blob: 403f6080cac3b10f13d662068c7fb3c6d3b79c60 [file] [log] [blame]
/*
* Copyright 2020 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/adaptation/quality_scaler_resource.h"
#include <utility>
#include "rtc_base/experiments/balanced_degradation_settings.h"
namespace webrtc {
QualityScalerResource::QualityScalerResource()
: rtc::RefCountedObject<Resource>(),
quality_scaler_(nullptr),
num_handled_callbacks_(0),
pending_callbacks_(),
adaptation_processor_(nullptr),
clear_qp_samples_(false) {}
QualityScalerResource::~QualityScalerResource() {
RTC_DCHECK(!quality_scaler_);
RTC_DCHECK(pending_callbacks_.empty());
}
void QualityScalerResource::SetAdaptationProcessor(
ResourceAdaptationProcessorInterface* adaptation_processor) {
RTC_DCHECK_RUN_ON(resource_adaptation_queue());
adaptation_processor_ = adaptation_processor;
}
bool QualityScalerResource::is_started() const {
RTC_DCHECK_RUN_ON(encoder_queue());
return quality_scaler_.get();
}
void QualityScalerResource::StartCheckForOveruse(
VideoEncoder::QpThresholds qp_thresholds) {
RTC_DCHECK_RUN_ON(encoder_queue());
RTC_DCHECK(!is_started());
quality_scaler_ =
std::make_unique<QualityScaler>(this, std::move(qp_thresholds));
}
void QualityScalerResource::StopCheckForOveruse() {
RTC_DCHECK_RUN_ON(encoder_queue());
// Ensure we have no pending callbacks. This makes it safe to destroy the
// QualityScaler and even task queues with tasks in-flight.
AbortPendingCallbacks();
quality_scaler_.reset();
}
void QualityScalerResource::SetQpThresholds(
VideoEncoder::QpThresholds qp_thresholds) {
RTC_DCHECK_RUN_ON(encoder_queue());
RTC_DCHECK(is_started());
quality_scaler_->SetQpThresholds(std::move(qp_thresholds));
}
bool QualityScalerResource::QpFastFilterLow() {
RTC_DCHECK_RUN_ON(encoder_queue());
RTC_DCHECK(is_started());
return quality_scaler_->QpFastFilterLow();
}
void QualityScalerResource::OnEncodeCompleted(const EncodedImage& encoded_image,
int64_t time_sent_in_us) {
RTC_DCHECK_RUN_ON(encoder_queue());
if (quality_scaler_ && encoded_image.qp_ >= 0) {
quality_scaler_->ReportQp(encoded_image.qp_, time_sent_in_us);
} else if (!quality_scaler_) {
// Reference counting guarantees that this object is still alive by the time
// the task is executed.
// TODO(webrtc:11553): this is a workaround to ensure that all quality
// scaler imposed limitations are removed once qualty scaler is disabled
// mid call.
// Instead it should be done at a higher layer in the same way for all
// resources.
resource_adaptation_queue()->PostTask(
[this_ref = rtc::scoped_refptr<QualityScalerResource>(this)] {
RTC_DCHECK_RUN_ON(this_ref->resource_adaptation_queue());
this_ref->OnResourceUsageStateMeasured(ResourceUsageState::kUnderuse);
});
}
}
void QualityScalerResource::OnFrameDropped(
EncodedImageCallback::DropReason reason) {
RTC_DCHECK_RUN_ON(encoder_queue());
if (!quality_scaler_)
return;
switch (reason) {
case EncodedImageCallback::DropReason::kDroppedByMediaOptimizations:
quality_scaler_->ReportDroppedFrameByMediaOpt();
break;
case EncodedImageCallback::DropReason::kDroppedByEncoder:
quality_scaler_->ReportDroppedFrameByEncoder();
break;
}
}
void QualityScalerResource::OnReportQpUsageHigh(
rtc::scoped_refptr<QualityScalerQpUsageHandlerCallbackInterface> callback) {
RTC_DCHECK_RUN_ON(encoder_queue());
size_t callback_id = QueuePendingCallback(callback);
// Reference counting guarantees that this object is still alive by the time
// the task is executed.
resource_adaptation_queue()->PostTask(
[this_ref = rtc::scoped_refptr<QualityScalerResource>(this),
callback_id] {
RTC_DCHECK_RUN_ON(this_ref->resource_adaptation_queue());
this_ref->clear_qp_samples_ = false;
// If this OnResourceUsageStateMeasured() triggers an adaptation,
// OnAdaptationApplied() will occur between this line and the next. This
// allows modifying |clear_qp_samples_| based on the adaptation.
this_ref->OnResourceUsageStateMeasured(ResourceUsageState::kOveruse);
this_ref->HandlePendingCallback(callback_id,
this_ref->clear_qp_samples_);
});
}
void QualityScalerResource::OnReportQpUsageLow(
rtc::scoped_refptr<QualityScalerQpUsageHandlerCallbackInterface> callback) {
RTC_DCHECK_RUN_ON(encoder_queue());
size_t callback_id = QueuePendingCallback(callback);
// Reference counting guarantees that this object is still alive by the time
// the task is executed.
resource_adaptation_queue()->PostTask(
[this_ref = rtc::scoped_refptr<QualityScalerResource>(this),
callback_id] {
RTC_DCHECK_RUN_ON(this_ref->resource_adaptation_queue());
this_ref->OnResourceUsageStateMeasured(ResourceUsageState::kUnderuse);
this_ref->HandlePendingCallback(callback_id, true);
});
}
void QualityScalerResource::OnAdaptationApplied(
const VideoStreamInputState& input_state,
const VideoSourceRestrictions& restrictions_before,
const VideoSourceRestrictions& restrictions_after,
rtc::scoped_refptr<Resource> reason_resource) {
RTC_DCHECK_RUN_ON(resource_adaptation_queue());
// We only clear QP samples on adaptations triggered by the QualityScaler.
if (reason_resource != this)
return;
clear_qp_samples_ = true;
// If we're in "balanced" and the frame rate before and after adaptation did
// not differ that much, don't clear the QP samples and instead check for QP
// again in a short amount of time. This may trigger adapting down again soon.
// TODO(hbos): Can this be simplified by getting rid of special casing logic?
// For example, we could decide whether or not to clear QP samples based on
// how big the adaptation step was alone (regardless of degradation preference
// or what resource triggered the adaptation) and the QualityScaler could
// check for QP when it had enough QP samples rather than at a variable
// interval whose delay is calculated based on events such as these. Now there
// is much dependency on a specific OnReportQpUsageHigh() event and "balanced"
// but adaptations happening might not align with QualityScaler's CheckQpTask.
if (adaptation_processor_ &&
adaptation_processor_->effective_degradation_preference() ==
DegradationPreference::BALANCED &&
DidDecreaseFrameRate(restrictions_before, restrictions_after)) {
absl::optional<int> min_diff = BalancedDegradationSettings().MinFpsDiff(
input_state.frame_size_pixels().value());
if (min_diff && input_state.frames_per_second() > 0) {
int fps_diff = input_state.frames_per_second() -
restrictions_after.max_frame_rate().value();
if (fps_diff < min_diff.value()) {
clear_qp_samples_ = false;
}
}
}
}
size_t QualityScalerResource::QueuePendingCallback(
rtc::scoped_refptr<QualityScalerQpUsageHandlerCallbackInterface> callback) {
RTC_DCHECK_RUN_ON(encoder_queue());
pending_callbacks_.push(callback);
// The ID of a callback is its sequence number (1, 2, 3...).
return num_handled_callbacks_ + pending_callbacks_.size();
}
void QualityScalerResource::HandlePendingCallback(size_t callback_id,
bool clear_qp_samples) {
RTC_DCHECK_RUN_ON(resource_adaptation_queue());
// Reference counting guarantees that this object is still alive by the time
// the task is executed.
encoder_queue()->PostTask(
[this_ref = rtc::scoped_refptr<QualityScalerResource>(this), callback_id,
clear_qp_samples] {
RTC_DCHECK_RUN_ON(this_ref->encoder_queue());
if (this_ref->num_handled_callbacks_ >= callback_id) {
// The callback with this ID has already been handled.
// This happens if AbortPendingCallbacks() is called while the task is
// in flight.
return;
}
RTC_DCHECK(!this_ref->pending_callbacks_.empty());
this_ref->pending_callbacks_.front()->OnQpUsageHandled(
clear_qp_samples);
++this_ref->num_handled_callbacks_;
this_ref->pending_callbacks_.pop();
});
}
void QualityScalerResource::AbortPendingCallbacks() {
RTC_DCHECK_RUN_ON(encoder_queue());
while (!pending_callbacks_.empty()) {
pending_callbacks_.front()->OnQpUsageHandled(false);
++num_handled_callbacks_;
pending_callbacks_.pop();
}
}
} // namespace webrtc