blob: 97b421d04ca3b92f39e6cdd166b37241518f5c4c [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/fixed_digital_level_estimator.h"
#include <limits>
#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/agc2/agc2_common.h"
#include "modules/audio_processing/agc2/agc2_testing_common.h"
#include "modules/audio_processing/agc2/vector_float_frame.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/gunit.h"
namespace webrtc {
namespace {
constexpr float kInputLevel = 10000.f;
// Run audio at specified settings through the level estimator, and
// verify that the output level falls within the bounds.
void TestLevelEstimator(int sample_rate_hz,
int num_channels,
float input_level_linear_scale,
float expected_min,
float expected_max) {
ApmDataDumper apm_data_dumper(0);
FixedDigitalLevelEstimator level_estimator(sample_rate_hz, &apm_data_dumper);
const VectorFloatFrame vectors_with_float_frame(
num_channels, rtc::CheckedDivExact(sample_rate_hz, 100),
input_level_linear_scale);
for (int i = 0; i < 500; ++i) {
const auto level = level_estimator.ComputeLevel(
vectors_with_float_frame.float_frame_view());
// Give the estimator some time to ramp up.
if (i < 50) {
continue;
}
for (const auto& x : level) {
EXPECT_LE(expected_min, x);
EXPECT_LE(x, expected_max);
}
}
}
// Returns time it takes for the level estimator to decrease its level
// estimate by 'level_reduction_db'.
float TimeMsToDecreaseLevel(int sample_rate_hz,
int num_channels,
float input_level_db,
float level_reduction_db) {
const float input_level = DbfsToFloatS16(input_level_db);
RTC_DCHECK_GT(level_reduction_db, 0);
const VectorFloatFrame vectors_with_float_frame(
num_channels, rtc::CheckedDivExact(sample_rate_hz, 100), input_level);
ApmDataDumper apm_data_dumper(0);
FixedDigitalLevelEstimator level_estimator(sample_rate_hz, &apm_data_dumper);
// Give the LevelEstimator plenty of time to ramp up and stabilize
float last_level = 0.f;
for (int i = 0; i < 500; ++i) {
const auto level_envelope = level_estimator.ComputeLevel(
vectors_with_float_frame.float_frame_view());
last_level = *level_envelope.rbegin();
}
// Set input to 0.
VectorFloatFrame vectors_with_zero_float_frame(
num_channels, rtc::CheckedDivExact(sample_rate_hz, 100), 0);
const float reduced_level_linear =
DbfsToFloatS16(input_level_db - level_reduction_db);
int sub_frames_until_level_reduction = 0;
while (last_level > reduced_level_linear) {
const auto level_envelope = level_estimator.ComputeLevel(
vectors_with_zero_float_frame.float_frame_view());
for (const auto& v : level_envelope) {
EXPECT_LT(v, last_level);
sub_frames_until_level_reduction++;
last_level = v;
if (last_level <= reduced_level_linear) {
break;
}
}
}
return static_cast<float>(sub_frames_until_level_reduction) *
kFrameDurationMs / kSubFramesInFrame;
}
} // namespace
TEST(GainController2FixedDigitalLevelEstimator, EstimatorShouldNotCrash) {
TestLevelEstimator(8000, 1, 0, std::numeric_limits<float>::lowest(),
std::numeric_limits<float>::max());
}
TEST(GainController2FixedDigitalLevelEstimator,
EstimatorShouldEstimateConstantLevel) {
TestLevelEstimator(10000, 1, kInputLevel, kInputLevel * 0.99,
kInputLevel * 1.01);
}
TEST(GainController2FixedDigitalLevelEstimator,
EstimatorShouldEstimateConstantLevelForManyChannels) {
constexpr size_t num_channels = 10;
TestLevelEstimator(20000, num_channels, kInputLevel, kInputLevel * 0.99,
kInputLevel * 1.01);
}
TEST(GainController2FixedDigitalLevelEstimator, TimeToDecreaseForLowLevel) {
constexpr float kLevelReductionDb = 25;
constexpr float kInitialLowLevel = -40;
constexpr float kExpectedTime = kLevelReductionDb * test::kDecayMs;
const float time_to_decrease =
TimeMsToDecreaseLevel(22000, 1, kInitialLowLevel, kLevelReductionDb);
EXPECT_LE(kExpectedTime * 0.9, time_to_decrease);
EXPECT_LE(time_to_decrease, kExpectedTime * 1.1);
}
TEST(GainController2FixedDigitalLevelEstimator,
TimeToDecreaseForFullScaleLevel) {
constexpr float kLevelReductionDb = 25;
constexpr float kExpectedTime = kLevelReductionDb * test::kDecayMs;
const float time_to_decrease =
TimeMsToDecreaseLevel(26000, 1, 0, kLevelReductionDb);
EXPECT_LE(kExpectedTime * 0.9, time_to_decrease);
EXPECT_LE(time_to_decrease, kExpectedTime * 1.1);
}
TEST(GainController2FixedDigitalLevelEstimator,
TimeToDecreaseForMultipleChannels) {
constexpr float kLevelReductionDb = 25;
constexpr float kExpectedTime = kLevelReductionDb * test::kDecayMs;
constexpr size_t kNumChannels = 10;
const float time_to_decrease =
TimeMsToDecreaseLevel(28000, kNumChannels, 0, kLevelReductionDb);
EXPECT_LE(kExpectedTime * 0.9, time_to_decrease);
EXPECT_LE(time_to_decrease, kExpectedTime * 1.1);
}
} // namespace webrtc