecoder(const SdpAudioFormat& format) override {
return true;
}
std::unique_ptr<AudioDecoder> MakeAudioDecoder(
const SdpAudioFormat& format,
absl::optional<AudioCodecPairId> codec_pair_id) override {
auto replacement_file = absl::make_unique<test::ResampleInputAudioFile>(
replacement_file_name_, file_sample_rate_hz_);
replacement_file->set_output_rate_hz(48000);
return absl::make_unique<test::FakeDecodeFromFile>(
std::move(replacement_file), 48000, false);
}
private:
const std::string replacement_file_name_;
const int file_sample_rate_hz_;
};
// Creates a NetEq test object and all necessary input and output helpers. Runs
// the test and returns the NetEqDelayAnalyzer object that was used to
// instrument the test.
std::unique_ptr<test::NetEqStatsGetter> CreateNetEqTestAndRun(
const std::vector<LoggedRtpPacketIncoming>* packet_stream,
const std::vector<LoggedAudioPlayoutEvent>* output_events,
absl::optional<int64_t> end_time_ms,
const std::string& replacement_file_name,
int file_sample_rate_hz) {
std::unique_ptr<test::NetEqInput> input(
new NetEqStreamInput(packet_stream, output_events, end_time_ms));
constexpr int kReplacementPt = 127;
std::set<uint8_t> cn_types;
std::set<uint8_t> forbidden_types;
input.reset(new test::NetEqReplacementInput(std::move(input), kReplacementPt,
cn_types, forbidden_types));
NetEq::Config config;
config.max_packets_in_buffer = 200;
config.enable_fast_accelerate = true;
std::unique_ptr<test::VoidAudioSink> output(new test::VoidAudioSink());
rtc::scoped_refptr<AudioDecoderFactory> decoder_factory =
new rtc::RefCountedObject<ReplacementAudioDecoderFactory>(
replacement_file_name, file_sample_rate_hz);
test::NetEqTest::DecoderMap codecs = {
{kReplacementPt, SdpAudioFormat("l16", 48000, 1)}};
std::unique_ptr<test::NetEqDelayAnalyzer> delay_cb(
new test::NetEqDelayAnalyzer);
std::unique_ptr<test::NetEqStatsGetter> neteq_stats_getter(
new test::NetEqStatsGetter(std::move(delay_cb)));
test::DefaultNetEqTestErrorCallback error_cb;
test::NetEqTest::Callbacks callbacks;
callbacks.error_callback = &error_cb;
callbacks.post_insert_packet = neteq_stats_getter->delay_analyzer();
callbacks.get_audio_callback = neteq_stats_getter.get();
test::NetEqTest test(config, decoder_factory, codecs, nullptr,
std::move(input), std::move(output), callbacks);
test.Run();
return neteq_stats_getter;
}
} // namespace
EventLogAnalyzer::NetEqStatsGetterMap EventLogAnalyzer::SimulateNetEq(
const std::string& replacement_file_name,
int file_sample_rate_hz) const {
NetEqStatsGetterMap neteq_stats;
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
const uint32_t ssrc = stream.ssrc;
if (!IsAudioSsrc(kIncomingPacket, ssrc))
continue;
const std::vector<LoggedRtpPacketIncoming>* audio_packets =
&stream.incoming_packets;
if (audio_packets == nullptr) {
// No incoming audio stream found.
continue;
}
RTC_DCHECK(neteq_stats.find(ssrc) == neteq_stats.end());
std::map<uint32_t, std::vector<LoggedAudioPlayoutEvent>>::const_iterator
output_events_it = parsed_log_.audio_playout_events().find(ssrc);
if (output_events_it == parsed_log_.audio_playout_events().end()) {
// Could not find output events with SSRC matching the input audio stream.
// Using the first available stream of output events.
output_events_it = parsed_log_.audio_playout_events().cbegin();
}
absl::optional<int64_t> end_time_ms =
log_segments_.empty()
? absl::nullopt
: absl::optional<int64_t>(log_segments_.front().second / 1000);
neteq_stats[ssrc] = CreateNetEqTestAndRun(
audio_packets, &output_events_it->second, end_time_ms,
replacement_file_name, file_sample_rate_hz);
}
return neteq_stats;
}
// Given a NetEqStatsGetter and the SSRC that the NetEqStatsGetter was created
// for, this method generates a plot for the jitter buffer delay profile.
void EventLogAnalyzer::CreateAudioJitterBufferGraph(
uint32_t ssrc,
const test::NetEqStatsGetter* stats_getter,
Plot* plot) const {
test::NetEqDelayAnalyzer::Delays arrival_delay_ms;
test::NetEqDelayAnalyzer::Delays corrected_arrival_delay_ms;
test::NetEqDelayAnalyzer::Delays playout_delay_ms;
test::NetEqDelayAnalyzer::Delays target_delay_ms;
stats_getter->delay_analyzer()->CreateGraphs(
&arrival_delay_ms, &corrected_arrival_delay_ms, &playout_delay_ms,
&target_delay_ms);
TimeSeries time_series_packet_arrival("packet arrival delay",
LineStyle::kLine);
TimeSeries time_series_relative_packet_arrival(
"Relative packet arrival delay", LineStyle::kLine);
TimeSeries time_series_play_time("Playout delay", LineStyle::kLine);
TimeSeries time_series_target_time("Target delay", LineStyle::kLine,
PointStyle::kHighlight);
for (const auto& data : arrival_delay_ms) {
const float x = config_.GetCallTimeSec(data.first * 1000); // ms to us.
const float y = data.second;
time_series_packet_arrival.points.emplace_back(TimeSeriesPoint(x, y));
}
for (const auto& data : corrected_arrival_delay_ms) {
const float x = config_.GetCallTimeSec(data.first * 1000); // ms to us.
const float y = data.second;
time_series_relative_packet_arrival.points.emplace_back(
TimeSeriesPoint(x, y));
}
for (const auto& data : playout_delay_ms) {
const float x = config_.GetCallTimeSec(data.first * 1000); // ms to us.
const float y = data.second;
time_series_play_time.points.emplace_back(TimeSeriesPoint(x, y));
}
for (const auto& data : target_delay_ms) {
const float x = config_.GetCallTimeSec(data.first * 1000); // ms to us.
const float y = data.second;
time_series_target_time.points.emplace_back(TimeSeriesPoint(x, y));
}
plot->AppendTimeSeries(std::move(time_series_packet_arrival));
plot->AppendTimeSeries(std::move(time_series_relative_packet_arrival));
plot->AppendTimeSeries(std::move(time_series_play_time));
plot->AppendTimeSeries(std::move(time_series_target_time));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Relative delay (ms)", kBottomMargin,
kTopMargin);
plot->SetTitle("NetEq timing for " + GetStreamName(kIncomingPacket, ssrc));
}
template <typename NetEqStatsType>
void EventLogAnalyzer::CreateNetEqStatsGraphInternal(
const NetEqStatsGetterMap& neteq_stats,
rtc::FunctionView<const std::vector<std::pair<int64_t, NetEqStatsType>>*(
const test::NetEqStatsGetter*)> data_extractor,
rtc::FunctionView<float(const NetEqStatsType&)> stats_extractor,
const std::string& plot_name,
Plot* plot) const {
std::map<uint32_t, TimeSeries> time_series;
for (const auto& st : neteq_stats) {
const uint32_t ssrc = st.first;
const std::vector<std::pair<int64_t, NetEqStatsType>>* data_vector =
data_extractor(st.second.get());
for (const auto& data : *data_vector) {
const float time =
config_.GetCallTimeSec(data.first * 1000); // ms to us.
const float value = stats_extractor(data.second);
time_series[ssrc].points.emplace_back(TimeSeriesPoint(time, value));
}
}
for (auto& series : time_series) {
series.second.label = GetStreamName(kIncomingPacket, series.first);
series.second.line_style = LineStyle::kLine;
plot->AppendTimeSeries(std::move(series.second));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, plot_name, kBottomMargin, kTopMargin);
plot->SetTitle(plot_name);
}
void EventLogAnalyzer::CreateNetEqNetworkStatsGraph(
const NetEqStatsGetterMap& neteq_stats,
rtc::FunctionView<float(const NetEqNetworkStatistics&)> stats_extractor,
const std::string& plot_name,
Plot* plot) const {
CreateNetEqStatsGraphInternal<NetEqNetworkStatistics>(
neteq_stats,
[](const test::NetEqStatsGetter* stats_getter) {
return stats_getter->stats();
},
stats_extractor, plot_name, plot);
}
void EventLogAnalyzer::CreateNetEqLifetimeStatsGraph(
const NetEqStatsGetterMap& neteq_stats,
rtc::FunctionView<float(const NetEqLifetimeStatistics&)> stats_extractor,
const std::string& plot_name,
Plot* plot) const {
CreateNetEqStatsGraphInternal<NetEqLifetimeStatistics>(
neteq_stats,
[](const test::NetEqStatsGetter* stats_getter) {
return stats_getter->lifetime_stats();
},
stats_extractor, plot_name, plot);
}
void EventLogAnalyzer::CreateIceCandidatePairConfigGraph(Plot* plot) {
std::map<uint32_t, TimeSeries> configs_by_cp_id;
for (const auto& config : parsed_log_.ice_candidate_pair_configs()) {
if (configs_by_cp_id.find(config.candidate_pair_id) ==
configs_by_cp_id.end()) {
const std::string candidate_pair_desc =
GetCandidatePairLogDescriptionAsString(config);
configs_by_cp_id[config.candidate_pair_id] =
TimeSeries("[" + std::to_string(config.candidate_pair_id) + "]" +
candidate_pair_desc,
LineStyle::kNone, PointStyle::kHighlight);
candidate_pair_desc_by_id_[config.candidate_pair_id] =
candidate_pair_desc;
}
float x = config_.GetCallTimeSec(config.log_time_us());
float y = static_cast<float>(config.type);
configs_by_cp_id[config.candidate_pair_id].points.emplace_back(x, y);
}
// TODO(qingsi): There can be a large number of candidate pairs generated by
// certain calls and the frontend cannot render the chart in this case due to
// the failure of generating a palette with the same number of colors.
for (auto& kv : configs_by_cp_id) {
plot->AppendTimeSeries(std::move(kv.second));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 3, "Numeric Config Type", kBottomMargin,
kTopMargin);
plot->SetTitle("[IceEventLog] ICE candidate pair configs");
}
std::string EventLogAnalyzer::GetCandidatePairLogDescriptionFromId(
uint32_t candidate_pair_id) {
if (candidate_pair_desc_by_id_.find(candidate_pair_id) !=
candidate_pair_desc_by_id_.end()) {
return candidate_pair_desc_by_id_[candidate_pair_id];
}
for (const auto& config : parsed_log_.ice_candidate_pair_configs()) {
// TODO(qingsi): Add the handling of the "Updated" config event after the
// visualization of property change for candidate pairs is introduced.
if (candidate_pair_desc_by_id_.find(config.candidate_pair_id) ==
candidate_pair_desc_by_id_.end()) {
const std::string candidate_pair_desc =
GetCandidatePairLogDescriptionAsString(config);
candidate_pair_desc_by_id_[config.candidate_pair_id] =
candidate_pair_desc;
}
}
return candidate_pair_desc_by_id_[candidate_pair_id];
}
void EventLogAnalyzer::CreateIceConnectivityCheckGraph(Plot* plot) {
std::map<uint32_t, TimeSeries> checks_by_cp_id;
for (const auto& event : parsed_log_.ice_candidate_pair_events()) {
if (checks_by_cp_id.find(event.candidate_pair_id) ==
checks_by_cp_id.end()) {
checks_by_cp_id[event.candidate_pair_id] = TimeSeries(
"[" + std::to_string(event.candidate_pair_id) + "]" +
GetCandidatePairLogDescriptionFromId(event.candidate_pair_id),
LineStyle::kNone, PointStyle::kHighlight);
}
float x = config_.GetCallTimeSec(event.log_time_us());
constexpr int kIceCandidatePairEventTypeOffset =
static_cast<int>(IceCandidatePairConfigType::kNumValues);
float y = static_cast<float>(event.type) + kIceCandidatePairEventTypeOffset;
checks_by_cp_id[event.candidate_pair_id].points.emplace_back(x, y);
}
// TODO(qingsi): The same issue as in CreateIceCandidatePairConfigGraph.
for (auto& kv : checks_by_cp_id) {
plot->AppendTimeSeries(std::move(kv.second));
}
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 4, "Numeric Connectivity State", kBottomMargin,
kTopMargin);
plot->SetTitle("[IceEventLog] ICE connectivity checks");
}
void EventLogAnalyzer::CreateDtlsTransportStateGraph(Plot* plot) {
TimeSeries states("DTLS Transport State", LineStyle::kNone,
PointStyle::kHighlight);
for (const auto& event : parsed_log_.dtls_transport_states()) {
float x = config_.GetCallTimeSec(event.log_time_us());
float y = static_cast<float>(event.dtls_transport_state);
states.points.emplace_back(x, y);
}
plot->AppendTimeSeries(std::move(states));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, static_cast<float>(DtlsTransportState::kNumValues),
"Numeric Transport State", kBottomMargin, kTopMargin);
plot->SetTitle("DTLS Transport State");
}
void EventLogAnalyzer::CreateDtlsWritableStateGraph(Plot* plot) {
TimeSeries writable("DTLS Writable", LineStyle::kNone,
PointStyle::kHighlight);
for (const auto& event : parsed_log_.dtls_writable_states()) {
float x = config_.GetCallTimeSec(event.log_time_us());
float y = static_cast<float>(event.writable);
writable.points.emplace_back(x, y);
}
plot->AppendTimeSeries(std::move(writable));
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
"Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Writable", kBottomMargin, kTopMargin);
plot->SetTitle("DTLS Writable State");
}
void EventLogAnalyzer::PrintNotifications(FILE* file) {
fprintf(file, "========== TRIAGE NOTIFICATIONS ==========\n");
for (const auto& alert : incoming_rtp_recv_time_gaps_) {
fprintf(file, "%3.3lf s : %s\n", alert.Time(), alert.ToString().c_str());
}
for (const auto& alert : incoming_rtcp_recv_time_gaps_) {
fprintf(file, "%3.3lf s : %s\n", alert.Time(), alert.ToString().c_str());
}
for (const auto& alert : outgoing_rtp_send_time_gaps_) {
fprintf(file, "%3.3lf s : %s\n", alert.Time(), alert.ToString().c_str());
}
for (const auto& alert : outgoing_rtcp_send_time_gaps_) {
fprintf(file, "%3.3lf s : %s\n", alert.Time(), alert.ToString().c_str());
}
for (const auto& alert : incoming_seq_num_jumps_) {
fprintf(file, "%3.3lf s : %s\n", alert.Time(), alert.ToString().c_str());
}
for (const auto& alert : incoming_capture_time_jumps_) {
fprintf(file, "%3.3lf s : %s\n", alert.Time(), alert.ToString().c_str());
}
for (const auto& alert : outgoing_seq_num_jumps_) {
fprintf(file, "%3.3lf s : %s\n", alert.Time(), alert.ToString().c_str());
}
for (const auto& alert : outgoing_capture_time_jumps_) {
fprintf(file, "%3.3lf s : %s\n", alert.Time(), alert.ToString().c_str());
}
for (const auto& alert : outgoing_high_loss_alerts_) {
fprintf(file, " : %s\n", alert.ToString().c_str());
}
fprintf(file, "========== END TRIAGE NOTIFICATIONS ==========\n");
}
void EventLogAnalyzer::CreateStreamGapAlerts(PacketDirection direction) {
// With 100 packets/s (~800kbps), false positives would require 10 s without
// data.
constexpr int64_t kMaxSeqNumJump = 1000;
// With a 90 kHz clock, false positives would require 10 s without data.
constexpr int64_t kMaxCaptureTimeJump = 900000;
int64_t end_time_us = log_segments_.empty()
? std::numeric_limits<int64_t>::max()
: log_segments_.front().second;
SeqNumUnwrapper<uint16_t> seq_num_unwrapper;
absl::optional<int64_t> last_seq_num;
SeqNumUnwrapper<uint32_t> capture_time_unwrapper;
absl::optional<int64_t> last_capture_time;
// Check for gaps in sequence numbers and capture timestamps.
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
for (const auto& packet : stream.packet_view) {
if (packet.log_time_us() > end_time_us) {
// Only process the first (LOG_START, LOG_END) segment.
break;
}
int64_t seq_num = seq_num_unwrapper.Unwrap(packet.header.sequenceNumber);
if (last_seq_num.has_value() &&
std::abs(seq_num - last_seq_num.value()) > kMaxSeqNumJump) {
Alert_SeqNumJump(direction,
config_.GetCallTimeSec(packet.log_time_us()),
packet.header.ssrc);
}
last_seq_num.emplace(seq_num);
int64_t capture_time =
capture_time_unwrapper.Unwrap(packet.header.timestamp);
if (last_capture_time.has_value() &&
std::abs(capture_time - last_capture_time.value()) >
kMaxCaptureTimeJump) {
Alert_CaptureTimeJump(direction,
config_.GetCallTimeSec(packet.log_time_us()),
packet.header.ssrc);
}
last_capture_time.emplace(capture_time);
}
}
}
void EventLogAnalyzer::CreateTransmissionGapAlerts(PacketDirection direction) {
constexpr int64_t kMaxRtpTransmissionGap = 500000;
constexpr int64_t kMaxRtcpTransmissionGap = 2000000;
int64_t end_time_us = log_segments_.empty()
? std::numeric_limits<int64_t>::max()
: log_segments_.front().second;
// TODO(terelius): The parser could provide a list of all packets, ordered
// by time, for each direction.
std::multimap<int64_t, const LoggedRtpPacket*> rtp_in_direction;
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
for (const LoggedRtpPacket& rtp_packet : stream.packet_view)
rtp_in_direction.emplace(rtp_packet.log_time_us(), &rtp_packet);
}
absl::optional<int64_t> last_rtp_time;
for (const auto& kv : rtp_in_direction) {
int64_t timestamp = kv.first;
if (timestamp > end_time_us) {
// Only process the first (LOG_START, LOG_END) segment.
break;
}
int64_t duration = timestamp - last_rtp_time.value_or(0);
if (last_rtp_time.has_value() && duration > kMaxRtpTransmissionGap) {
// No packet sent/received for more than 500 ms.
Alert_RtpLogTimeGap(direction, config_.GetCallTimeSec(timestamp),
duration / 1000);
}
last_rtp_time.emplace(timestamp);
}
absl::optional<int64_t> last_rtcp_time;
if (direction == kIncomingPacket) {
for (const auto& rtcp : parsed_log_.incoming_rtcp_packets()) {
if (rtcp.log_time_us() > end_time_us) {
// Only process the first (LOG_START, LOG_END) segment.
break;
}
int64_t duration = rtcp.log_time_us() - last_rtcp_time.value_or(0);
if (last_rtcp_time.has_value() && duration > kMaxRtcpTransmissionGap) {
// No feedback sent/received for more than 2000 ms.
Alert_RtcpLogTimeGap(direction,
config_.GetCallTimeSec(rtcp.log_time_us()),
duration / 1000);
}
last_rtcp_time.emplace(rtcp.log_time_us());
}
} else {
for (const auto& rtcp : parsed_log_.outgoing_rtcp_packets()) {
if (rtcp.log_time_us() > end_time_us) {
// Only process the first (LOG_START, LOG_END) segment.
break;
}
int64_t duration = rtcp.log_time_us() - last_rtcp_time.value_or(0);
if (last_rtcp_time.has_value() && duration > kMaxRtcpTransmissionGap) {
// No feedback sent/received for more than 2000 ms.
Alert_RtcpLogTimeGap(direction,
config_.GetCallTimeSec(rtcp.log_time_us()),
duration / 1000);
}
last_rtcp_time.emplace(rtcp.log_time_us());
}
}
}
// TODO(terelius): Notifications could possibly be generated by the same code
// that produces the graphs. There is some code duplication that could be
// avoided, but that might be solved anyway when we move functionality from the
// analyzer to the parser.
void EventLogAnalyzer::CreateTriageNotifications() {
CreateStreamGapAlerts(kIncomingPacket);
CreateStreamGapAlerts(kOutgoingPacket);
CreateTransmissionGapAlerts(kIncomingPacket);
CreateTransmissionGapAlerts(kOutgoingPacket);
int64_t end_time_us = log_segments_.empty()
? std::numeric_limits<int64_t>::max()
: log_segments_.front().second;
constexpr double kMaxLossFraction = 0.05;
// Loss feedback
int64_t total_lost_packets = 0;
int64_t total_expected_packets = 0;
for (auto& bwe_update : parsed_log_.bwe_loss_updates()) {
if (bwe_update.log_time_us() > end_time_us) {
// Only process the first (LOG_START, LOG_END) segment.
break;
}
int64_t lost_packets = static_cast<double>(bwe_update.fraction_lost) / 255 *
bwe_update.expected_packets;
total_lost_packets += lost_packets;
total_expected_packets += bwe_update.expected_packets;
}
double avg_outgoing_loss =
static_cast<double>(total_lost_packets) / total_expected_packets;
if (avg_outgoing_loss > kMaxLossFraction) {
Alert_OutgoingHighLoss(avg_outgoing_loss);
}
}
} // namespace webrtc